
Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1231

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

Robust Encoding and Secure Storage of Executables Using
Image Based Encoding Techniques

Asharani R1*,Dr.Vidyalakshmi K2

1*Research scholar, Department of CSE, Sri Siddhartha Institute of technology, Sri Siddhartha Academy of Higher Education, Tumakur

572105,Karnataka,India
2Assistant Professor, Department of CSE(DS) ,Sri Siddhartha Institute of Technology,Sri Siddhartha

Academy of Higher Education, Tumakur 572105, Karnataka,India
* Corresponding author’s Email: asharaniswamy@gmail.com

ARTICLE INFO ABSTRACT

Received:04 Aug 2025
Revised:10 Sept 2025
Accepted:20 Sept 2025

The ever-increasing sophistication of malicious software poses significant hurdles
to the field of cybersecurity, notably in the areas of malware detection and safe
executable management.This paper discusses how malware is becoming more
complicated and how that affects cybersecurity, especially when it comes to finding
malware and managing executable files. It presents a hybrid dual-phase
methodology that integrates a machine learning and deep learning-based malware
detection system with a secure encoding framework intended to safeguard trusted
executables. During the malware detection phase, static features like opcode
sequences, API calls, and structural characteristics are taken out of Portable
Executable (PE) files. We use feature optimization and k-fold cross-validation to
make the system work better. The methodology assesses five algorithms: XGBoost,
Random Forest, Gradient Boosting, Deep Learning (utilizing Keras DNN), and
SVM (employing RBF Kernel). The performance metrics show that XGBoost has
the highest accuracy (99.48%), F1-score (0.991), and AUC (0.9997), with Random
Forest and Gradient Boosting not far behind. The Deep Learning model also does
very well, with an accuracy of 99.04% and an AUC of 0.9992. This shows that it can
recognize complex, non-linear patterns in malware activity. The proposed
framework uses a multi-layered encoding system in the secure encoding phase.
This system combines Base64 transformation, image-based mappings, and
Modified Least Significant Bit (MLSB) embedding techniques. This encoding keeps
trusted executables safe from tampering and unauthorized access. It has a 99.2%
retrieval accuracy, which is better than traditional encryption methods when it
comes to keeping data safe and private. In general, the proposed framework is a
clear, scalable, and safe way to classify malware and protect executables. It has a
lot of potential to be used in cybersecurity, especially for cloud infrastructures and
important systems. The approach plays a big role in making AI-powered systems
that can protect against a wide range of digital threats.

Keywords: Malware Detection, Executables, Machine Learning, Encoding,
Cybersecurity, Text Encoding, Image Encoding, Base64, Image-based Mappings,
Modified Least Significant Bit (MLSB) Embedding.

1. Introduction

The growth of malware presents a substantial risk to the integrity, confidentiality, and availability of digital
systems. Malware capitalizes on flaws in executable files, frequently evading detection until it inflicts
significant damage. Conventional signature-based detection approaches are inadequate for addressing
complex and dynamic threats, requiring the use of advanced malware detection methodologies. Moreover,
guaranteeing the security and validity of trusted executable files necessitates new encoding and analytical
methods to alleviate dangers linked to tampering and illegal alterations.
This research tackles two significant challenges: (1) achieving high-accuracy malware detection in executables
with machine learning approaches, and (2) encoding and analyzing trusted executables for secure storage and

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1232

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

retrieval. This work seeks to improve malware detection and executable file security through the integration of
artificial intelligence and resilient encoding techniques.
The increasing complexity of malware variants and their capacity to evade traditional detection methods
highlight the pressing necessity for sophisticated, feature-oriented classification systems. Furthermore,
trustworthy executables necessitate safe encoding methods to guarantee their integrity, even in adversarial
settings. Current methodologies frequently struggle to reconcile computing efficiency, storage demands, and
resilience to manipulation.
The proliferation of malware poses a significant threat to digital systems, as it exploits vulnerabilities in
executable files. Traditional signature-based detection methods fail against advanced, polymorphic, and zero-
day threats, necessitating feature-driven machine learning models. To secure trusted executables against
tampering and unauthorized modifications, innovative encoding techniques are needed. This study addresses
two critical challenges in cybersecurity: achieving high-accuracy malware detection in executables using
machine learning with extracted opcode sequences, API calls, and byte-level attributes, and encoding and
analyzing trusted executables for secure storage and tamper resistance using Base64, image-based encoding,
and MLSB embedding.
Existing limitations in malware detection include lack of generalization in signature-based and heuristic
models, high false positives in anomaly-based detection, limited adaptability to novel malware variants,
computational overhead in encryption-based methods, susceptibility to tampering in basic encoding
techniques, and storage inefficiency with large-scale datasets.
The proposed solution focuses on machine learning for malware detection, extracting relevant features from
executables and applying feature selection to remove noise. The model outperforms other classifiers with high
detection accuracy, indicating their robustness against adversarial malware variants. The encoding method
compared to Pixel Value Mapping and Modified LSB Image-Based Encoding showed better compression, faster
encoding and decoding times, and stronger resistance against tampering.
This approach bridges the gap in malware detection by leveraging machine learning-driven feature selection
and classification, improving detection against zero-day malware, enhancing executable security through
encoding, and reducing false positives in malware classification while securing trusted executables.

Objectives of the research work as follows:
1. Construct a machine learning framework for identifying malware in executables utilizing extracted
information, including opcode sequences, API calls, and byte-level attributes.
2. Encode trusted executable files into forms appropriate for secure storage and efficient retrieval utilizing
Base64, image-based encoding, and sophisticated methods such as MLSB embedding encoding.
3. Evaluate and contrast encoding strategies for efficiency, retrieval precision, and resilience to tampering or
corruption.
This study is significant in cybersecurity and digital forensics, where detecting and mitigating malware attacks
is essential. The amalgamation of feature-based classification methods with secure encoding protocols offers
a holistic strategy for executable file security. This research presents a scalable method for malware
identification and the safeguarding of trustworthy executables across diverse settings, including critical
infrastructure, by integrating machine learning techniques with creative encoding strategies.
The subsequent sections of this work are structured as follows. Section 2 offers a literature review and
comparative studies. Section 3 delineates the Proposed Methodology. Section 4 examines the Results and
findings. Ultimately, Section 5 serves as the conclusion segment.

2. Literature Review

In this section authors discussed the previous work and literature review and its advantages and disadvantages
of the work.

2.1 Reviews on Steganography and Malware Detection
Teaching offensive security [1], particularly ethical hacking, is crucial in information security curricula to equip
cybersecurity professionals with the knowledge to protect systems from attacks. Understanding potential
vulnerabilities allows for early detection and proactive defense strategies. This method raises awareness among
browser developers about potential risks associated with handling images. However, limitations include
potential ethical concerns, the risk of misuse of knowledge, and the reliance on specific technology, such as
image steganography, which may not cover all cybersecurity threats.

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1233

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

The article [2] explores the methods and challenges of malware distribution, particularly through file
attachments in phishing emails and illegitimate downloads. It highlights the effectiveness of existing security
applications using signature-based and anomaly-based machine learning techniques for detecting malware in
common file formats. However, detecting malware hidden within multimedia files using steganography
remains problematic; as such instances are infrequent and often serve as a preliminary step in sophisticated
cyberattacks. The article aims to fill the knowledge gap in the intersection of image steganography and
stegomalware detection, detailing the history, generation tools, and current advancements in image
steganography techniques. However, limitations include a lack of comprehensive empirical data, limited
discussion on countermeasures against stegomalware, and the focus on specific multimedia types may
overlook other forms of steganographic attacks.
The Robust Malicious Executable Detection (RMED) [3] system uses machine learning classifiers to identify
malicious Portable Executable (PE) files on Windows operating systems. The system uses a dataset of 116,031
benign files and 179,071 malware samples, focusing on specific PE headers. The model is trained on 15 PE
features, achieving an accuracy of 98.42% and a false positive rate of 1.58%. The RMED aims to improve
cybersecurity measures by implementing AI methods for proactive detection of cyber threats. However,
limitations include potential biases in the dataset, reliance on predefined features, and the challenge of
adapting to new malware types.
Stego-malware [4] is a growing tactic used by cybercriminals to remain undetected within target systems. This
paper investigates three MP3 steganography tools—MP3Stego, MP3Stegz, and Stegonaut—to understand how
their algorithms can be identified in a malware context. A structured analysis follows ENFSI guidelines for
audio authenticity, leading to the creation of a trace map detailing metadata and content. Detection patterns
are developed by analyzing embedding algorithm signatures and known malware behaviors against a code
book. YARA rules are then formed to configure detectors.
This research [5] examines the threat of stego-malware in Industrial Control Systems (ICS), which hides
malicious code using steganography. It evaluates existing cybersecurity frameworks and detection techniques,
including signature-based, anomaly-based, and AI/ML-driven approaches, referencing ISO/IEC 27001 and
IEC 62443 standards. Notable case studies like Havex and Industroyer illustrate the risks posed by stego-
malware. The research advocates for enhanced AI and machine learning integration to improve detection
capabilities and suggests necessary modifications to current cybersecurity frameworks. However, it also raises
awareness of limitations in traditional detection methods, which may struggle against sophisticated
steganographic techniques.
Cyber-attacks [6] have increased in recent years, with images becoming a popular vector for malware delivery.
JPEG, the most commonly used image format, is often used by cyber criminals to embed malicious payloads.
MalJPEG, a machine learning classifier, uses 10 extracted features from JPEG files to differentiate between
benign and malicious images.
The paper [7] presents a new technique for hiding malware through a neural network model, utilizing its poor
explainability and strong generalization abilities. The malware is embedded within the model's neurons,
allowing it to remain hidden and evade detection by antivirus engines. The method successfully avoids raising
suspicion in antivirus scans, as demonstrated by tests on VirusTotal. This method highlights the growing trend
of using artificial intelligence for cyber attacks, offering insights into potential defense strategies. However, the
inherent risk lies in increasing malicious actors' capabilities to conduct undetected attacks using advanced
machine learning techniques, raising ethical and security concerns in AI applications. The paper [8] discusses
a method using the extended Berkeley Packet Filter (eBPF) to collect performance measurements for detecting
stegomalware and steganographic threats. It addresses challenges like timeconsuming detection processes and
the need for scalable solutions. The paper emphasizes the importance of gathering attack-independent
indicators for better generalizability. Preliminary experimental results from two H2020 Projects, ASTRID and
SIMARGL, demonstrate the effectiveness of the proposed approach. However, limitations include potential
scalability issues and the ongoing challenge of generalizing detection techniques.
Steganography [9] conceals messages in digital media, often using images, while steganalysis aims to uncover
these hidden messages. The increasing use of digital image steganography by cyber criminals requires effective
detection methods. Various detection techniques, from traditional to advanced methods, are essential for law
enforcement to combat encrypted communications. However, limitations include the evolving nature of
steganographic techniques and the potential for false positives in detection efforts.
Steganography [10] is the concealment of messages within a carrier object to evade detection. Steganalysis
identifies these hidden messages across various media types, such as images, audio, and text. Traditional
methods involve extracting features and classifying those using Ensemble Classifiers or Support Vector

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1234

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

Machines. Recent advancements in Deep Learning have improved detection accuracy, particularly in spatial
and frequency domains. Convolutional Neural Networks (CNNs) have been used since 2014 to develop various
architectures and strategies for steganographic image detection. Current results show promise for future
research in steganalysis. Limitations include large labeled datasets, potential overfitting, and challenges in
detecting steganographic content in compressed or altered media.
Deep Neural Networks (DNNs) [11] are gaining popularity due to their human-level performance in realworld
applications. However, this growth also raises risks, including the potential for malware to be integrated into
DNN models for malicious purposes. The research explores payload injection techniques for both
uncompressed and deeply compressed models, and introduces triggering mechanisms like logits and rank
triggers. The prototype was tested on an Nvidia Jetson TX2 testbed, showcasing its practical implications.
Limitations of the research include extensive testing across diverse environments, ethical concerns, and the
potential security vulnerabilities in real-world applications.
Malware [12] is a complex and evolving threat in cybersecurity, with its intention and evolving nature
complicating detection efforts. To enhance understanding, researchers are creating variants, particularly FUD
(Fully UnDetectable) malware that can evade antivirus systems and hide data through steganography. This
approach aims to improve Open Source Intelligence (OSINT) in identifying and tracking malicious activities.
However, detecting previously unknown malware remains a significant challenge. Stealth methods may not
guarantee long-term effectiveness as detection technologies evolve, and knowledge misuse in malicious
contexts is a concern.
The article [13] explores how malicious executable files use steganography to hide themselves in common file
types like PDF, Word, Text, and Images. It proposes innovative identification techniques to prevent potential
attacks and emphasizes the risks associated with infected files. The article aims to raise awareness among
security professionals and trainees about ethical hacking and enhance the safety of distributed files online by
addressing the exploitation of these data formats. However, it may not cover all file types, focus on specific
vulnerabilities without examining broader security protocols, and may not fully validate or test the
effectiveness of the proposed identification techniques in real-world scenarios.
The article [14] discusses a PDF steganography method that uses a hybrid crypto encryption technique,
combining a 256-bit AES key with RSA encryption. This method conceals secret data within PDF documents
without altering their structure or content, making them appear identical to standard documents. The method
ensures that only the document size increases with the addition of secret data, maintaining discretion during
communication. The human eye cannot distinguish between stego and regular PDFs, enhancing its
effectiveness. However, the method may increase PDF size significantly with large amounts of secret data,
raising suspicion if not managed carefully. Advanced forensic tools may still detect the addition of data.
The increasing exchange of information over computer networks necessitates robust security measures to
protect data from unauthorized access and alteration. Steganography[15], a technique to embed secret
messages within media, is crucial for this purpose. However, text-based steganography faces challenges such
as limited concealment space and potential distortion of the original text due to hidden data. This research
reviews significant techniques and studies in the field, highlighting their advantages and weaknesses.
Challenges include limited space for concealment, potential distortion of the original text, varying effectiveness
and complexity, potential obsolescence of some steganographic techniques due to advancements in detection
methods, and potential gaps in the review due to the focus on text.
The paper [16] presents a new method for embedding hidden content in text by manipulating paragraph sizes
using machine learning for steganalysis. The method achieved a maximum accuracy of 0.601, which is
considered poor. The analysis could detect about half of the embedded content, akin to random chance. The
study concludes that detecting paragraph manipulation in novels is challenging due to variability in writers'
styles. The detection method's inefficiency is evident, as half of the content is a random guessing rate. The
results may vary significantly with different writing styles or genres. The study does not address the potential
for adversarial attacks bypassing current analysis methods and the reliance on machine learning algorithms
could lead to overfitting with smaller or biased datasets.
The paper [17] presents a novel steganography algorithm that uses least-significant bit insertion in PDF stream
operators to embed secret data. The authors analyze all Adobe PDF standard operators to assess their
effectiveness. They include a case study demonstrating malware embedding within a cover PDF document. The
approach aims to improve PDFs' use in security applications. However, its effectiveness may vary depending
on PDF complexity and encryption presence. The focus on a single technique may overlook other
steganographic methods, raise ethical concerns, and overlook performance metrics like detection rates and
payload capacity.

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1235

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

2.2 Review on Stegosploits in Image files
The paper [18] discusses the growing use of steganography by criminals to hide malicious exploits in images,
particularly through the toolkit Stegosploit. The research aims to develop a detection script that identifies these
stego images, which are often overlooked by antivirus software. The script's effectiveness is assessed for both
Windows and Linux Subsystems. The study aims to aid end-users, security professionals, forensic
investigators, and researchers in preventing cybercrimes. However, the script's efficacy may depend on
continuous updates to counter new steganographic techniques, and the study's focus on Windows and its
subsystem limits its applicability to other operating systems.
The proposed technique combines cryptography and steganography by processing 3D images into 2D slices
[19], shuffling their order with a key-based random sequence, and encrypting sensitive data using Blowfish.
The process involves shuffling pixel locations within each slice to enhance security, using two secret keys for
added layers of protection. The encrypted data is embedded in the least significant bits (LSB) of the shuffled
pixels. The technique is evaluated using metrics like Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM), showing superior performance compared to other methods. However, the complexity
of the shuffling scheme, reliance on secret keys, potential image distortion, detection vulnerability, and limited
adaptability to different types of images or data beyond 3D images.
The paper [20] surveys the advancements in steganography and steganalysis over three decades, analyzing
over 150 research papers. It highlights the competition between these fields, highlighting innovations and
evaluation results of various methods. The authors introduce taxonomies for classifying steganography and
steganalysis techniques, facilitating a thorough comparison and identifying gaps. It aims to prioritize
steganography methods for improvement through effective steganalysis. However, the survey may not cover
recent developments post the October 2023 knowledge cutoff date, overlook relevant but less-cited research,
and not fully capture the complexity of evolving technologies.
SteriCNN [21] is a deep residual neural network model designed to remove steganographic information from
images while maintaining visual quality. It uses convolutional blocks with residual connections for feature
extraction, learning, attention, and image reconstruction. The model uses channel feature correlation for
accelerated learning and varies dilation rates to broaden its receptive fields. However, its effectiveness may
vary with different steganographic techniques, high-complexity scenarios, and the generalization to diverse
image datasets.
A new deep residual architecture [22] for steganography detection has been developed, reducing reliance on
hand-designed elements and heuristics. The architecture includes an expanded front part that computes noise
residuals while disabling pooling to preserve the stego signal. Experiments show significant performance
improvements, especially in the JPEG domain. The architecture achieves state-of-the-art detection accuracy,
further enhanced by incorporating a selection channel as a second input. However, the architecture may still
be sensitive to data variations, depend on specific types of steganography, and require extensive computational
resources for training and implementation.
The research [23] presents a technique for removing unwanted steganographic content from images without
prior knowledge of the steganographic algorithm used. It uses generic image processing operations and an
anti-forensic method to achieve this while maintaining visual quality. Tested on various steganographic
algorithms, the method successfully renders images stego-free, removing approximately 80% of hidden
content with minimal impact on image quality. The technique also applies to video streams with isolated static
images. However, the study focuses on static images and may not apply to more complex dynamic video
content. The effectiveness of the method may vary depending on the steganographic algorithms used and cover
image nature.
This study [24] presents a novel DL-based steganalysis technique that extracts and removes hidden
information while restoring the original image distribution. The method uses deep neural networks to operate
at the pixel level, achieving a 10-20% improvement in both decoded rate and a new metric called destruction
rate (DT). However, the technique may struggle against sophisticated steganography methods that evolve to
mitigate detection, and its effectiveness depends on the quality of training data, real-world application
scenarios with high noise or varying image qualities, and the reliance on specific benchmarks. MalJPEG [25]
is a machine learning-based solution designed to detect malicious JPEG images, which can contain hidden
malware. The method extracts 10 discriminative features from JPEG files and uses a LightGBM classifier,
achieving an impressive AUC of 0.997, TPR of 0.951, and low FPR of 0.004. It was evaluated on a large dataset
of 156,818 images, successfully distinguishing between benign and malicious files. However, the focus is solely

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1236

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

on JPEG images, potentially overlooking other image formats that could harbor malware. The method relies
on static feature extraction, which may be inadequate for evolving attack techniques.
Steganography [26] is a technique used to conceal information within multimedia objects, including images,
and has evolved to embed malware. Modern steganalysis techniques use computational intelligence methods
like Support Vector Machines and Machine Learning. A new method using an Artificial Immune System (AIS)
has been proposed to detect JPEG images altered by steganographic tools like F5, Outguess, and Steghide. The
method employs Haar Wavelets for efficient feature extraction, making it competitive with current techniques.
However, limitations include reliance on specific data types (JPEG) and potential challenges in scalability or
adaptability to other image formats.

3. Proposed Methodology

The Figure 1 discuss about the proposed architecture, where we see two phases of working, phase 1 is to detect
malware for .exe files using machine learning techniques. Phase 2 is all about the encoding of trusted
executable into image files using different encoding techniques. The first phase of malware detection involves
collecting a dataset of benign and malicious .exe files from trusted repositories and malware databases. The
dataset is then extracted, including operational codes, API calls, and byte-level characteristics. Feature
engineering is then performed using statistical methods, recursive feature elimination, and Min-Max scaling.
Machine learning algorithms like Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting
(XGBoost) are evaluated. The data is split into training and testing sets using k-fold crossvalidation. The model
performance is assessed and evaluated using metrics such as accuracy, jaccard score and F1-Score.Table 1
presents the various notations used in the proposed model.

Figure.1Block Diagram of System Architecture

Table 1. Notation List

Notation Description

𝑋𝑜𝑝𝑐𝑜𝑑𝑒 Numerical representation of opcode sequences (Eq. 1)

. Exe Data Collection

Feature Extraction

Feature Selection

ML Algorithms Trained Model

Evaluate Performance

Base 64 Format

Choose Best
Model

. Exe Files

Check of Trusted

Encode using Pixel Value Mapping
and MLSB

Load Cover Image

Encoded File

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1237

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

𝑋𝑏𝑦𝑡𝑒
Byte-level feature representation with frequency counts (Eq. 2)

𝑀𝐼𝐷 (𝑋𝑖, 𝑦) Mutual Information for feature selection (Eq. 3)

𝝆(𝑋𝑖, 𝑋𝑗) Pearson correlation coefficient between features (Eq. 4)

𝑦̂ Predicted output using Random Forest majority vote (Eq. 5)

f(x) Decision function in SVM classification (Eq. 6)

𝑦̂ Binary classification decision rule in SVM (Eq. 7)

𝐿(𝑦, 𝑦̂) Loss function in Gradient Boosting (Eq. 8)

Loss XGBoost objective function with regularization (Eq. 9)

Accuracy Proportion of correctly classified instances (Eq. 12)

Precision Fraction of correctly predicted positives (Eq. 13)

Recall True positive rate (Eq. 14)

F1-Score Harmonic mean of precision and recall (Eq. 15)

TPR True Positive Rate (Eq. 16)

FPR False Positive Rate (Eq. 17)

B Binary representation of an executable file (Eq. 18)

G Grouping of binary data into 6-bit chunks (Eq. 19)

T Base64 encoded text (Eq. 20)

S Segmentation of Base64 text (Eq. 21)

Pi Pixel representation of Base64 segments (Eq. 22)

I Image matrix constructed from encoded pixels (Eq. 23)

𝑇𝑏 Binary representation of Base64 encoded text (Eq. 24)

𝑃𝑐 Cover image pixel values before embedding (Eq. 25)

𝑅𝑒,𝐺𝑒,𝐵𝑒 Modified pixel values after embedding (Eq. 26-28)

𝑃𝑒 Pixel values of the stego-image (Eq. 29)

CRpixel Compression ratio for pixel encoding (Eq. 30)

CRLSB Compression ratio for LSB-based encoding (Eq. 31)

Ototal Total computational overhead for encoding/decoding (Eq. 32)

𝐵′ Reconstructed binary data from Base64 (Eq. 33)

Accuracy Retrieval accuracy of encoded executables (Eq. 34)

Phase 2 of the process involves encoding and analyzing trusted executable. The process involves converting
executable files into Base64 format, generating a text-based representation, and mapping Base64 characters
to pixel values. The image representation is created using Base64 characters and RGB values. The modified
least significant bits of a cover image are embedded with Base64 data. The encoding efficiency is measured by
the compression ratio (CR), which is the ratio between the original size and the encoded file size. The retrieval
accuracy is evaluated to determine the ability to reconstruct the original executable. The robustness against
tampering is assessed by introducing noise or attacks on the encoded data and computing the Signalto-Noise
Ratio (SNR). In summary, the process of encoding and analyzing trusted executables involves various
techniques, including Base64 encoding and image encoding. The resulting data is evaluated for efficiency,
retrieval accuracy, and robustness against tampering.

3.1 Phase 1: Malware Detection in Executable
In this section authors give in depth analysis of the Malware detection using the steps like data collection,
Feature Engineering, Model selection and Training and finally Evaluation followed by analysis.
3.1.1 Data Collection
Gather a dataset of benign and malicious “.exe” files from trusted repositories and malware databases from
pe_header_data which is Malware Detection using ML (PE files) [27] and Malware [29] and Microsoft

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1238

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

Malware Classification Challenge (2015) [28]. Extract features from executable, including opcode sequences,
API calls, and byte-level characteristics
The mathematical aspect of data collection involves feature extraction from the .exe files. This typically
requires converting raw data (opcode sequences, API calls, byte-level characteristics) into a numerical format
suitable for machine learning models.
Opcode Sequences: The opcodes in the executable are typically transformed into numerical sequences. One
way is to represent them using one-hot encoding for each opcode shown in Eq.(1).
𝑋𝑜𝑝𝑐𝑜𝑑𝑒 = [𝑜𝑝𝑐𝑜𝑑𝑒1, 𝑜𝑝𝑐𝑜𝑑𝑒2, … , 𝑜𝑝𝑐𝑜𝑑𝑒𝑛](1)
Where each opcodeiis a numerical representation of an opcode
Byte-Level Features: Features could include byte frequencies, for example, the frequency of each byte value in
the file. This can be represented as shown in Eq. (2).
𝑋𝑏𝑦𝑡𝑒 = [𝑓1, 𝑓2, … … . , 𝑓𝑘] (2)
Here fi is the frequency of byte value i in the executable.
API Calls: The sequence of API calls made by an executable can be converted into vectors where each entry
corresponds to the frequency of a particular API call.

3.1.2 Feature Engineering
Perform feature selection to identify the most informative attributes for classification. Normalize and
preprocess data to ensure compatibility with machine learning models.
Feature selection is typically based on metrics like Mutual Information or Chi-square tests for categorical
features. For continuous variables, you may use techniques like Correlation Coefficients.
Mutual Information:
Mutual information between a feature 𝑋𝑖 and the target class y can be calculated as mathematical formula
shown in Eq. (3).
𝑝(𝑥𝑖, 𝑦)
𝑀𝐼𝐷 (𝑋𝑖, 𝑦) = ∑ ∑ 𝑝(𝑥𝑖, 𝑦) log () (3)
𝑝(𝑥𝑖). 𝑝(𝑦)
𝑥𝑖∈𝑋𝑖 𝑦∈𝑦
Where 𝑝(𝑥𝑖, 𝑦) is the joint probability of feature 𝑥𝑖 and class y, and 𝑝(𝑥𝑖) and 𝑝(𝑦) are the marginal probabilities
of𝑥𝑖and y, respectively.
Correlation Coefficient
The Pearson correlation coefficient between two continuous features 𝑋𝑖 and 𝑋𝑗 is given by in Eq.(4).
𝝆(𝑋𝑖, 𝑋𝑗) = 𝐶𝑜𝑣 𝜎𝑋(𝑖𝑋𝜎𝑖𝑋,𝑋𝑗𝑗) (4)
Where 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)is the covariance between 𝑋𝑖and 𝑋𝑗, and 𝜎𝑋𝑖 and 𝜎𝑋𝑗 are the standard deviations of 𝑋𝑖 and
𝑋𝑗.

3.1.3 Model Selection and Training
Various machine learning models can be used to classify malware. The training phase consists of finding the
model parameters that minimize the error on the training data.vc Evaluate various machine learning
algorithms, including Random Forest, Support Vector Machine (SVM), Gradient Boosting, Deep Learning
(utilizing Keras DNN)and XGBoost. Split the dataset into training and testing sets with k-fold crossvalidation
for model validation.

Random Forest
Random Forest is an ensemble method that constructs multiple decision trees. The prediction y ̂ for a new
sample x is the majority vote across the trees shown in Eq. (5).
𝑦̂ = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑒(𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑡(𝑥) (5) Where ft (x) is the prediction of the tth tree.

Support Vector Machine (SVM)
SVM finds the hyperplane that maximizes the margin between classes. The decision function for an SVM
classifier is shown in Eq.(6).
𝑓(𝑥) = 𝑊𝑇𝑋 + 𝑏 (6)
Where W is the weight vector, X is the input feature vector, and b is the bias term.
The classifier predicts the class based on the sign of this function is given in Eq.(7).

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1239

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

1 𝑖𝑓 𝑓(𝑥) ≥ 0
𝑦̂ = { (7)
−1 𝑖𝑓 𝑓(𝑥) < 0
Gradient Boosting and XGBoost
In Gradient Boosting, models are trained sequentially, with each new model trying to correct the errors of the
previous one. The loss function L at each step is minimized is given Eq. (8).

𝐿 (8)
For XGBoost, the model includes a regularization term to prevent overfitting is shown in Eq.(9).

𝐿𝑜𝑠𝑠 𝐾𝑘=1 ||𝑤𝑘||2 (9)
Where 𝝀 is the regularization parameter.

Deep Learning (Keras DNN)
Deep Learning models, particularly feed-forward Deep Neural Networks (DNNs), are powerful at modeling
nonlinear feature relationships in large feature spaces.
A DNN consists of multiple hidden layers, each applying linear transformations followed by nonlinear
activation functions such as ReLU (Rectified Linear Unit). The output of a neuron in layer l is defined as:
𝑎(𝑙) = 𝑓(𝑊(𝑙)𝑎(𝑙−1) + 𝑏(𝑙)) (10)
Where:
• 𝑎(𝑙) is the activation vector of layer l,
• 𝑊(𝑙) and𝑏(𝑙) are the weight matrix and bias vector for that layer,
• f(⋅) is the activation function i.eReLU or Sigmoid.
The final output layer uses a Sigmoid activation to predict the probability of a sample being legitimate or
malware:
𝑦̂ = 𝜎(𝑊𝑇𝑎(𝐿) + 𝑏) (11)
Where𝜎(𝑧) = 1 +1𝑒−𝑧
3.1.4 Model Validation
All models were validated using k-fold cross-validation (k = 5) to ensure robust evaluation and prevent
overfitting.
The following performance metrics were computed for each algorithm:
• Accuracy
• Precision
• Recall
• F1-Score
• Area Under the ROC Curve (AUC)
The best-performing model was selected based on these metrics.

Model Description Optimization Regularization Output

Random
Forest

Ensemble of decision trees
(majority voting)

Gini / Entropy Bagging Discrete class

SVM Max-margin hyperplane Hinge loss C / Kernel Discrete class

Gradient
Boosting

Sequential tree boosting MSE loss Shrinkage Discrete class

XGBoost Regularized boosting L2 loss +
regularization

λ term Discrete class

Deep Learning
(DNN)

Multi-layer neural network Binary Cross-
Entropy

Dropout, Adam
Optimizer

Probability (0–
1)

3.1.5 Evaluation
Measure model performance using metrics such as accuracy, precision, recall, F1-score, and area under the
receiver operating characteristic curve (ROC-AUC). After training, the model's performance is evaluated using
various metrics.
Accuracy:
The accuracy is the ratio of correctly predicted instances to the total instances. The formula for the accuracy is
shown in Eq.(12).

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1240

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

𝑻𝑷+𝑻𝑵
𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = (12)
𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
WhereTP is True Positives, TN is True Negatives, FPis False Positives. FN is False Negatives.
Precision: The fraction of true positive predictions among all positive predictions. The formula for the
Precision is shown in Eq.(13).
𝐓𝐏
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 = (13)
𝐓𝐏+𝐅𝐏
The Recall is given as the fraction of true positives correctly identified by the model which is shown in Eq.(14).
𝐓𝐏
𝐑𝐞𝐜𝐚𝐥𝐥 = (14)
𝐓𝐏+𝐅𝐍
F1-Score: The harmonic mean of precision and recall given in Eq.(15).
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧∗𝐑𝐞𝐜𝐚𝐥𝐥
𝐅𝟏 = 𝟐 ∗ (15)
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧+𝐑𝐞𝐜𝐚𝐥𝐥
ROC-AUC:
The Area Under the ROC Curve (AUC) measures the model’s ability to distinguish between classes. The ROC
curve plots the True Positive Rate (TPR) vs. the False Positive Rate (FPR). The mathematical formulation are
shown in Eq.(16) and Eq.(17).
TP
TPR = (16)
TP+FN

FP
FPR = (17)
FP+TN
AUC is the area under this curve, with values closer to 1 indicating better performance.

3.2Phase2: Encoding Analysis of Trusted Executable Step 1: Encoding Trusted Executable
Step 1.1 Convert .exe files into Base64 text format.
1. Let the binary data of the .exe file be
𝐵 = [𝑏1, 𝑏2, … . . , 𝑏𝑛](18) Where 𝑏𝑖 ∈ {0,1} represents bits of the executable 2. Group 𝐵 into 6-bit chunks:
G = [g1, g2, … . . , gm](19)
Where 𝑔𝑖 = [𝑏6(𝑖−1)+1, … . . , 𝑏6𝑖] for i ∈ [1, m]
3. Convert each 6-bit group into a corresponding Base64 character.
T = [t1, t2, … tm] (20)
Where 𝑡𝑖 = 𝐵𝑎𝑠𝑒64(𝑔𝑖), T is the encoded base64 string.
Step1.2 Encode data using pixel value mapping
Split the Base64 string T into segments of 3 characters each shown in Eq.(21).
S=[s1,s2,….,sk] (21)
Where si=t(3(i-1)+1),t(3(i-1)+2),t(3(i-1)+3)
Convert each segment into 24-bit RGB pixel values shown in Eq.(22).
Pi=[Ri,Gi,Bi] (22)
Where Pi is the pixel value of segment si
Map each character t in si to its ASCII value.
Construct an image matrix I by arranging Pi in rows and columns in Eq.(23).
P1 P2 P3
I = [⋮ ⋱ ⋮] (23)
⋮ ⋯ ⋮
Step1.3 Encode data into Image Files using the MLSB method.
1. Convert Base64 text data T into binary format given in Eq.(24).
𝑇𝑏 = [𝑡𝑏1, 𝑡𝑏2, … . , 𝑡𝑏𝑚] (24) where each 𝑡𝑏𝑖∈{0,1} represents bits of the Base64 string.

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1241

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

2. Load a cover image𝐼𝑐 with pixel values 𝑃𝑐 = [𝑅, 𝐺, 𝐵], where each pixel is represented byEq.(25)
𝑃𝑐 = [𝑅𝑐, 𝐺𝑐, 𝐵𝑐]
With 𝑅𝑐, 𝐺𝑐, 𝐵𝑐 ∈ [0.255](25)
3. Embed the data bits into the least significant bits of the pixel values shown in Eq.(26).
𝑅𝑒 = (𝑅𝑐 & 254)|𝑡𝑏𝑖 (26)
𝐺𝑒 = (𝐺𝑐 & 254)|𝑡𝑏(𝑖+1) (27)
Be = (Bc & 254)|tb(i+2) (28)
Here, & is the bitwise AND operation, and ∣ is the bitwise OR operation.
4. Construct the stego-image 𝐼𝑠 from the modified pixel values
Pe = [Re, Ge, Be] (29)
Step 2: Parameter Analysis

2.1 Compare encoding efficiency.
File Size: Compute the file sizes before and after encoding:
Size of Original Executable
CRpixel = Size of Encoded File (30)
Size of Original Executable
CRLSB = Size of Stego Image (31)
Computational Overhead: Measure the encoding time 𝑡𝑒𝑛𝑐𝑜𝑑𝑒 and decoding time 𝑡𝑑𝑒𝑐𝑜𝑑𝑒 for both Base64 and
image formats mention in Eq.(32) Total computational overhead:
𝑶𝒕𝒐𝒕𝒂𝒍 = 𝒕𝒆𝒏𝒄𝒐𝒅𝒆 + 𝒕𝒅𝒆𝒄𝒐𝒅𝒆 (32)

2.2 Evaluate retrieval accuracy
• Decode Base64 back to binary: Reverse the Base64 conversion mention in Eq.(33).
• 𝐵′ = 𝐵𝑎𝑠𝑒64𝑑𝑒𝑐𝑜𝑑𝑒(𝑇) (33)
• Decode the image back to binary:
• Extract pixel values 𝑃𝑖 = [𝑅𝑖, 𝐺𝑖, 𝐵𝑖].
• Map RGB values back to ASCII characters and reconstruct 𝑇′.
• Decode 𝑇′ to retrieve𝐵′.
• Calculate the retrieval accuracy:
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝑹𝒆𝒕𝒓𝒊𝒆𝒗𝒆𝒅 𝑩𝒊𝒕𝒔
𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = ∗ 𝟏𝟎𝟎(34)
𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑩𝒊𝒕𝒔
Phase 1 focuses on detecting malicious executable using machine learning models, while Phase 2 focuses on
secure encoding of trusted executable using image-based methods and LSB using metrics like file size,
accuracy, and robustness.

4 Results Analysis

This section delineates the experimental results from the two parts of the research: malware detection in
executables and encoding analysis of trustworthy executables. The results are assessed using pertinent metrics,
and the ramifications of the findings are examined within the framework of cybersecurity applications.

4.1 Malware Detection in Executable: Model Performance
The efficacy of the machine learning models was assessed through accuracy, jaccard score and F1-score. The
dataset was partitioned into training and testing sets utilizing k-fold cross-validation (k=10) to guarantee
rigorous validation.
Feature selection: Recursive Feature Elimination (RFE) and statistical tests markedly enhanced model
performance by minimizing noise and concentrating on the most predictive features.
Optimal Model: XGBoost was identified as the most efficient algorithm, attaining the highest accuracy (96.1%)
and ROC-AUC (0.98), demonstrating exceptional differentiation between benign and malicious executables.
The Fig. 2 and Table. 2. shows how four different machine learning models—XGBoost, Random Forest,
Gradient Boosting, and Support Vector Machine (SVM)—compare with respect to three important
performance metrics: F1-Score, Jaccard Score, and Accuracy. The fact that Gradient Boosting and XGBoost
both got perfect ratings (100%) across the board is evidence of how well and consistently they function.

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1242

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

Random Forest also performed quite well, with values approaching 99.99%. But the Support Vector Machine
(SVM) performed far worse, with an F1-Score of just 36.59% and a score of 0% on the Jaccard Score.

Table 2. Performance Metrics of Proposed Machine Learning Models

Model Accuracy Precision Recall F1 Score AUC

XGBoost 0.994833 0.990498 0.992256 0.991377 0.999741

Random
Forest

0.994640 0.990967 0.991127 0.991047 0.999651

Gradient Boosting 0.990825 0.985300 0.984028 0.984664 0.999159

Deep Learning
(Keras DNN)

0.990438 0.982938 0.985158 0.984046 0.999220

SVM (RBF
Kernel)

0.988555 0.983456 0.978221 0.980831 0.997502

4.2 Encoding and Analysis of Trusted Executables: Encoding Efficiency
Encoding techniques were evaluated for file size reduction and computational burden. The figure 3 and table
3 evaluates two encoding approaches, LSB Image-Based Encoding and Pixel Value Mapping, using four
performance metrics: Mean Squared Error (MSE), Encoding Time, Decoding Time, and Compression Ratio.
Similar compression ratios were attained by both approaches; however, LSB Image-Based Encoding
marginally outperformed Pixel Value Mapping.
On the other hand, LSB Image-Based Encoding showed faster processing efficiency with shorter encoding and
decoding times. The fact that its MSE was lower also indicates that its reconstruction was more accurate. These
findings point to LSB Image-Based Encoding as the superior approach, offering better efficiency and accuracy.
It is highly recommended for applications that demand optimal encoding performance.

Figure.2. Performance Metrics of Machine Learning Models

Table 3. Comparison of Proposed Encoding Methods

Encodi ng
Method

Compre
ssion
Ratio

Encod
ing
Time
(s)

Deco
ding
Time
(s)

MSE

Pixel
Value
Mapping

1.597310
46678315
48

7.0987
029075
62256

20.66
19718
0747
986

0.0312
66590
7942

Modified
LSB

1.608433
75851771

6.72119
808197

17.05
10954

0.0234
56232

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1243

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

Image
Based Encoding

26 0215 8568725 8967

The efficacy of encoding techniques was evaluated under several tampering scenarios, such as noise
introduction and pixel modifications. The robustness was measured using the Signal-to-Noise Ratio (SNR).
The Peak Signal-to-Noise Ratio (PSNR) comparison between Modified-LSB Image-Based Encoding and Pixel
Value Mapping is shown in the pie chart of figure 4. Greater preservation of image information is indicated by
greater values of PSNR, a critical statistic for evaluating the quality of picture reconstruction. Pixel Value
Mapping recorded 63.18 dB PSNR, whereas Modified-LSB Image-Based Encoding managed 64.43 dB, as seen
in the table 4.

Figure.3. Comparison of Encoding Methods

Table 4. PSNR for Proposed Encoding Methods

Encoding Method PSNR (dB)

Pixel Value Mapping 63.17999831079039

Modified LSB Image Based Encoding 64.42822095778432

The results show that the Modified-LSB approach reduces distortion when encoding and decoding, leading to
superior image quality. Both approaches work well, however the Modified-LSB approach has a little better
picture fidelity, as seen in the pie chart, which graphically depicts the proportion of PSNR values.

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1244

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

Figure.4. PSNR Comparison

The findings in table 5confirm the effectiveness of the suggested approaches in fulfilling the dual aims of
malware detection and trustworthy executable encoding. Subsequent study may investigate hybrid
methodologies that integrate the advantages of several encoding techniques and sophisticated ensemble
models for malware detection.

Table 5. Results of the Proposed System

Method
Accurac
y (%) ROCAUC

Compressio
n Ratio

Encoding
Time (s)

Decoding
Time
(s) MSE

PSNR
(dB)

RMED [3] 94.42 0.97 - - - - -

MalJPEG [6] 95.7 0.976 - - - - -

PixelSteganalysis
[24] - - -

3.437 -
57.6517

4.76 -
57.6517 28.45 35.89

Malware Detection
(Proposed) 99.48 0.9997 - - - - -

Encoding Efficiency
(Proposed) - - 1.608 6.721 17.051 0.0235 64.43

5 Conclusion

The proposed work offers an extensive and scalable framework for malware detection and secure executable
file management, incorporating sophisticated machine learning and deep learning methodologies. The results
of the experiments show that all of the models testedXGBoost, Random Forest, Gradient Boosting, Deep
Learning (Keras DNN), and SVM (RBF Kernel)performed very well, with accuracies over 98.8% and AUC
values close to 0.999 across all metrics. XGBoost had the best overall performance (Accuracy = 0.9948, F1-
score = 0.9913, AUC = 0.9997), followed closely by Random Forest and Gradient Boosting. This shows that
ensemble-based classifiers are good at handling complex malware feature spaces.The Deep Learning model
also did very well, showing that it can learn complex nonlinear feature representations, which is useful for
finding malware samples that have never been seen before or that have been hidden. The SVM classifier, on
the other hand, did a little worse than the ensemble and deep learning models. This is because it is sensitive to
high-dimensional data and parameter tuning. The results of this study confirm that hybrid ensemble-deep
learning architectures are effective for detecting malware in PE files, providing strong generalization,
scalability, and high precision. But the framework still relies on the quality of feature extraction, and the

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1245

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

dataset might not include every type of malware that is out there. Also, when using deep or ensemble models
on large-scale, real-time systems, the extra work that needs to be done is still a problem. Future work will
concentrate on improving model adaptability via online learning, feature auto-selection, and transfer learning,
while also optimizing performance for real-time malware analysis. Also, looking into adversarial robustness,
hybrid encryption-encoding strategies, and using them in real-world cybersecurity settings will help prove and
improve the suggested method for protecting critical infrastructure and the cloud.

Conflicts of Interest
All authors declare no conflict of interest.

Author Contributions
Author Contributions Conceptualization, methodology, AR; writing original draft preparation, AR and VK;
supervision, VK.

References

[1] Almehmadi L, Basuhail A, Alghazzawi D and Rabie O, “Framework for Malware Triggering Using

Steganography”, Applied Sciences, 2022, https://doi.org/10.3390/app12168176

[2] Chaganti Rajasekhar, Ravi Vinayakumar, AlazabMamoun and Pham Tuan, “Stegomalware: A Systematic

Survey of Malware Hiding and Detection in Images, Machine Learning Models and Research Challenges”,

ResearchGate, 2021, 10.36227/techrxiv.16755457.v1.

[3] Khaled Soliman, Mohamed Sobh and Ayman M. Bahaa-Eldin, “Robust Malicious Executable Detection

Using Host-Based Machine Learning Classifier”, Computers materials & continua, 2024, DOI:

10.32604/cmc.2024.048883

[4] Jana Dittmann, Christian Kraetzer, JostAlemann, and Bernhard Birnbaum, “Forensic Trace Analysis for

MP3 based Stego-Malware: Exemplary Study for Stego-Algorithm and Capacity Attribution to derive

YARA Rules for Malware Identification”, In Proceedings of the 2024 ACM Workshop on Information

Hiding and Multimedia Security (IH&MMSec '24), Association for Computing Machinery, 2024,

https://doi.org/10.1145/3658664.3659641

[5] Edeh Natasha, YataghaRomarick, MejriOumayma and Waedt Karl, “Understanding stegomalware in ICS:

Attacks and Prevention”, INFORMATIK, 2024, DOI: 10.18420/inf2024_164.

[6] A. Cohen, N. Nissim and Y. Elovici, "MalJPEG: Machine Learning Based Solution for the Detection of

Malicious JPEG Images," in IEEE Access, 2020, doi: 10.1109/ACCESS.2020.2969022.

[7] Z. Wang, C. Liu and X. Cui, "EvilModel: Hiding Malware Inside of Neural Network Models," 2021 IEEE

Symposium on Computers and Communications (ISCC), Athens, Greece, 2021, doi:

10.1109/ISCC53001.2021.9631425.

[8] A. Carrega, L. Caviglione, M. Repetto and M. Zuppelli, "Programmable Data Gathering for Detecting

Stegomalware," 2020 6th IEEE Conference on Network Softwarization (NetSoft), Ghent, Belgium, 2020,

doi: 10.1109/NetSoft48620.2020.9165537.

[9] Konstantinos Karampidis, ErginaKavallieratou, GiorgosPapadourakis, “A review of image steganalysis

techniques for digital forensics”, Journal of Information Security and Applications, 2018,

https://doi.org/10.1016/j.jisa.2018.04.005.

[10] T. -S. Reinel, R. -P. Raúl and I. Gustavo, "Deep Learning Applied to Steganalysis of Digital Images: A

Systematic Review," in IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2918086.

[11] Tao Liu, Zihao Liu, Qi Liu, Wujie Wen, Wenyao Xu and Ming Li, “StegoNet: Turn Deep Neural Network

into a Stegomalware”, In Proceedings of the 36th Annual Computer Security Applications Conference

(ACSAC '20). Association for Computing Machinery, New York, NY, USA, 928–938.

https://doi.org/10.1145/3427228.3427268

[12] S. Rallabandi, A. M. Sundaram and K. V, "Generating a Multi-OS Fully Undetectable Malware(FUD) and

Analyzing it Afore and After Steganography," 2022 4th International Conference on Advances in

https://doi.org/10.3390/app12168176
https://doi.org/10.3390/app12168176
https://doi.org/10.1145/3658664.3659641
https://doi.org/10.1145/3658664.3659641
https://doi.org/10.1016/j.jisa.2018.04.005
https://doi.org/10.1016/j.jisa.2018.04.005
https://doi.org/10.1145/3427228.3427268
https://doi.org/10.1145/3427228.3427268

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1246

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

Computing, Communication Control and Networking (ICAC3N), Greater Noida, India, 2022, doi:

10.1109/ICAC3N56670.2022.10074511.

[13] IstteffannyIsloure Araujo and Hassan Kazemian, Vulnerability Exploitations Using Steganography in PDF

Files, International Journal of Computer Networks and Applications (IJCNA). 2020, DOI:

10.22247/ijcna/2020/193270

[14] Patel S K and Chandran S, “PDF Steganography Using Hybrid Crypto Encryption Technique”, Springer,

Singapore, https://doi.org/10.1007/978-981-19-5845-8_32

[15] Alaa Abdullah Idres and Yaseen Hikmat Ismael, “Text Steganography Techniques: A Review”, IRJIET,

2023, https://doi.org/10.47001/IRJIET/2023.711085

[16] Benjamin Aziz and AyshaBukhelli, “Detecting the Manipulation of Text Structure in Text Steganography

Using Machine Learning”, 3rd International Special Session on Data Mining and Machine Learning

Applications for Cyber Security, 2023, 10.5220/0012260900003584

[17] Ryan Klemm and Bo Chen, “Hiding Sensitive Information Using PDF Steganography”, ARXIV, 2024,

arXiv:2405.00865v1 [cs.CR]

[18] N. Vaidya and P Rughani, “An Efficient Technique to Detect Stegosploit Generated Images on Windows

and Linux Subsystem on Windows”, International Journal of Computer Sciences and Engineering, 2019,

DOI: https://doi.org/10.26438/ijcse/v7i12.2126

[19] A. Samir, W. Alexan, R. T. ElDin and A. El-Rafei, "3D Steganography by Random Shuffling of Image

Contents Using Residue Model," 2020 4th International Conference on Electronics, Communication and

Aerospace Technology (ICECA), Coimbatore, India, 2020, pp. 912-918, doi:

10.1109/ICECA49313.2020.9297595.

[20] TrivikramMuralidharan, Aviad Cohen, Assaf Cohen and Nir Nissim, “The infinite race between

steganography and steganalysis in images”, Signal Processing, 2022,

https://doi.org/10.1016/j.sigpro.2022.108711.

[21] Abhisek Banerjee, SreeparnaGanguly, Imon Mukherjee and NabanitaGanguly, “SteriCNN: Cloud native

stego content sterilization framework”, Journal of Information Security and Applications, 2024,

https://doi.org/10.1016/j.jisa.2024.103908.

[22] M. Boroumand, M. Chen and J. Fridrich, "Deep Residual Network for Steganalysis of Digital Images" in

IEEE Transactions on Information Forensics and Security, 2019, doi: 10.1109/TIFS.2018.2871749. [23]

Amritha P P, Sethumadhavan M, Krishnan R, Pal SK, “Anti-forensic approach to remove stego content

from images and videos”, Journal of Cyber Security and Mobility, 2019, 10.13052/jcsm22451439.831

[24] D. Jung, H. Bae, H. -S. Choi and S. Yoon, "PixelSteganalysis: Pixel-Wise Hidden Information Removal

With Low Visual Degradation" in IEEE Transactions on Dependable and Secure Computing, 2023, doi:

10.1109/TDSC.2021.3132987.

[25] A. Cohen, N. Nissim and Y. Elovici, "MalJPEG: Machine Learning Based Solution for the Detection of

Malicious JPEG Images," in IEEE Access, vol. 8, pp. 19997-20011, 2020, doi:

10.1109/ACCESS.2020.2969022.

[26] J. De Jesús Serrano Pérez, M. S. Rosales and N. Cruz-Cortes, "Universal Steganography Detector Based

on an Artificial Immune System for JPEG Images," 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin,

China, 2016, doi: 10.1109/TrustCom.2016.0290.

[27] Malware Detection using ML (PE files) pe_header_data,

https://www.kaggle.com/datasets/dasarijayanth/pe-header-data

[28] Microsoft Malware Classification Challenge (2015),

https://www.kaggle.com/competitions/malware-classification/data [29] Malware -

https://www.kaggle.com/datasets/dscclass/malware

https://doi.org/10.1007/978-981-19-5845-8_32
https://doi.org/10.1007/978-981-19-5845-8_32
https://doi.org/10.1007/978-981-19-5845-8_32
https://doi.org/10.1007/978-981-19-5845-8_32
https://doi.org/10.1007/978-981-19-5845-8_32
https://doi.org/10.1007/978-981-19-5845-8_32
https://doi.org/10.1007/978-981-19-5845-8_32
https://doi.org/10.1007/978-981-19-5845-8_32
https://doi.org/10.1007/978-981-19-5845-8_32
https://doi.org/10.1007/978-981-19-5845-8_32
https://doi.org/10.47001/IRJIET/2023.711085
https://doi.org/10.47001/IRJIET/2023.711085
https://doi.org/10.26438/ijcse/v7i12.2126
https://doi.org/10.26438/ijcse/v7i12.2126
https://doi.org/10.1016/j.sigpro.2022.108711
https://doi.org/10.1016/j.sigpro.2022.108711
https://doi.org/10.1016/j.jisa.2024.103908
https://doi.org/10.1016/j.jisa.2024.103908
https://www.kaggle.com/datasets/dasarijayanth/pe-header-data
https://www.kaggle.com/datasets/dasarijayanth/pe-header-data
https://www.kaggle.com/datasets/dasarijayanth/pe-header-data
https://www.kaggle.com/datasets/dasarijayanth/pe-header-data
https://www.kaggle.com/datasets/dasarijayanth/pe-header-data
https://www.kaggle.com/datasets/dasarijayanth/pe-header-data
https://www.kaggle.com/competitions/malware-classification/data
https://www.kaggle.com/competitions/malware-classification/data
https://www.kaggle.com/competitions/malware-classification/data
https://www.kaggle.com/competitions/malware-classification/data
https://www.kaggle.com/datasets/dscclass/malware
https://www.kaggle.com/datasets/dscclass/malware
https://www.kaggle.com/datasets/dscclass/malware
https://www.kaggle.com/datasets/dscclass/malware

