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The ever-increasing sophistication of malicious software poses significant hurdles 
to the field of cybersecurity, notably in the areas of malware detection and safe 
executable management.This paper discusses how malware is becoming more 
complicated and how that affects cybersecurity, especially when it comes to finding 
malware and managing executable files. It presents a hybrid dual-phase 
methodology that integrates a machine learning and deep learning-based malware 
detection system with a secure encoding framework intended to safeguard trusted 
executables. During the malware detection phase, static features like opcode 
sequences, API calls, and structural characteristics are taken out of Portable 
Executable (PE) files. We use feature optimization and k-fold cross-validation to 
make the system work better. The methodology assesses five algorithms: XGBoost, 
Random Forest, Gradient Boosting, Deep Learning (utilizing Keras DNN), and 
SVM (employing RBF Kernel). The performance metrics show that XGBoost has 
the highest accuracy (99.48%), F1-score (0.991), and AUC (0.9997), with Random 
Forest and Gradient Boosting not far behind. The Deep Learning model also does 
very well, with an accuracy of 99.04% and an AUC of 0.9992. This shows that it can 
recognize complex, non-linear patterns in malware activity. The proposed 
framework uses a multi-layered encoding system in the secure encoding phase. 
This system combines Base64 transformation, image-based mappings, and 
Modified Least Significant Bit (MLSB) embedding techniques. This encoding keeps 
trusted executables safe from tampering and unauthorized access. It has a 99.2% 
retrieval accuracy, which is better than traditional encryption methods when it 
comes to keeping data safe and private. In general, the proposed framework is a 
clear, scalable, and safe way to classify malware and protect executables. It has a 
lot of potential to be used in cybersecurity, especially for cloud infrastructures and 
important systems. The approach plays a big role in making AI-powered systems 
that can protect against a wide range of digital threats. 
 
Keywords: Malware Detection, Executables, Machine Learning, Encoding, 
Cybersecurity, Text Encoding, Image Encoding, Base64, Image-based Mappings, 
Modified Least Significant Bit (MLSB) Embedding. 

 
1.  Introduction 

 
The growth of malware presents a substantial risk to the integrity, confidentiality, and availability of digital 
systems. Malware capitalizes on flaws in executable files, frequently evading detection until it inflicts 
significant damage. Conventional signature-based detection approaches are inadequate for addressing 
complex and dynamic threats, requiring the use of advanced malware detection methodologies. Moreover, 
guaranteeing the security and validity of trusted executable files necessitates new encoding and analytical 
methods to alleviate dangers linked to tampering and illegal alterations. 
This research tackles two significant challenges: (1) achieving high-accuracy malware detection in executables 
with machine learning approaches, and (2) encoding and analyzing trusted executables for secure storage and 
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retrieval. This work seeks to improve malware detection and executable file security through the integration of 
artificial intelligence and resilient encoding techniques. 
The increasing complexity of malware variants and their capacity to evade traditional detection methods 
highlight the pressing necessity for sophisticated, feature-oriented classification systems. Furthermore, 
trustworthy executables necessitate safe encoding methods to guarantee their integrity, even in adversarial 
settings. Current methodologies frequently struggle to reconcile computing efficiency, storage demands, and 
resilience to manipulation. 
The proliferation of malware poses a significant threat to digital systems, as it exploits vulnerabilities in 
executable files. Traditional signature-based detection methods fail against advanced, polymorphic, and zero-
day threats, necessitating feature-driven machine learning models. To secure trusted executables against 
tampering and unauthorized modifications, innovative encoding techniques are needed. This study addresses 
two critical challenges in cybersecurity: achieving high-accuracy malware detection in executables using 
machine learning with extracted opcode sequences, API calls, and byte-level attributes, and encoding and 
analyzing trusted executables for secure storage and tamper resistance using Base64, image-based encoding, 
and MLSB embedding. 
Existing limitations in malware detection include lack of generalization in signature-based and heuristic 
models, high false positives in anomaly-based detection, limited adaptability to novel malware variants, 
computational overhead in encryption-based methods, susceptibility to tampering in basic encoding 
techniques, and storage inefficiency with large-scale datasets. 
The proposed solution focuses on machine learning for malware detection, extracting relevant features from 
executables and applying feature selection to remove noise. The model outperforms other classifiers with high 
detection accuracy, indicating their robustness against adversarial malware variants. The encoding method 
compared to Pixel Value Mapping and Modified LSB Image-Based Encoding showed better compression, faster 
encoding and decoding times, and stronger resistance against tampering. 
This approach bridges the gap in malware detection by leveraging machine learning-driven feature selection 
and classification, improving detection against zero-day malware, enhancing executable security through 
encoding, and reducing false positives in malware classification while securing trusted executables. 
 
Objectives of the research work as follows: 
1. Construct a machine learning framework for identifying malware in executables utilizing extracted 
information, including opcode sequences, API calls, and byte-level attributes. 
2. Encode trusted executable files into forms appropriate for secure storage and efficient retrieval utilizing 
Base64, image-based encoding, and sophisticated methods such as MLSB embedding encoding. 
3. Evaluate and contrast encoding strategies for efficiency, retrieval precision, and resilience to tampering or 
corruption. 
This study is significant in cybersecurity and digital forensics, where detecting and mitigating malware attacks 
is essential. The amalgamation of feature-based classification methods with secure encoding protocols offers 
a holistic strategy for executable file security. This research presents a scalable method for malware 
identification and the safeguarding of trustworthy executables across diverse settings, including critical 
infrastructure, by integrating machine learning techniques with creative encoding strategies. 
The subsequent sections of this work are structured as follows. Section 2 offers a literature review and 
comparative studies. Section 3 delineates the Proposed Methodology. Section 4 examines the Results and 
findings. Ultimately, Section 5 serves as the conclusion segment. 
 

2.  Literature Review 
 
In this section authors discussed the previous work and literature review and its advantages and disadvantages 
of the work. 
 
2.1 Reviews on Steganography and Malware Detection 
Teaching offensive security [1], particularly ethical hacking, is crucial in information security curricula to equip 
cybersecurity professionals with the knowledge to protect systems from attacks. Understanding potential 
vulnerabilities allows for early detection and proactive defense strategies. This method raises awareness among 
browser developers about potential risks associated with handling images. However, limitations include 
potential ethical concerns, the risk of misuse of knowledge, and the reliance on specific technology, such as 
image steganography, which may not cover all cybersecurity threats. 
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The article [2] explores the methods and challenges of malware distribution, particularly through file 
attachments in phishing emails and illegitimate downloads. It highlights the effectiveness of existing security 
applications using signature-based and anomaly-based machine learning techniques for detecting malware in 
common file formats. However, detecting malware hidden within multimedia files using steganography 
remains problematic; as such instances are infrequent and often serve as a preliminary step in sophisticated 
cyberattacks. The article aims to fill the knowledge gap in the intersection of image steganography and 
stegomalware detection, detailing the history, generation tools, and current advancements in image 
steganography techniques. However, limitations include a lack of comprehensive empirical data, limited 
discussion on countermeasures against stegomalware, and the focus on specific multimedia types may 
overlook other forms of steganographic attacks. 
The Robust Malicious Executable Detection (RMED) [3] system uses machine learning classifiers to identify 
malicious Portable Executable (PE) files on Windows operating systems. The system uses a dataset of 116,031 
benign files and 179,071 malware samples, focusing on specific PE headers. The model is trained on 15 PE 
features, achieving an accuracy of 98.42% and a false positive rate of 1.58%. The RMED aims to improve 
cybersecurity measures by implementing AI methods for proactive detection of cyber threats. However, 
limitations include potential biases in the dataset, reliance on predefined features, and the challenge of 
adapting to new malware types. 
Stego-malware [4] is a growing tactic used by cybercriminals to remain undetected within target systems. This 
paper investigates three MP3 steganography tools—MP3Stego, MP3Stegz, and Stegonaut—to understand how 
their algorithms can be identified in a malware context. A structured analysis follows ENFSI guidelines for 
audio authenticity, leading to the creation of a trace map detailing metadata and content. Detection patterns 
are developed by analyzing embedding algorithm signatures and known malware behaviors against a code 
book. YARA rules are then formed to configure detectors. 
This research [5] examines the threat of stego-malware in Industrial Control Systems (ICS), which hides 
malicious code using steganography. It evaluates existing cybersecurity frameworks and detection techniques, 
including signature-based, anomaly-based, and AI/ML-driven approaches, referencing ISO/IEC 27001 and 
IEC 62443 standards. Notable case studies like Havex and Industroyer illustrate the risks posed by stego-
malware. The research advocates for enhanced AI and machine learning integration to improve detection 
capabilities and suggests necessary modifications to current cybersecurity frameworks. However, it also raises 
awareness of limitations in traditional detection methods, which may struggle against sophisticated 
steganographic techniques. 
Cyber-attacks [6] have increased in recent years, with images becoming a popular vector for malware delivery. 
JPEG, the most commonly used image format, is often used by cyber criminals to embed malicious payloads. 
MalJPEG, a machine learning classifier, uses 10 extracted features from JPEG files to differentiate between 
benign and malicious images. 
The paper [7] presents a new technique for hiding malware through a neural network model, utilizing its poor 
explainability and strong generalization abilities. The malware is embedded within the model's neurons, 
allowing it to remain hidden and evade detection by antivirus engines. The method successfully avoids raising 
suspicion in antivirus scans, as demonstrated by tests on VirusTotal. This method highlights the growing trend 
of using artificial intelligence for cyber attacks, offering insights into potential defense strategies. However, the 
inherent risk lies in increasing malicious actors' capabilities to conduct undetected attacks using advanced 
machine learning techniques, raising ethical and security concerns in AI applications. The paper [8] discusses 
a method using the extended Berkeley Packet Filter (eBPF) to collect performance measurements for detecting 
stegomalware and steganographic threats. It addresses challenges like timeconsuming detection processes and 
the need for scalable solutions. The paper emphasizes the importance of gathering attack-independent 
indicators for better generalizability. Preliminary experimental results from two H2020 Projects, ASTRID and 
SIMARGL, demonstrate the effectiveness of the proposed approach. However, limitations include potential 
scalability issues and the ongoing challenge of generalizing detection techniques. 
Steganography [9] conceals messages in digital media, often using images, while steganalysis aims to uncover 
these hidden messages. The increasing use of digital image steganography by cyber criminals requires effective 
detection methods. Various detection techniques, from traditional to advanced methods, are essential for law 
enforcement to combat encrypted communications. However, limitations include the evolving nature of 
steganographic techniques and the potential for false positives in detection efforts. 
Steganography [10] is the concealment of messages within a carrier object to evade detection. Steganalysis 
identifies these hidden messages across various media types, such as images, audio, and text. Traditional 
methods involve extracting features and classifying those using Ensemble Classifiers or Support Vector 
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Machines. Recent advancements in Deep Learning have improved detection accuracy, particularly in spatial 
and frequency domains. Convolutional Neural Networks (CNNs) have been used since 2014 to develop various 
architectures and strategies for steganographic image detection. Current results show promise for future 
research in steganalysis. Limitations include large labeled datasets, potential overfitting, and challenges in 
detecting steganographic content in compressed or altered media. 
Deep Neural Networks (DNNs) [11] are gaining popularity due to their human-level performance in realworld 
applications. However, this growth also raises risks, including the potential for malware to be integrated into 
DNN models for malicious purposes. The research explores payload injection techniques for both 
uncompressed and deeply compressed models, and introduces triggering mechanisms like logits and rank 
triggers. The prototype was tested on an Nvidia Jetson TX2 testbed, showcasing its practical implications. 
Limitations of the research include extensive testing across diverse environments, ethical concerns, and the 
potential security vulnerabilities in real-world applications. 
Malware [12] is a complex and evolving threat in cybersecurity, with its intention and evolving nature 
complicating detection efforts. To enhance understanding, researchers are creating variants, particularly FUD 
(Fully UnDetectable) malware that can evade antivirus systems and hide data through steganography. This 
approach aims to improve Open Source Intelligence (OSINT) in identifying and tracking malicious activities. 
However, detecting previously unknown malware remains a significant challenge. Stealth methods may not 
guarantee long-term effectiveness as detection technologies evolve, and knowledge misuse in malicious 
contexts is a concern. 
The article [13] explores how malicious executable files use steganography to hide themselves in common file 
types like PDF, Word, Text, and Images. It proposes innovative identification techniques to prevent potential 
attacks and emphasizes the risks associated with infected files. The article aims to raise awareness among 
security professionals and trainees about ethical hacking and enhance the safety of distributed files online by 
addressing the exploitation of these data formats. However, it may not cover all file types, focus on specific 
vulnerabilities without examining broader security protocols, and may not fully validate or test the 
effectiveness of the proposed identification techniques in real-world scenarios. 
The article [14] discusses a PDF steganography method that uses a hybrid crypto encryption technique, 
combining a 256-bit AES key with RSA encryption. This method conceals secret data within PDF documents 
without altering their structure or content, making them appear identical to standard documents. The method 
ensures that only the document size increases with the addition of secret data, maintaining discretion during 
communication. The human eye cannot distinguish between stego and regular PDFs, enhancing its 
effectiveness. However, the method may increase PDF size significantly with large amounts of secret data, 
raising suspicion if not managed carefully. Advanced forensic tools may still detect the addition of data. 
The increasing exchange of information over computer networks necessitates robust security measures to 
protect data from unauthorized access and alteration. Steganography[15], a technique to embed secret 
messages within media, is crucial for this purpose. However, text-based steganography faces challenges such 
as limited concealment space and potential distortion of the original text due to hidden data. This research 
reviews significant techniques and studies in the field, highlighting their advantages and weaknesses. 
Challenges include limited space for concealment, potential distortion of the original text, varying effectiveness 
and complexity, potential obsolescence of some steganographic techniques due to advancements in detection 
methods, and potential gaps in the review due to the focus on text. 
The paper [16] presents a new method for embedding hidden content in text by manipulating paragraph sizes 
using machine learning for steganalysis. The method achieved a maximum accuracy of 0.601, which is 
considered poor. The analysis could detect about half of the embedded content, akin to random chance. The 
study concludes that detecting paragraph manipulation in novels is challenging due to variability in writers' 
styles. The detection method's inefficiency is evident, as half of the content is a random guessing rate. The 
results may vary significantly with different writing styles or genres. The study does not address the potential 
for adversarial attacks bypassing current analysis methods and the reliance on machine learning algorithms 
could lead to overfitting with smaller or biased datasets. 
The paper [17] presents a novel steganography algorithm that uses least-significant bit insertion in PDF stream 
operators to embed secret data. The authors analyze all Adobe PDF standard operators to assess their 
effectiveness. They include a case study demonstrating malware embedding within a cover PDF document. The 
approach aims to improve PDFs' use in security applications. However, its effectiveness may vary depending 
on PDF complexity and encryption presence. The focus on a single technique may overlook other 
steganographic methods, raise ethical concerns, and overlook performance metrics like detection rates and 
payload capacity. 
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2.2 Review on Stegosploits in Image files 
The paper [18] discusses the growing use of steganography by criminals to hide malicious exploits in images, 
particularly through the toolkit Stegosploit. The research aims to develop a detection script that identifies these 
stego images, which are often overlooked by antivirus software. The script's effectiveness is assessed for both 
Windows and Linux Subsystems. The study aims to aid end-users, security professionals, forensic 
investigators, and researchers in preventing cybercrimes. However, the script's efficacy may depend on 
continuous updates to counter new steganographic techniques, and the study's focus on Windows and its 
subsystem limits its applicability to other operating systems. 
The proposed technique combines cryptography and steganography by processing 3D images into 2D slices 
[19], shuffling their order with a key-based random sequence, and encrypting sensitive data using Blowfish. 
The process involves shuffling pixel locations within each slice to enhance security, using two secret keys for 
added layers of protection. The encrypted data is embedded in the least significant bits (LSB) of the shuffled 
pixels. The technique is evaluated using metrics like Peak Signal-to-Noise Ratio (PSNR) and Structural 
Similarity Index (SSIM), showing superior performance compared to other methods. However, the complexity 
of the shuffling scheme, reliance on secret keys, potential image distortion, detection vulnerability, and limited 
adaptability to different types of images or data beyond 3D images. 
The paper [20] surveys the advancements in steganography and steganalysis over three decades, analyzing 
over 150 research papers. It highlights the competition between these fields, highlighting innovations and 
evaluation results of various methods. The authors introduce taxonomies for classifying steganography and 
steganalysis techniques, facilitating a thorough comparison and identifying gaps. It aims to prioritize 
steganography methods for improvement through effective steganalysis. However, the survey may not cover 
recent developments post the October 2023 knowledge cutoff date, overlook relevant but less-cited research, 
and not fully capture the complexity of evolving technologies. 
SteriCNN [21] is a deep residual neural network model designed to remove steganographic information from 
images while maintaining visual quality. It uses convolutional blocks with residual connections for feature 
extraction, learning, attention, and image reconstruction. The model uses channel feature correlation for 
accelerated learning and varies dilation rates to broaden its receptive fields. However, its effectiveness may 
vary with different steganographic techniques, high-complexity scenarios, and the generalization to diverse 
image datasets. 
A new deep residual architecture [22] for steganography detection has been developed, reducing reliance on 
hand-designed elements and heuristics. The architecture includes an expanded front part that computes noise 
residuals while disabling pooling to preserve the stego signal. Experiments show significant performance 
improvements, especially in the JPEG domain. The architecture achieves state-of-the-art detection accuracy, 
further enhanced by incorporating a selection channel as a second input. However, the architecture may still 
be sensitive to data variations, depend on specific types of steganography, and require extensive computational 
resources for training and implementation. 
The research [23] presents a technique for removing unwanted steganographic content from images without 
prior knowledge of the steganographic algorithm used. It uses generic image processing operations and an 
anti-forensic method to achieve this while maintaining visual quality. Tested on various steganographic 
algorithms, the method successfully renders images stego-free, removing approximately 80% of hidden 
content with minimal impact on image quality. The technique also applies to video streams with isolated static 
images. However, the study focuses on static images and may not apply to more complex dynamic video 
content. The effectiveness of the method may vary depending on the steganographic algorithms used and cover 
image nature. 
This study [24] presents a novel DL-based steganalysis technique that extracts and removes hidden 
information while restoring the original image distribution. The method uses deep neural networks to operate 
at the pixel level, achieving a 10-20% improvement in both decoded rate and a new metric called destruction 
rate (DT). However, the technique may struggle against sophisticated steganography methods that evolve to 
mitigate detection, and its effectiveness depends on the quality of training data, real-world application 
scenarios with high noise or varying image qualities, and the reliance on specific benchmarks. MalJPEG [25] 
is a machine learning-based solution designed to detect malicious JPEG images, which can contain hidden 
malware. The method extracts 10 discriminative features from JPEG files and uses a LightGBM classifier, 
achieving an impressive AUC of 0.997, TPR of 0.951, and low FPR of 0.004. It was evaluated on a large dataset 
of 156,818 images, successfully distinguishing between benign and malicious files. However, the focus is solely 
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on JPEG images, potentially overlooking other image formats that could harbor malware. The method relies 
on static feature extraction, which may be inadequate for evolving attack techniques. 
Steganography [26] is a technique used to conceal information within multimedia objects, including images, 
and has evolved to embed malware. Modern steganalysis techniques use computational intelligence methods 
like Support Vector Machines and Machine Learning. A new method using an Artificial Immune System (AIS) 
has been proposed to detect JPEG images altered by steganographic tools like F5, Outguess, and Steghide. The 
method employs Haar Wavelets for efficient feature extraction, making it competitive with current techniques. 
However, limitations include reliance on specific data types (JPEG) and potential challenges in scalability or 
adaptability to other image formats. 
 

3.  Proposed Methodology 
 
The Figure 1 discuss about the proposed architecture, where we see two phases of working, phase 1 is to detect 
malware for .exe files using machine learning techniques. Phase 2 is all about the encoding of trusted 
executable into image files using different encoding techniques. The first phase of malware detection involves 
collecting a dataset of benign and malicious .exe files from trusted repositories and malware databases. The 
dataset is then extracted, including operational codes, API calls, and byte-level characteristics. Feature 
engineering is then performed using statistical methods, recursive feature elimination, and Min-Max scaling. 
Machine learning algorithms like Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting 
(XGBoost) are evaluated. The data is split into training and testing sets using k-fold crossvalidation. The model 
performance is assessed and evaluated using metrics such as accuracy, jaccard score and F1-Score.Table 1 
presents the various notations used in the proposed model. 
 

 
Figure.1Block Diagram of System Architecture 

 
Table 1. Notation List 

Notation Description 

𝑋𝑜𝑝𝑐𝑜𝑑𝑒 Numerical representation of opcode sequences (Eq. 1) 

. Exe Data Collection 

Feature Extraction  

Feature Selection 

ML Algorithms Trained Model 

Evaluate Performance 

Base   64 Format 

Choose Best  
Model 

. Exe Files 

Check of Trusted  

Encode using Pixel Value Mapping  
and MLSB 

Load Cover Image 

Encoded File 
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𝑋𝑏𝑦𝑡𝑒 
Byte-level feature representation with frequency counts (Eq. 2) 

𝑀𝐼𝐷 (𝑋𝑖, 𝑦) Mutual Information for feature selection (Eq. 3) 

𝝆(𝑋𝑖, 𝑋𝑗) Pearson correlation coefficient between features (Eq. 4) 

𝑦̂ Predicted output using Random Forest majority vote (Eq. 5) 

f(x) Decision function in SVM classification (Eq. 6) 

𝑦̂ Binary classification decision rule in SVM (Eq. 7) 

𝐿(𝑦, 𝑦̂) Loss function in Gradient Boosting (Eq. 8) 

Loss XGBoost objective function with regularization (Eq. 9) 

Accuracy Proportion of correctly classified instances (Eq. 12) 

Precision Fraction of correctly predicted positives (Eq. 13) 

Recall True positive rate (Eq. 14) 

F1-Score Harmonic mean of precision and recall (Eq. 15) 

TPR True Positive Rate (Eq. 16) 

FPR False Positive Rate (Eq. 17) 

B Binary representation of an executable file (Eq. 18) 

G Grouping of binary data into 6-bit chunks (Eq. 19) 

T Base64 encoded text (Eq. 20) 

S Segmentation of Base64 text (Eq. 21) 

Pi Pixel representation of Base64 segments (Eq. 22) 

I Image matrix constructed from encoded pixels (Eq. 23) 

𝑇𝑏 Binary representation of Base64 encoded text (Eq. 24) 

𝑃𝑐 Cover image pixel values before embedding (Eq. 25) 

𝑅𝑒,𝐺𝑒,𝐵𝑒 Modified pixel values after embedding (Eq. 26-28) 

𝑃𝑒 Pixel values of the stego-image (Eq. 29) 

CRpixel Compression ratio for pixel encoding (Eq. 30) 

CRLSB Compression ratio for LSB-based encoding (Eq. 31) 

Ototal Total computational overhead for encoding/decoding (Eq. 32) 

𝐵′ Reconstructed binary data from Base64 (Eq. 33) 

Accuracy Retrieval accuracy of encoded executables (Eq. 34) 

 
Phase 2 of the process involves encoding and analyzing trusted executable. The process involves converting 
executable files into Base64 format, generating a text-based representation, and mapping Base64 characters 
to pixel values. The image representation is created using Base64 characters and RGB values. The modified 
least significant bits of a cover image are embedded with Base64 data. The encoding efficiency is measured by 
the compression ratio (CR), which is the ratio between the original size and the encoded file size. The retrieval 
accuracy is evaluated to determine the ability to reconstruct the original executable. The robustness against 
tampering is assessed by introducing noise or attacks on the encoded data and computing the Signalto-Noise 
Ratio (SNR). In summary, the process of encoding and analyzing trusted executables involves various 
techniques, including Base64 encoding and image encoding. The resulting data is evaluated for efficiency, 
retrieval accuracy, and robustness against tampering. 
 
3.1 Phase 1: Malware Detection in Executable 
In this section authors give in depth analysis of the Malware detection using the steps like data collection, 
Feature Engineering, Model selection and Training and finally Evaluation followed by analysis. 
3.1.1 Data Collection 
Gather a dataset of benign and malicious “.exe” files from trusted repositories and malware databases from 
pe_header_data which is Malware Detection using ML (PE files) [27] and Malware [29] and Microsoft 
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Malware Classification Challenge (2015) [28]. Extract features from executable, including opcode sequences, 
API calls, and byte-level characteristics 
The mathematical aspect of data collection involves feature extraction from the .exe files. This typically 
requires converting raw data (opcode sequences, API calls, byte-level characteristics) into a numerical format 
suitable for machine learning models. 
Opcode Sequences: The opcodes in the executable are typically transformed into numerical sequences. One 
way is to represent them using one-hot encoding for each opcode shown in Eq.(1). 
𝑋𝑜𝑝𝑐𝑜𝑑𝑒 = [𝑜𝑝𝑐𝑜𝑑𝑒1, 𝑜𝑝𝑐𝑜𝑑𝑒2, … , 𝑜𝑝𝑐𝑜𝑑𝑒𝑛](1) 
Where each opcodeiis a numerical representation of an opcode 
Byte-Level Features: Features could include byte frequencies, for example, the frequency of each byte value in 
the file. This can be represented as shown in Eq. (2). 
𝑋𝑏𝑦𝑡𝑒 = [𝑓1, 𝑓2, … … . , 𝑓𝑘] (2) 
Here fi is the frequency of byte value i in the executable. 
API Calls: The sequence of API calls made by an executable can be converted into vectors where each entry 
corresponds to the frequency of a particular API call. 
 
3.1.2 Feature Engineering 
Perform feature selection to identify the most informative attributes for classification. Normalize and 
preprocess data to ensure compatibility with machine learning models. 
Feature selection is typically based on metrics like Mutual Information or Chi-square tests for categorical 
features. For continuous variables, you may use techniques like Correlation Coefficients. 
Mutual Information: 
Mutual information between a feature 𝑋𝑖 and the target class y can be calculated as mathematical formula 
shown in Eq. (3). 
𝑝(𝑥𝑖, 𝑦) 
𝑀𝐼𝐷 (𝑋𝑖, 𝑦) = ∑ ∑ 𝑝(𝑥𝑖, 𝑦) log ( )                            (3) 
𝑝(𝑥𝑖). 𝑝(𝑦) 
𝑥𝑖∈𝑋𝑖 𝑦∈𝑦 
Where 𝑝(𝑥𝑖, 𝑦) is the joint probability of feature 𝑥𝑖 and class y, and 𝑝(𝑥𝑖) and 𝑝(𝑦) are the marginal probabilities 
of𝑥𝑖and y, respectively. 
Correlation Coefficient 
The Pearson correlation coefficient between two continuous features 𝑋𝑖 and 𝑋𝑗 is given by in Eq.(4). 
𝝆(𝑋𝑖, 𝑋𝑗) = 𝐶𝑜𝑣 𝜎𝑋(𝑖𝑋𝜎𝑖𝑋,𝑋𝑗𝑗)        (4) 
Where 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)is the covariance between 𝑋𝑖and 𝑋𝑗, and 𝜎𝑋𝑖 and 𝜎𝑋𝑗 are the standard deviations of 𝑋𝑖 and 
𝑋𝑗. 
 
3.1.3 Model Selection and Training 
Various machine learning models can be used to classify malware. The training phase consists of finding the 
model parameters that minimize the error on the training data.vc Evaluate various machine learning 
algorithms, including Random Forest, Support Vector Machine (SVM), Gradient Boosting, Deep Learning 
(utilizing Keras DNN)and XGBoost. Split the dataset into training and testing sets with k-fold crossvalidation 
for model validation. 
 
Random Forest 
Random Forest is an ensemble method that constructs multiple decision trees. The prediction y ̂ for a new 
sample x is the majority vote across the trees shown in Eq. (5). 
𝑦̂ = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑒(𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑡(𝑥) (5) Where ft (x) is the prediction of the tth tree. 
 
Support Vector Machine (SVM) 
SVM finds the hyperplane that maximizes the margin between classes. The decision function for an SVM 
classifier is shown in Eq.(6). 
𝑓(𝑥) = 𝑊𝑇𝑋 + 𝑏          (6) 
Where W is the weight vector, X is the input feature vector, and b is the bias term. 
The classifier predicts the class based on the sign of this function is given in Eq.(7). 
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1      𝑖𝑓 𝑓(𝑥) ≥ 0 
𝑦̂ = {       (7) 
−1   𝑖𝑓 𝑓(𝑥) < 0 
Gradient Boosting and XGBoost 
In Gradient Boosting, models are trained sequentially, with each new model trying to correct the errors of the 
previous one. The loss function L at each step is minimized is given Eq. (8). 

𝐿      (8) 
For XGBoost, the model includes a regularization term to prevent overfitting is shown in Eq.(9). 

𝐿𝑜𝑠𝑠 𝐾𝑘=1 ||𝑤𝑘||2  (9) 
Where 𝝀 is the regularization parameter. 
 
Deep Learning (Keras DNN) 
Deep Learning models, particularly feed-forward Deep Neural Networks (DNNs), are powerful at modeling 
nonlinear feature relationships in large feature spaces. 
A DNN consists of multiple hidden layers, each applying linear transformations followed by nonlinear 
activation functions such as ReLU (Rectified Linear Unit). The output of a neuron in layer l is defined as: 
𝑎(𝑙) = 𝑓(𝑊(𝑙)𝑎(𝑙−1) + 𝑏(𝑙))                       (10) 
Where: 
• 𝑎(𝑙) is the activation vector of layer l, 
• 𝑊(𝑙) and𝑏(𝑙) are the weight matrix and bias vector for that layer, 
• f(⋅) is the activation function i.eReLU or Sigmoid. 
The final output layer uses a Sigmoid activation to predict the probability of a sample being legitimate or 
malware: 
𝑦̂ = 𝜎(𝑊𝑇𝑎(𝐿) + 𝑏)                            (11) 
Where𝜎(𝑧) = 1 +1𝑒−𝑧 
3.1.4  Model Validation 
All models were validated using k-fold cross-validation (k = 5) to ensure robust evaluation and prevent 
overfitting. 
The following performance metrics were computed for each algorithm: 
• Accuracy 
• Precision 
• Recall 
• F1-Score 
• Area Under the ROC Curve (AUC) 
The best-performing model was selected based on these metrics. 

Model Description Optimization Regularization Output 

Random 
Forest 

Ensemble of decision trees 
(majority voting) 

Gini / Entropy Bagging Discrete class 

SVM Max-margin hyperplane Hinge loss C / Kernel Discrete class 

Gradient 
Boosting 

Sequential tree boosting MSE loss Shrinkage Discrete class 

XGBoost Regularized boosting L2  loss  + 
regularization 

λ term Discrete class 

Deep Learning 
(DNN) 

Multi-layer neural network Binary  Cross- 
Entropy 

Dropout,  Adam 
Optimizer 

Probability (0–
1) 

 
3.1.5  Evaluation 
Measure model performance using metrics such as accuracy, precision, recall, F1-score, and area under the 
receiver operating characteristic curve (ROC-AUC). After training, the model's performance is evaluated using 
various metrics. 
Accuracy: 
The accuracy is the ratio of correctly predicted instances to the total instances. The formula for the accuracy is 
shown in Eq.(12). 
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𝑻𝑷+𝑻𝑵 
𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =       (12) 
𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵 
WhereTP is True Positives, TN is True Negatives, FPis False Positives. FN is False Negatives. 
Precision: The fraction of true positive predictions among all positive predictions. The formula for the 
Precision is shown in Eq.(13). 
𝐓𝐏 
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =       (13) 
𝐓𝐏+𝐅𝐏 
The Recall is given as the fraction of true positives correctly identified by the model which is shown in Eq.(14). 
𝐓𝐏 
𝐑𝐞𝐜𝐚𝐥𝐥 =       (14) 
𝐓𝐏+𝐅𝐍 
F1-Score: The harmonic mean of precision and recall given in Eq.(15). 
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧∗𝐑𝐞𝐜𝐚𝐥𝐥 
𝐅𝟏 = 𝟐 ∗    (15) 
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧+𝐑𝐞𝐜𝐚𝐥𝐥 
ROC-AUC: 
The Area Under the ROC Curve (AUC) measures the model’s ability to distinguish between classes. The ROC 
curve plots the True Positive Rate (TPR) vs. the False Positive Rate (FPR). The mathematical formulation are 
shown in Eq.(16) and Eq.(17). 
TP 
TPR =       (16) 
TP+FN 
 
FP 
FPR =       (17) 
FP+TN 
AUC is the area under this curve, with values closer to 1 indicating better performance. 
 
3.2Phase2: Encoding Analysis of Trusted Executable Step 1: Encoding Trusted Executable 
Step 1.1 Convert .exe files into Base64 text format. 
1. Let the binary data of the .exe file be 
𝐵 = [𝑏1, 𝑏2, … . . , 𝑏𝑛](18) Where 𝑏𝑖 ∈ {0,1} represents bits of the executable 2. Group 𝐵 into 6-bit chunks: 
G = [g1, g2, … . . , gm](19) 
Where 𝑔𝑖 = [𝑏6(𝑖−1)+1, … . . , 𝑏6𝑖] for i ∈ [1, m] 
3. Convert each 6-bit group into a corresponding Base64 character. 
T = [t1, t2, … tm]                                             (20) 
Where 𝑡𝑖 = 𝐵𝑎𝑠𝑒64(𝑔𝑖), T is the encoded base64 string. 
Step1.2 Encode data using pixel value mapping 
Split the Base64 string T into segments of 3 characters each shown in Eq.(21). 
S=[s1,s2,….,sk]                                                     (21) 
Where si=t(3(i-1)+1),t(3(i-1)+2),t(3(i-1)+3) 
Convert each segment into 24-bit RGB pixel values shown in Eq.(22). 
Pi=[Ri,Gi,Bi]                                                         (22) 
Where Pi is the pixel value of segment si 
Map each character t in si to its ASCII value. 
Construct an image matrix I by arranging Pi in rows and columns in Eq.(23). 
P1 P2 P3 
I = [ ⋮ ⋱ ⋮ ]      (23) 
⋮ ⋯ ⋮ 
Step1.3 Encode data into Image Files using the MLSB method. 
1. Convert Base64 text data T into binary format given in Eq.(24). 
𝑇𝑏 = [𝑡𝑏1, 𝑡𝑏2, … . , 𝑡𝑏𝑚]  (24) where each 𝑡𝑏𝑖∈{0,1} represents bits of the Base64 string. 
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2. Load a cover image𝐼𝑐 with pixel values 𝑃𝑐 = [𝑅, 𝐺, 𝐵], where each pixel is represented byEq.(25) 
𝑃𝑐 = [𝑅𝑐, 𝐺𝑐, 𝐵𝑐] 
With 𝑅𝑐, 𝐺𝑐, 𝐵𝑐 ∈ [0.255](25) 
3. Embed the data bits into the least significant bits of the pixel values shown in Eq.(26). 
𝑅𝑒 = (𝑅𝑐 & 254)|𝑡𝑏𝑖    (26) 
𝐺𝑒 = (𝐺𝑐 & 254)|𝑡𝑏(𝑖+1)      (27) 
Be = (Bc & 254)|tb(i+2)      (28) 
Here, & is the bitwise AND operation, and ∣ is the bitwise OR operation. 
4. Construct the stego-image 𝐼𝑠 from the modified pixel values 
Pe = [Re, Ge, Be]       (29) 
Step 2: Parameter Analysis 

 
2.1 Compare encoding efficiency. 
File Size: Compute the file sizes before and after encoding: 
Size of Original Executable 
CRpixel =  Size of Encoded File (30) 
Size of Original Executable 
CRLSB =  Size of Stego Image               (31) 
Computational Overhead: Measure the encoding time 𝑡𝑒𝑛𝑐𝑜𝑑𝑒 and decoding time 𝑡𝑑𝑒𝑐𝑜𝑑𝑒 for both Base64 and 
image formats mention in Eq.(32) Total computational overhead: 
𝑶𝒕𝒐𝒕𝒂𝒍 = 𝒕𝒆𝒏𝒄𝒐𝒅𝒆 + 𝒕𝒅𝒆𝒄𝒐𝒅𝒆    (32) 
 
2.2 Evaluate retrieval accuracy 
• Decode Base64 back to binary: Reverse the Base64 conversion mention in Eq.(33). 
• 𝐵′ = 𝐵𝑎𝑠𝑒64𝑑𝑒𝑐𝑜𝑑𝑒(𝑇)    (33) 
• Decode the image back to binary: 
• Extract pixel values 𝑃𝑖 = [𝑅𝑖, 𝐺𝑖, 𝐵𝑖]. 
• Map RGB values back to ASCII characters and reconstruct 𝑇′. 
• Decode 𝑇′ to retrieve𝐵′. 
• Calculate the retrieval accuracy: 
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝑹𝒆𝒕𝒓𝒊𝒆𝒗𝒆𝒅 𝑩𝒊𝒕𝒔 
𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  ∗ 𝟏𝟎𝟎(34) 
𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑩𝒊𝒕𝒔 
Phase 1 focuses on detecting malicious executable using machine learning models, while Phase 2 focuses on 
secure encoding of trusted executable using image-based methods and LSB using metrics like file size, 
accuracy, and robustness. 
 

4  Results Analysis 
 
This section delineates the experimental results from the two parts of the research: malware detection in 
executables and encoding analysis of trustworthy executables. The results are assessed using pertinent metrics, 
and the ramifications of the findings are examined within the framework of cybersecurity applications. 
 
4.1 Malware Detection in Executable: Model Performance 
The efficacy of the machine learning models was assessed through accuracy, jaccard score and F1-score. The 
dataset was partitioned into training and testing sets utilizing k-fold cross-validation (k=10) to guarantee 
rigorous validation. 
Feature selection: Recursive Feature Elimination (RFE) and statistical tests markedly enhanced model 
performance by minimizing noise and concentrating on the most predictive features. 
Optimal Model: XGBoost was identified as the most efficient algorithm, attaining the highest accuracy (96.1%) 
and ROC-AUC (0.98), demonstrating exceptional differentiation between benign and malicious executables. 
The Fig. 2 and Table. 2.  shows how four different machine learning models—XGBoost, Random Forest, 
Gradient Boosting, and Support Vector Machine (SVM)—compare with respect to three important 
performance metrics: F1-Score, Jaccard Score, and Accuracy. The fact that Gradient Boosting and XGBoost 
both got perfect ratings (100%) across the board is evidence of how well and consistently they function. 
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Random Forest also performed quite well, with values approaching 99.99%. But the Support Vector Machine 
(SVM) performed far worse, with an F1-Score of just 36.59% and a score of 0% on the Jaccard Score. 
 

Table 2. Performance Metrics of Proposed Machine Learning Models 

Model Accuracy Precision Recall F1 Score AUC 

XGBoost 0.994833 0.990498 0.992256 0.991377 0.999741 

Random 
Forest 

0.994640 0.990967 0.991127 0.991047 0.999651 

Gradient Boosting 0.990825 0.985300 0.984028 0.984664 0.999159 

Deep Learning 
(Keras DNN) 

0.990438 0.982938 0.985158 0.984046 0.999220 

SVM (RBF 
Kernel) 

0.988555 0.983456 0.978221 0.980831 0.997502 

 
4.2 Encoding and Analysis of Trusted Executables: Encoding Efficiency 
Encoding techniques were evaluated for file size reduction and computational burden. The figure 3 and table 
3 evaluates two encoding approaches, LSB Image-Based Encoding and Pixel Value Mapping, using four 
performance metrics: Mean Squared Error (MSE), Encoding Time, Decoding Time, and Compression Ratio. 
Similar compression ratios were attained by both approaches; however, LSB Image-Based Encoding 
marginally outperformed Pixel Value Mapping. 
On the other hand, LSB Image-Based Encoding showed faster processing efficiency with shorter encoding and 
decoding times. The fact that its MSE was lower also indicates that its reconstruction was more accurate. These 
findings point to LSB Image-Based Encoding as the superior approach, offering better efficiency and accuracy. 
It is highly recommended for applications that demand optimal encoding performance. 

 
Figure.2. Performance Metrics of Machine Learning Models 

 
Table 3. Comparison of Proposed Encoding Methods 

Encodi ng 
Method 

Compre 
ssion 
Ratio 

Encod 
ing 
Time 
(s) 

Deco 
ding 
Time 
(s) 

MSE 

Pixel 
Value 
Mapping 

1.597310 
46678315 
48 

7.0987 
029075 
62256 

20.66 
19718 
0747 
986 

0.0312 
66590 
7942 

Modified 
LSB 

1.608433 
75851771 

6.72119 
808197 

17.05 
10954 

0.0234 
56232 
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Image 
Based Encoding 

26 0215 8568725 8967 

 
The efficacy of encoding techniques was evaluated under several tampering scenarios, such as noise 
introduction and pixel modifications. The robustness was measured using the Signal-to-Noise Ratio (SNR).  
The Peak Signal-to-Noise Ratio (PSNR) comparison between Modified-LSB Image-Based Encoding and Pixel 
Value Mapping is shown in the pie chart of figure 4. Greater preservation of image information is indicated by 
greater values of PSNR, a critical statistic for evaluating the quality of picture reconstruction. Pixel Value 
Mapping recorded 63.18 dB PSNR, whereas Modified-LSB Image-Based Encoding managed 64.43 dB, as seen 
in the table 4. 
 

 
Figure.3. Comparison of Encoding Methods 

 
Table 4. PSNR for Proposed Encoding Methods 

Encoding Method PSNR (dB) 

Pixel  Value Mapping 63.17999831079039 

Modified LSB Image Based Encoding 64.42822095778432 

 
The results show that the Modified-LSB approach reduces distortion when encoding and decoding, leading to 
superior image quality. Both approaches work well, however the Modified-LSB approach has a little better 
picture fidelity, as seen in the pie chart, which graphically depicts the proportion of PSNR values. 
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Figure.4. PSNR Comparison 

 
The findings in table 5confirm the effectiveness of the suggested approaches in fulfilling the dual aims of 
malware detection and trustworthy executable encoding. Subsequent study may investigate hybrid 
methodologies that integrate the advantages of several encoding techniques and sophisticated ensemble 
models for malware detection. 
 

Table 5. Results of the Proposed System 

Method 
Accurac 
y (%) ROCAUC 

Compressio 
n Ratio 

Encoding 
Time (s) 

Decoding 
Time 
(s) MSE 

PSNR 
(dB) 

RMED [3] 94.42 0.97 - - - - - 

MalJPEG [6] 95.7 0.976 - - - - - 

PixelSteganalysis 
[24] - - - 

3.437  - 
57.6517 

4.76  - 
57.6517 28.45 35.89 

Malware Detection 
(Proposed) 99.48 0.9997 - - - - - 

Encoding Efficiency 
(Proposed) - - 1.608 6.721 17.051 0.0235 64.43 

 
5  Conclusion 

 
The proposed work offers an extensive and scalable framework for malware detection and secure executable 
file management, incorporating sophisticated machine learning and deep learning methodologies. The results 
of the experiments show that all of the models testedXGBoost, Random Forest, Gradient Boosting, Deep 
Learning (Keras DNN), and SVM (RBF Kernel)performed very well, with accuracies over 98.8% and AUC 
values close to 0.999 across all metrics. XGBoost had the best overall performance (Accuracy = 0.9948, F1-
score = 0.9913, AUC = 0.9997), followed closely by Random Forest and Gradient Boosting. This shows that 
ensemble-based classifiers are good at handling complex malware feature spaces.The Deep Learning model 
also did very well, showing that it can learn complex nonlinear feature representations, which is useful for 
finding malware samples that have never been seen before or that have been hidden. The SVM classifier, on 
the other hand, did a little worse than the ensemble and deep learning models. This is because it is sensitive to 
high-dimensional data and parameter tuning. The results of this study confirm that hybrid ensemble-deep 
learning architectures are effective for detecting malware in PE files, providing strong generalization, 
scalability, and high precision. But the framework still relies on the quality of feature extraction, and the 
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dataset might not include every type of malware that is out there. Also, when using deep or ensemble models 
on large-scale, real-time systems, the extra work that needs to be done is still a problem. Future work will 
concentrate on improving model adaptability via online learning, feature auto-selection, and transfer learning, 
while also optimizing performance for real-time malware analysis. Also, looking into adversarial robustness, 
hybrid encryption-encoding strategies, and using them in real-world cybersecurity settings will help prove and 
improve the suggested method for protecting critical infrastructure and the cloud. 
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