
Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 30 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Pathways to Becoming an OpenBMC Developer: Skills, Tools,

and Community Integration

Maheswara Kurapati

Independent Researcher, USA

ARTICLE INFO ABSTRACT

Received:01 Sept 2025

Revised:05 Oct 2025

Accepted:15 Oct 2025

This discourse establishes methodical trajectories for engineers and technical specialists

seeking competence in OpenBMC advancement. The text examines core technical

abilities necessary for productive involvement, encompassing Linux kernel

programming, Yocto construction framework proficiency, and interaction protocols

fundamental for baseboard administration controllers. The manuscript elaborates

configuration procedures for development settings, equipment simulation approaches,

and troubleshooting methodologies, jointly facilitating productive firmware creation

without necessitating tangible equipment access. The discussion investigates

OpenBMC's component-based structure, including service arrangement, monitoring

frameworks, and protocol compatibility, establishing an adaptable groundwork for

platform-specific customization while preserving uniform administration interfaces.

The exposition additionally considers community participation procedures, including

contribution workflows, evaluation involvement, and guidance prospects supporting

knowledge dissemination between veteran contributors and newcomers. Through

organized explanation covering both technical prerequisites and community practices,

the manuscript provides extensive progression planning supporting valuable

contributions toward this essential open-source firmware environment.

Keywords: Baseboard Management Controller (BMC), Firmware

Development, Yocto Build System, Server Management, Open Source

Collaboration

I. Introduction

The development of OpenBMC marks a transformative advancement in server control technology,

delivering an open-source firmware foundation specifically crafted for Baseboard Management

Controllers within contemporary server architectures. This joint initiative satisfies the pressing

requirement for standardized, transparent, and expandable firmware options capable of

administering increasingly intricate server equipment across varied implementation environments [1].

According to documentation from the OpenBMC Project, the goal centers on establishing a highly

adaptable structure for BMC execution that delivers uniform management interfaces while

accommodating particular specifications of varied hardware configurations. The fundamental

principle underlying OpenBMC highlights community-based advancement, with source code

preserved under an accommodating Apache 2.0 license, enabling widespread commercial and non-

commercial implementation throughout the industry.

The landscape of data center infrastructure undergoes continuous transformation, propelled by

requirements for greater computational concentration, superior power conservation, and improved

Reliability, Availability, and Serviceability. Such progression has generated considerable difficulties

regarding hardware administration complexity, as current server platforms feature sophisticated

power regulation mechanisms, intricate thermal management solutions, and complex sensor

arrangements necessitating specialized firmware approaches. The diversity of server hardware

configurations, spanning conventional architectures to proprietary silicon designs, intensifies these

difficulties by requiring adaptable management interfaces compatible with heterogeneous hardware

environments. Examination of the OpenBMC GitHub repository reveals this intricacy through its

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 31 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

comprehensive collection of code bases addressing numerous facets of BMC operation, including

system processes, sensor observation structures, and platform-specific implementations

accommodating detailed requirements of distinct server designs [2]. Such a modular organization

allows developers to modify individual elements without necessitating a thorough comprehension of

the entire code structure, thereby enabling focused contributions while preserving system integration.

The sophistication characterizing modern data center hardware has subsequently generated a

substantial need for specialists possessing expertise in OpenBMC advancement. This requirement

extends across numerous commercial sectors, from cloud-based service operators aiming to enhance

infrastructure administration to equipment manufacturers seeking customized BMC implementations

for their server products. The knowledge requirements for productive OpenBMC development—

encompassing embedded Linux frameworks, Yocto construction systems, and various hardware

interaction protocols including IPMI, Redfish, and MCTP—constitute significant obstacles for

potential participants. The OpenBMC initiative addresses these challenges through extensive

instructional materials, including preliminary guides, structural summaries, and contribution

procedures, providing organized access points for developers with differing proficiency levels [1].

Furthermore, the community sustains dynamic correspondence lists, immediate communication

channels, and scheduled technical consultations, facilitating information dissemination and

collaborative resolution among contributors.

This article tackles these impediments by establishing a thorough progression path for engineers and

technical enthusiasts pursuing competency in OpenBMC development. Through the delivery of a

methodical approach toward acquiring essential technical foundations, arranging development

settings, and participating with the OpenBMC community, the article aims to expedite the integration

process for new contributors while ensuring the acquisition of solid capabilities required for

meaningful ecosystem participation. The extensive documentation within OpenBMC repositories

demonstrates that successful contributors must cultivate familiarity with project coding conventions,

testing frameworks, and review methodologies to navigate the contribution process effectively [2].

This includes comprehension of automated integration pipelines that validate submissions against

established quality standards, guaranteeing new code maintains compatibility with existing

implementations while adhering to security guidelines.

The OpenBMC ecosystem comprises numerous components collectively enabling advanced server

management functions, including power regulation, sensor observation, event documentation, and

remote operation access. These capabilities prove essential for maintaining operational effectiveness

within modern data centers, where physical access to server equipment remains limited and

automated management systems grow increasingly vital. The implementation of industry-standard

protocols, including IPMI, Redfish API, PLDM, and MCTP, ensures interoperability with established

management applications while introducing enhanced capabilities through its contemporary service-

oriented structure [1]. This compatibility receives additional reinforcement through rigorous testing

infrastructure, incorporating both component-level evaluations and integration assessments, verifying

complete system functionality across diverse hardware arrangements and usage environments [2]. By

reducing entrance barriers for OpenBMC development, this article seeks to encourage a more

inclusive and extensive contributor community, ultimately improving stability, security, and

functionality of this critical infrastructure element.

II. Foundational Technical Skills

Achieving expertise in OpenBMC demands proficiency across numerous interconnected technical

disciplines forming the bedrock of BMC firmware creation. Central to these prerequisites stands

comprehensive knowledge regarding Linux kernel development basics. The OpenBMC architecture

utilizes the Linux kernel for its operational foundation, requiring thorough familiarity with kernel

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 32 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

structure, driver design/layout, and system interface mechanisms. Contributors need a clear

understanding of kernel interactions with physical components via device drivers, resource allocation

techniques, and task scheduling within restricted embedded environments. Such expertise

encompasses configuration parameters relevant for BMC functions, particularly supporting

specialized hardware protocols including I²C, SPI, GPIO, I3C, PCIe, LTPI, eSPI, LPC, and UART,

facilitating server component communications. According to initial OpenBMC publications, the

framework emerged deliberately to establish an integrated, Linux-centered ecosystem addressing

limitations found in closed-source BMC solutions while enabling standardized system administration

approaches benefiting from Linux kernel stability and adaptability [3]. The component-based nature

present in both Linux kernel design and OpenBMC structure creates inherent compatibility, allowing

programmers to allowing developers to develop the manageability feature as an independent module

and integrate it into the OpenBMC framework.

Skill Category
Primary

Components
Application in OpenBMC

System Programming
Linux kernel, Device

trees, C/C++

Hardware abstraction layers, Driver

development, Boot sequence implementation

Build Systems
Yocto Project, BitBake,

Layers

Cross-compilation toolchains, Package

management, Platform customization

Communication

Protocols
D-Bus, IPMI, PLDM

Service interfaces, Hardware monitoring,

Remote management capabilities

Table 1: Core Technical Skills for OpenBMC Development. [3, 4]

The Yocto Project construction system functions as the cornerstone for developing specialized Linux

distributions precisely crafted for BMC hardware configurations. OpenBMC employs this meta-build

framework to coordinate dependencies, perform cross-compilation of components for targeted

architectures, and produce uniform firmware packages across varied hardware implementations.

Programmers require an understanding of Yocto's layering methodology, wherein functionality exists

in separate modules selectively incorporated based on platform-specific requirements. This includes

proficiency with BitBake scripts defining how individual software elements undergo building,

packaging, and incorporation into completed system images. Yocto Project reference materials explain

how the build architecture revolves around fundamental concepts, including recipes, classes, and

configurations, jointly establishing complete build environments capable of generating customized

Linux distributions for embedded applications with exact control over package inclusion, system

parameters, and hardware compatibility [4]. The Yocto Project's focus on consistency ensures

OpenBMC builds maintain uniformity across development environments, supporting collaboration

between contributors while preserving the stability of firmware releases destined for production

environments.

Device tree configuration knowledge represents another fundamental capability for OpenBMC

development, particularly when introducing support for new hardware platforms or expanding

existing implementations. The device tree provides an organized methodology for describing

hardware components, connection patterns, and configuration settings platform-independently.

Within OpenBMC contexts, device trees specify essential elements including flash memory

organization, communication pathways, GPIO assignments, and sensor arrangements requiring

firmware management. Early OpenBMC implementations highlighted hardware abstraction

importance through device trees by creating common methodologies for defining server hardware

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 33 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

elements standardized across multiple platforms while supporting specific implementation variations,

thereby establishing adaptable yet consistent hardware description frameworks scaling across diverse

server designs [3]. This abstraction mechanism substantially decreases development requirements

when supporting new hardware platforms by allowing developers to concentrate on platform-specific

adjustments rather than recreating core functionality for each target environment.

D-Bus communication framework constitutes the central structure of OpenBMC's service-oriented

architecture, enabling inter-process communication between various firmware elements. This

messaging system facilitates structured interaction between system services while preserving clear

interface boundaries and dependency administration. OpenBMC developers require an understanding

of D-Bus principles, including service activation, object paths, interfaces, and methods, collectively

establishing the communication protocol between components. Initial OpenBMC frameworks

established D-Bus as the primary communication pathway between system services, implementing a

scalable architecture where additional functionality could be introduced through separate services

interacting via well-defined interfaces, enabling modular approaches to system administration that

characterize the project [3]. This service-centered architecture establishes natural divisions between

components, supporting parallel development activities while ensuring individual services evolve

independently without disrupting overall system operation, provided they maintain compatibility with

their established D-Bus interfaces.

C and C++ programming expertise tailored for embedded applications represents the principal

implementation languages for OpenBMC development. These languages deliver necessary

performance characteristics and low-level hardware accessibility required for firmware components

while providing structured programming methodologies for complex system design. Developers

require an understanding of memory management considerations specific to resource-limited BMC

environments, including static allocation techniques, stack utilization optimization, and efficient data

structures minimizing fragmentation. When developing embedded Linux distributions using Yocto,

programmers must implement component-specific optimizations utilizing C and C++, accounting for

the limited resources available in typical BMC hardware environments, including restrictions affecting

memory, processing capability, and storage capacity, necessitating careful consideration of resource

utilization and performance optimization throughout development cycles [4]. These limitations

frequently demand specialized programming strategies balancing functionality against resource

consumption, especially for components requiring responsive performance under variable system

loads.

Python competency supplements lower-level programming skills by facilitating efficient automation,

testing, and tool development within OpenBMC ecosystems. The language fulfills multiple roles in

development workflows, including build automation, test implementation, and management interface

creation. Contributors require an understanding of Python's object-oriented features, package

management, and integration with system interfaces through specialized libraries, including libdbus-

python for D-Bus communication and libgpiod for hardware interaction. Yocto build environments

extensively utilize Python for build automation, recipe processing, and dependency management,

making language proficiency essential for developers needing to customize build processes for specific

OpenBMC implementations or resolve issues during build operations [4]. Python's function within

OpenBMC ecosystems extends beyond build systems to include testing frameworks, configuration

utilities, and simulation environments, collectively enhancing development experiences while

ensuring contributed code quality.

Git version control and collaboration methodologies establish procedural foundations for effective

participation in OpenBMC projects. Beyond basic Git operations, developers require an understanding

of branching strategies, rebasing techniques, and patch management approaches, aligning with

project contribution guidelines. This includes familiarity with Gerrit Code Review, the platform

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 34 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

utilized by OpenBMC for collaborative code review and approval procedures. Since project inception,

OpenBMC has established structured contribution processes centered around Git workflows, ensuring

proper code review, testing, and integration while maintaining quality standards across distributed

developer communities [3]. The process around these workflows consists of continuous integration

systems that automatically validate contributions against the compliance check, build verification, and

test suites to ensure it is possible to contribute while maintaining the compatibility of their

contributions with the existing codebases and while being within the project quality and

documentation standards. OpenBMC communities adopt Git in common, which allows knowledge-

sharing between projects and enables developers already familiar with other open-source projects to

comfortably adjust to anything specific to OpenBMC contribution.

III. Development Environment Setup and Tools

Creating a productive development workspace represents an essential initial phase for prospective

OpenBMC participants, demanding precise arrangement of computing assets, application

prerequisites, and compiler elements. A thorough OpenBMC development configuration typically

commences with a Linux-centered host arrangement, ideally operating a contemporary distribution

offering robust software administration capabilities. This groundwork must accommodate the

installation of fundamental development applications, including compiler collections, construction

automation instruments, and code management frameworks, forming the foundation for OpenBMC

development procedures. The workspace preparation sequence involves setting up the Yocto Project

construction framework with suitable layer depositories, determining hardware specifications, and

implementing workspace organization practices supporting simultaneous development across

multiple system aspects. Based on formal OpenBMC instructional materials, programmers should

initiate by replicating the OpenBMC repository and establishing necessary construction prerequisites,

comprising packages like git, build-essential, and python3, alongside particular dependencies

mandated by the Yocto construction framework [5]. The guidance emphasizes adopting systematic

procedures for environment arrangement, including establishing appropriate processor-specific

compiler chains and configuring terminal variables defining target platforms through the

TEMPLATECONF environment parameter, which references machine-specific arrangement

directories containing required customizations for diverse hardware targets.

Hardware simulation through QEMU (Quick Emulator) offers a crucial methodology for OpenBMC

advancement, permitting software evaluation and confirmation without necessitating physical contact

with destination server platforms. This simulation layer establishes virtual BMC equipment executing

the OpenBMC firmware collection within an isolated context, allowing programmers to verify

operation, evaluate new capabilities, and diagnose complications without hardware constraints. The

QEMU-centered approach accommodates various simulation targets representing common BMC

architectures, including ARM and x86 platforms with virtualized input/output interfaces imitating

hardware components like sensors, GPIOs, and communication channels. The authorized OpenBMC

development environment documentation provides comprehensive guidance for utilizing QEMU with

the qemu-system-arm instruction, arranging suitable parameters including machine classification,

kernel image position, and initramfs pathways, collectively establishing the virtual BMC environment

[6]. The instructions detail how programmers should configure networking for the simulated

environment, creating connections between host systems and virtualized BMCs, enabling evaluation

of management interfaces through standard protocols while delivering console admission for

monitoring system activities and troubleshooting complications during advancement.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 35 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Component Function Implementation Approach

Build Environment
Code compilation, Image

generation

Containerized setup with Yocto dependencies,

Shared download caches

Emulation Tools
Hardware simulation,

Testing

QEMU with custom machine definitions,

Virtual hardware interfaces

Debugging

Infrastructure

Issue identification,

Resolution

GDB remote debugging, Serial console

logging, Memory analysis tools

Table 2: Development Environment Components. [6]

Debugging procedures and instruments particular to embedded firmware advancement constitute a

fundamental component within the OpenBMC programmer's toolkit, facilitating methodical

identification and resolution of complications throughout the firmware structure. Successful

debugging approaches combine conventional software debugging techniques with specialized

procedures for embedded frameworks, including serial console recording, JTAG interface debugging,

and memory examination tools providing visibility into system activities during operation. The

OpenBMC documentation describes several debugging strategies, with particular emphasis on console

admission through both serial interfaces and network connections, offering visibility into system

initialization sequences, service activation, and operational behavior through organized logging

frameworks [5]. These recording systems classify messages by importance levels and component

identifiers, supporting focused troubleshooting through filtering mechanisms that isolate pertinent

information from comprehensive log streams. The documentation additionally explains enabling

debug compilations with decreased optimization levels and supplementary instrumentation,

facilitating operational examination while providing more descriptive error notifications, and

accelerating troubleshooting procedures.

Cross-compilation considerations influence every dimension of OpenBMC advancement, reflecting

the basic reality that development transpires on host frameworks with different architectures and

capabilities than destination BMC equipment. This architectural distinction necessitates specialized

compiler chains capable of generating executable programs for target platforms while operating on

development hosts, requiring careful administration of compiler configurations, library dependencies,

and construction system parameters, ensuring consistent outcomes. The OpenBMC development

environment documentation explains how construction systems automatically establish suitable

cross-compilation toolchains through Yocto frameworks, generating target-specific compilers, linkers,

and associated instruments during initial construction processes [6]. These toolchains subsequently

function consistently throughout construction frameworks, ensuring all components undergo

compilation with compatible options and linking against appropriate libraries for destination

platforms. The documentation clarifies how programmers can access these toolchains directly when

operating outside construction frameworks, using environment configuration scripts to establish shell

environments with suitable pathways and variables, enabling direct compilation of components with

correct cross-compiler configurations.

Continuous integration practices establish procedural foundations for OpenBMC development

processes, guaranteeing contributions maintain quality standards through automated validation

against established criteria before integration into codebases. The project implements a

comprehensive CI pipeline automatically triggering upon submission of modifications to code review

systems, performing validation sequences including style verification, static analysis, construction

confirmation, and test execution across multiple target arrangements. The OpenBMC documentation

describes integration between the Gerrit code review system and the Jenkins automation server,

collectively implementing continuous integration procedures, explaining how submitted modifications

undergo automatic testing against multiple validation standards, including coding practice

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 36 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

compliance, successful compilation across supported platforms, and satisfactory unit tests verifying

functional accuracy [5]. This automation delivers immediate response to contributors regarding

potential complications in submissions, establishing rapid iteration cycles, improving code quality

while diminishing manual review requirements for project administrators. The documentation

specifies how contributors should interpret CI outcomes, addressing common failure scenarios and

troubleshooting strategies, and resolving issues identified during automated validation.

Documentation standards within OpenBMC projects establish uniform approaches toward knowledge

preservation and distribution, guaranteeing complex systems remain accessible to new contributors

while offering comprehensive reference materials for experienced programmers. The documentation

ecosystem encompasses multiple tiers, including code-level documentation through structured

annotations, component-level documentation describing service architecture and interfaces, and

system-level documentation covering overall firmware composition, construction procedures, and

deployment considerations. The project's principal documentation repository functions as a central

reference location for contributors, implementing a structured organization categorizing information

across topic areas, including development processes, architecture descriptions, user guides, and

administrative procedures [5]. This organization facilitates information discovery while establishing

clear locations for specific documentation categories, creating consistent patterns that assist both

contributors and users in navigating extensive knowledge repositories. The documentation follows

markdown formatting specifications, ensuring uniform presentation across different viewing

platforms while supporting collaborative editing through standard version control procedures,

tracking documentation modifications alongside code alterations.

Testing frameworks and validation approaches provide organized methodologies for verifying

OpenBMC functionality across different components, configurations, and hardware platforms. The

project implements a multilayered testing strategy combining unit testing for individual components,

integration testing for subsystem interaction, and system-level testing confirming end-to-end

functionality throughout complete firmware structures. The development environment

documentation explains how the OpenBMC project utilizes multiple testing frameworks depending

upon component category and programming language, including GoogleTest for C++ components,

pytest for Python modules, and shell script-based tests for system-level validation [6]. These

frameworks integrate with construction systems through dedicated recipe categories that

automatically compile and execute tests during building processes, providing immediate feedback

regarding potential complications while maintaining comprehensive test coverage as codebases

evolve. The documentation emphasizes test-driven development methodologies, where test

implementation precedes functional coding, ensuring thorough coverage of requirements while

establishing clear validation criteria for new features and defect corrections. This systematic approach

toward testing ensures OpenBMC firmware maintains reliability and compatibility across diverse

hardware platforms and deployment scenarios, establishing a foundation for trusted operation within

critical infrastructure environments.

IV. OpenBMC Architecture and Systems Integration

The OpenBMC framework employs modular service-oriented construction, delivering distinct

separation of responsibilities while supporting adaptable composition of capabilities across varied

hardware configurations. This structural methodology utilizes systemd for service administration,

arranging capabilities into separate background processes communicating through clearly defined D-

Bus interfaces while sustaining independent operational cycles and resource limitations. Each service

delivers specific aspects of BMC functionality—including sensor observation, event recording, or

hardware regulation—with explicit interface agreements defining function signatures, property access,

and signal transmission available to other system elements. Based on extensive OpenBMC technical

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 37 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

descriptions, the framework specifically disconnects hardware-specific implementations from

essential functionality through abstractions like D-Bus interfaces and the phosphor middleware

component, which establishes the foundation of shared services supporting platform-specific

modifications [7]. This design principle generates a distinct division between universal functionality

applicable across all platforms and specialized implementations necessary for particular hardware

arrangements, enabling a systematic approach to system expansion, maintaining architectural

consistency while accommodating diverse specifications. The technical materials highlight how this

component-based methodology enables separate advancement of different system elements, allowing

intricate subsystems like cooling regulation or power administration to progress without necessitating

adjustments to unrelated components, thereby supporting both preservation of current

implementations and creation of new capabilities through clearly established extension mechanisms

within the framework.

Sensor frameworks within OpenBMC deliver a standardized methodology for hardware observation,

establishing uniform interfaces accessing diverse sensor categories while abstracting underlying

implementation specifics varying across different server platforms. The sensor architecture

implements hierarchical arrangement categorizing sensors by classification (temperature, voltage,

current, rotation speed) and position (processor, memory, power distribution, motherboard),

establishing a structured naming convention that facilitates discovery and integration with monitoring

frameworks. According to OpenBMC adaptation documentation, the sensor implementation follows a

layered methodology where hardware-specific sensor drivers connect with a generic sensor framework

through defined adaptation interfaces, enabling a consistent representation of sensor information

regardless of underlying hardware mechanisms collecting the information [8]. This adaptation

component includes compatibility with multiple sensor protocols, including IPMI-style discrete and

threshold sensors, analog sensors with various conversion algorithms, and virtual sensors deriving

measurements from multiple physical readings representing higher-level system metrics. The

technical materials specifically describe how platform adaptation projects must recognize all

applicable sensors on target hardware and establish appropriate configuration files defining sensor

classifications, thresholds, and scaling factors specific to platform components, creating a

comprehensive monitoring structure delivering visibility into all aspects of system condition through a

unified interface pattern.

Component

Layer
Primary Services Responsibility

Hardware

Abstraction

Sensor drivers, GPIO control, I²C

communication

Direct hardware interaction, Platform-

specific adaptations

Middleware
D-Bus interfaces, Event

management, State handling

Communication infrastructure, Business

logic implementation

Application
Web interfaces, CLI tools,

Protocol endpoints

User-facing management capabilities,

External system integration

Table 3: OpenBMC Architectural Components. [7]

Protocol compatibility within OpenBMC encompasses numerous industry-standard management

interfaces, including IPMI (Intelligent Platform Management Interface), PLDM (Platform Level Data

Model), and MCTP (Management Component Transport Protocol), collectively enabling

interoperability with established management applications while delivering enhanced capabilities

through modern implementations. The detailed OpenBMC overview explains how the architecture

implements these protocols as separate services operating independently while providing consistent

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 38 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

access to underlying system functionality, enabling simultaneous support for multiple management

interfaces without requiring duplication of essential implementation logic [7]. The IPMI service

delivers standard command collection while extending capabilities through specialized commands

addressing limitations in the original specification, ensuring compatibility with established

management tools while providing enhanced functionality for platforms requiring additional

capabilities beyond the standard interface. The technical materials emphasize how Redfish API

implementation delivers a contemporary RESTful interface utilizing identical underlying system

capabilities as conventional protocols, demonstrating the architecture's capability to present

consistent system functionality through different interface methodologies according to management

requirements. This multi-protocol methodology enables a gradual transition from legacy management

applications to modern interfaces without disrupting established operational procedures, providing a

migration pathway that preserves investments in established management infrastructure while

enabling the adoption of enhanced capabilities as operational requirements advance.

Platform-specific arrangements within OpenBMC establish a customization layer that adapts the

generic firmware framework to the specific requirements of different server hardware

implementations. These arrangements encompass numerous aspects, including hardware definitions,

sensor mappings, GPIO assignments, and feature activation, collectively defining the behavior of BMC

firmware on specific platforms. The OpenBMC adaptation documentation provides detailed

instructions for implementing platform support, emphasizing the importance of creating a structured

platform layer within the Yocto build system containing all hardware-specific customizations arranged

according to standard patterns, maintaining compatibility with the core architecture [8]. This includes

establishing machine configuration files defining hardware capabilities, device tree extensions

describing hardware components and interconnections, and platform-specific service configurations

enabling appropriate functionality based on available hardware features. The documentation outlines

specific customization areas, including flash memory organization definitions, serial communication

configurations, network interface parameters, and hardware control interfaces requiring adaptation

for each supported platform. This organized approach to platform specialization establishes clear

boundaries between generic and platform-specific code, supporting maintenance of both the common

framework and customizations required for specific hardware targets while enabling knowledge

transfer across platform implementations through consistent organizational patterns.

Security considerations and established practices form an essential aspect of OpenBMC architecture

and implementation, reflecting the critical function of management controllers maintaining the

security posture of server infrastructure. The security architecture implements defense-in-depth

strategies combining access restrictions, encryption, secure initialization mechanisms, and

operational integrity validation, protecting both BMC firmware itself and server hardware under

management. The comprehensive OpenBMC overview specifically addresses how architecture

implements security through multiple layers, beginning with secure boot implementations verifying

firmware integrity during the initialization process and continuing through operational protections

including resource isolation, privilege separation, and access control mechanisms, collectively

minimizing potential impact of security vulnerabilities [7]. The authentication framework leverages

PAM (Pluggable Authentication Modules), supporting multiple authentication mechanisms, including

local user databases, LDAP integration, and certificate-based authentication, providing flexible

identity verification according to operational requirements. The documentation emphasizes the

importance of secure communication channels through TLS implementation, certificate

administration, and encrypted sessions, protecting sensitive information during transmission between

management systems and BMC. These security practices address the elevated privilege level of BMC

operations, acknowledging that management controllers typically possess extensive hardware access

capabilities potentially exploitable without proper protection, making robust security implementation

a critical aspect of OpenBMC architecture.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 39 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Performance optimization techniques within OpenBMC balance resource efficiency with functional

requirements, recognizing constrained execution environments typical of BMC hardware while

delivering responsive management capabilities under varying operational conditions. These

optimizations span multiple dimensions, including memory utilization through efficient data

structures and shared libraries, processor usage through event-driven architectures minimizing

polling overhead, and input/output efficiency through batched operations and appropriate buffering

strategies, reducing system bus contention. According to OpenBMC adaptation documentation,

implementing efficient performance on resource-constrained BMC hardware requires careful

consideration of hardware capabilities during platform integration, including memory limitations,

processor performance characteristics, and input/output bandwidth constraints influencing firmware

design decisions [8]. The documentation emphasizes the importance of event-driven architectures,

minimizing resource utilization during inactive periods while maintaining responsiveness to system

events, leveraging D-Bus signal mechanisms and systemd activation patterns, loading components

only when necessary, rather than consuming resources continuously. Platform-specific performance

optimizations include sensor polling intervals customized to hardware capabilities, appropriate buffer

dimensions for communication interfaces, and customized thread priorities ensuring critical

management functions receive appropriate resources even under significant system load conditions.

These performance considerations become particularly important during platform adaptation efforts,

where generic OpenBMC functionality must accommodate specific hardware capabilities while

maintaining consistent management capabilities across diverse deployment scenarios with varying

resource availability.

Integration with hardware components represents a fundamental interface layer of OpenBMC, where

firmware functionality connects with physical server elements through various communication

channels and control interfaces. This integration encompasses multiple hardware domains, including

power regulation circuitry, thermal management systems, storage devices, network interfaces, and

platform-specific peripherals, collectively defining server management capabilities. The

comprehensive OpenBMC overview explains how the architecture implements hardware abstraction

through layered interfaces, where low-level drivers provide direct hardware access while higher-level

services interact with standardized interfaces concealing implementation details specific to particular

hardware components [7]. This approach enables consistent management functionality across diverse

hardware implementations by establishing a clear separation between hardware-specific code and

generic management logic. The documentation emphasizes the importance of standardized interfaces,

including I²C for sensor communication, IPMI for baseboard controller interaction, and GPIO for

discrete control signals, collectively providing comprehensive visibility and control of platform

hardware. These interfaces undergo further abstraction through service-oriented architectures,

exposing hardware functionality as D-Bus objects with clearly defined methods and properties,

enabling uniform access patterns regardless of underlying hardware mechanisms. This hardware

abstraction approach significantly reduces the complexity of supporting new platforms, as

implementation efforts can focus on mapping standardized interfaces to specific hardware

components rather than reimplementing entire management systems for each target environment.

V. Community Engagement and Contribution Processes

Exploring the OpenBMC upstream community demands familiarity with organizational frameworks,

correspondence pathways, and cooperative procedures collectively supporting productive involvement

within this sophisticated ecosystem. The community functions through a stratified administrative

structure encompassing a technical leadership committee, specialization groups focused on specific

technical domains, and component supervisors accountable for distinct subsystems within program

collections. This arrangement delivers transparent contribution mechanisms while guaranteeing

technical determinations undergo suitable examination from stakeholders possessing relevant

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 40 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

proficiency. According to the primary OpenBMC repository documentation, the initiative utilizes a

distributed supervision model wherein specific persons or groups maintain accountability for

particular components within program collections, establishing concentrated expertise while

distributing assessment responsibilities throughout contributor populations [9]. The repository

organization mirrors this supervision framework, with separate directories for different subsystems,

including phosphor-dbus-interfaces for interface specifications, bmcweb for browser application, and

assorted platform-specific implementations collectively delivering a comprehensive firmware

collection. The repository additionally contains infrastructure elements, including construction

scripts, arrangement documents, and continuous integration definitions, establishing a foundation for

collaborative advancement across organizational boundaries. These components collectively establish

an organized development environment wherein contributors identify applicable subsystems, locate

appropriate supervisors, and comprehend existing implementation patterns before developing

personal contributions aligning with established architectural principles.

Productive modification submission procedures within the OpenBMC initiative follow structured

methodologies ensuring contributions undergo appropriate assessment, maintain uniform quality

benchmarks, and integrate effectively into program collections without disrupting established

functionality. These procedures center around the Gerrit Code Review framework, providing a

collaborative platform for submitting, evaluating, and refining code modifications before

incorporation into the primary repository. Based on authorized OpenBMC contribution directions,

contributors should initially establish git commit verification mechanisms automatically checking

fundamental requirements, including Developer Certificate of Origin endorsement, appropriate

commit message formatting, and whitespace accuracy [10]. These verification mechanisms prevent

common submission errors while ensuring all contributions include proper attribution through signed

endorsement confirming compliance with project licensing requirements. The directions emphasize

the significance of self-contained commits implementing individual logical modifications, supporting

focused assessment while establishing a clear development chronology associating specific alterations

with the underlying purpose and implementation strategy. The contribution procedure includes

explicit requirements for commit communications, necessitating a descriptive subject line, a

comprehensive explanation clarifying both implemented modifications and underlying justification,

and appropriate categorization assisting future reference. These organized commit communications

establish a searchable development chronology, assisting supervisors and contributors in

understanding codebase evolution while providing essential background for future maintenance

activities, potentially revisiting identical program sections.

Code assessment participation methodologies within the OpenBMC community balance technical

precision with collaborative involvement, establishing constructive feedback mechanisms that

improve code quality while maintaining a supportive atmosphere for contributors across experience

levels. Effective reviewers approach submissions considering multiple dimensions, including

functional accuracy, architectural alignment, performance implications, security considerations, and

maintainability factors, collectively determining submission readiness for integration. The primary

OpenBMC repository contains extensive information regarding assessment procedures, explaining

how contributors should address feedback through incorporating suggested modifications into revised

submissions rather than debating merits within comment sections, maintaining focus on improving

code rather than defending initial implementations [9]. This improvement-centered approach

acknowledges that initial submissions rarely achieve perfection, establishing a collaborative

refinement process delivering superior quality outcomes through iterative enhancement. The

repository documentation explains how the Continuous Integration framework automatically

validates submissions against multiple assessment criteria, including successful compilation across

supported platforms, passing validation tests, and adherence to coding style guidelines, collectively

establishing minimum quality standards every submission must satisfy. These automated verifications

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 41 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

complement human assessment by addressing mechanical validation aspects, allowing the reviewer's

attention toward higher-level considerations, including architecture, security, and maintainability,

requiring human judgment and domain expertise for effective evaluation.

Documentation contributions represent a fundamental aspect of OpenBMC project participation,

establishing a knowledge foundation supporting effective development, deployment, and operation

across diverse hardware platforms. These contributions encompass multiple documentation

categories, including architecture descriptions, programming interface references, development

guides, deployment instructions, and operational procedures, collectively addressing requirements

from different audiences interacting with the project. According to contribution guidelines,

documentation should undergo submission using the identical workflow as programming

contributions, ensuring consistent quality verification while maintaining clear attribution for content

development throughout the project [10]. The guidelines particularly emphasize documentation

modifications warrant equivalent careful review as program modifications, recognizing accurate,

comprehensive documentation proves essential for project adoption and continued maintenance. The

contribution process for documentation includes specific formatting requirements utilizing

Markdown syntax, ensuring consistent presentation across different viewing platforms while

supporting version control integration, tracking documentation modifications alongside described

program code. This integration ensures documentation remains synchronized with implementation,

minimizing outdated or inaccurate information potentially mislead users or developers attempting to

understand system behavior. The guidelines explicitly encourage contributors to update

documentation simultaneously with program modifications, rather than treating documentation as a

separate, subsequent activity, establishing a development culture wherein documentation represents

an integral contribution component rather than an optional supplement.

Community resources and assistance channels provide essential infrastructure supporting knowledge

distribution, problem resolution, and collaboration throughout the OpenBMC ecosystem, enabling

both experienced and novice contributors to overcome challenges while developing collective

expertise. These resources include technical documentation repositories, development guides,

architectural descriptions, and reference implementations, establishing foundational knowledge

accessible to all community participants. The primary OpenBMC repository functions as a central

reference location for the community, containing not only essential program code but also critical

information regarding communication channels, including a mailing list for architectural discussions,

an IRC channel for immediate assistance, and an issue tracking system for defect reporting and

feature requests [9]. These communication channels establish multiple avenues supporting

contributor interaction, accommodating different communication preferences while ensuring

questions and discussions reach appropriate audiences possessing relevant expertise. The repository

provides specific information regarding development procedures, including environment

configuration instructions, build processes, and testing methodologies, collectively enabling new

contributors to establish functional development environments for creating and validating potential

contributions. This practical guidance reduces initial participation barriers by providing clear,

actionable information regarding technical prerequisites supporting effective contribution, allowing

newcomers to focus on understanding program collections and identifying potential improvement

areas rather than struggling with basic environment configuration.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 42 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Contribution

Type
Entry Requirements Progression Path

Code

Contributions

Git basics, Development

environment, Component

understanding

Bug fixes → Feature enhancements →

Subsystem redesigns → Maintainership

Documentation
Markdown knowledge, Technical

understanding, Clear writing

Corrections → User guides →

Architecture documentation →

Standards development

Review

Participation

Component familiarity, Critical

analysis, Constructive feedback

Self-review → Peer review → Subsystem

review → Architectural review

Table 4: Community Contribution Pathways. [9]

Mentorship opportunities within the OpenBMC project establish structured pathways supporting

knowledge transfer between experienced contributors and newcomers, accelerating skill development

while ensuring project continuity through successive contributor generations. These mentorship

relationships manifest through various forms, including formal programs during specific community

events, ongoing supervisor-contributor relationships through the assessment process, and informal

guidance through communication channels wherein experienced participants assist newcomers in

navigating technical challenges. The contribution guidelines specifically encourage new contributors

beginning with modest, focused modifications addressing known issues or implementing minor

enhancements, establishing manageable initial experiences, building confidence while demonstrating

basic contribution procedures [10]. This approach recognizes that contribution processes themselves

require learning beyond technical aspects of program collections, including understanding review

expectations, responding effectively to feedback, and navigating project customs regarding

communication and collaboration. The guidelines emphasize that questions remain welcome

throughout the contribution process, establishing an environment wherein newcomers seek assistance

when encountering obstacles rather than becoming discouraged through initial challenges. This

supportive approach reflects project recognition that expanding the contributor community requires

deliberate inclusion efforts, reducing participation barriers while providing constructive pathways

supporting skill development, enabling increasingly sophisticated contributions over time.

Pathways toward component supervision within the OpenBMC project establish progression routes

from initial contribution through increasing responsibility toward eventual subsystem ownership,

creating clear advancement opportunities for dedicated contributors seeking deeper project

involvement. This progression typically begins with consistent contribution toward specific

subsystems, demonstrating both technical capability and sustained commitment toward project

improvement over extended periods. The primary OpenBMC repository contains MAINTAINERS

documentation recording current supervision assignments across different project components,

establishing clear contact points while providing transparency regarding project leadership structure

[9]. This documentation creates visibility into potential contribution areas wherein additional

supervisors might prove necessary, assisting contributors in identifying subsystems where sustained

involvement could eventually lead to supervision opportunities. The repository structure itself

facilitates specialized contributions through organizing program code into discrete components with

clear boundaries, enabling contributors to develop concentrated expertise within particular areas

while participating in a broader project ecosystem through interfaces and shared infrastructure. This

modular approach creates natural specialization opportunities wherein contributors progressively

assume greater responsibility for specific components based upon demonstrated expertise and

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 43 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

consistent participation within related development activities. The distributed supervision structure

throughout the project ensures advancement opportunities remain available across different technical

domains, accommodating diverse interests and skill sets while maintaining comprehensive coverage

throughout the entire program collection through collective expertise distributed across supervisor

teams.

Conclusion

The OpenBMC environment constitutes an essential element within contemporary server

infrastructure, delivering standardized administration capabilities across heterogeneous equipment

configurations while supporting customization for particular implementation requirements. The

trajectories described throughout this discourse establish organized progression pathways from

preliminary skill acquisition through environment configuration toward dynamic community

involvement, addressing substantial knowledge obstacles historically restricting contributor

populations for this fundamental firmware collection. Through delivering thorough guidance

regarding both technical prerequisites and community engagement procedures, the manuscript

creates accessible orientation pathways, potentially expanding and diversifying OpenBMC developer

populations. This broadened participation directly strengthens resilience, functionality, and

protection within OpenBMC firmware through expanded evaluation coverage, varied implementation

perspectives, and comprehensive testing across different deployment scenarios. The integration

between technical profundity and community participation described throughout the manuscript

establishes groundwork supporting sustainable ecosystem advancement, benefiting individual

contributors pursuing specialized expertise alongside broader data center industries increasingly

reliant upon sophisticated, dependable administration controllers supporting efficient infrastructure

operation.

References

[1] OpenBMC, "Defining a Standard Baseboard Management Controller Firmware Stack," OpenBMC

Project. [Online]. Available: https://www.openbmc.org/

[2] Open BMC, "A Linux Foundation Project open-source Baseboard Management Controllers (BMC)

Firmware Stack," GitHub. [Online]. Available: https://github.com/openbmc

[3] Tian Fang, "Introducing 'OpenBMC': an open software framework for next-generation system

management," Engineering at Meta, 2015. [Online]. Available:

https://engineering.fb.com/2015/03/10/open-source/introducing-openbmc-an-open-software-

framework-for-next-generation-system-management/

[4] Jakub Wincenciak, "Yocto Linux- Build Your Own Embedded Linux Distribution," SOMCO, 2022.

[Online]. Available: https://somcosoftware.com/en/blog/yocto-linux-build-your-own-embedded-

linux-distribution

[5] OpenBMC Project, "OpenBMC documentation," OpenBMC Gerrit Repository, 2023. [Online].

Available:

https://gerrit.openbmc.org/plugins/gitiles/openbmc/docs/+/73266974f2d7904ea5132f11f18393e8ac

ccacb1/README.md

[6] OpenBMC Project, "OpenBMC Development Environment," OpenBMC Gerrit Repository, 2023.

[Online]. Available:

https://gerrit.openbmc.org/plugins/gitiles/openbmc/docs/+/692765c2ed9f1dc2e9123a268212b9a98

1457e7b/development/dev-environment.md

https://www.openbmc.org/
https://github.com/openbmc
https://engineering.fb.com/2015/03/10/open-source/introducing-openbmc-an-open-software-framework-for-next-generation-system-management/
https://engineering.fb.com/2015/03/10/open-source/introducing-openbmc-an-open-software-framework-for-next-generation-system-management/
https://somcosoftware.com/en/blog/yocto-linux-build-your-own-embedded-linux-distribution
https://somcosoftware.com/en/blog/yocto-linux-build-your-own-embedded-linux-distribution
https://gerrit.openbmc.org/plugins/gitiles/openbmc/docs/+/73266974f2d7904ea5132f11f18393e8acccacb1/README.md
https://gerrit.openbmc.org/plugins/gitiles/openbmc/docs/+/73266974f2d7904ea5132f11f18393e8acccacb1/README.md
https://gerrit.openbmc.org/plugins/gitiles/openbmc/docs/+/692765c2ed9f1dc2e9123a268212b9a981457e7b/development/dev-environment.md
https://gerrit.openbmc.org/plugins/gitiles/openbmc/docs/+/692765c2ed9f1dc2e9123a268212b9a981457e7b/development/dev-environment.md

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 44 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

[7] Lei YU, "OpenBMC overview," IBM Developer, 2020. [Online]. Available:

https://developer.ibm.com/articles/openbmc-overview/

[8] Saravanan Palanisamy, "OpenBMC Introduction and Porting Guide," FOSDEM 2021,2021.

[Online]. Available:

https://archive.fosdem.org/2021/schedule/event/firmware_oiapg/attachments/slides/4633/export/

events/attachments/firmware_oiapg/slides/4633/OpenBMC_Intro_Porting_Guide_FOSDEM_2021

_SaravananPalanisamy.pdf

[9] Brad Bishop, "OCP SUMMIT," GitHub, OpenBMC Project, 2018. [Online]. Available:

https://www.opencompute.org/files/OCP18-OpenBMC-State-of-Development.pdf

[10] OpenBMC Project, "Contributing to OpenBMC," OpenBMC Documentation. [Online]. Available:

https://gerrit.openbmc.org/plugins/gitiles/openbmc/docs/+/HEAD/CONTRIBUTING.md

https://developer.ibm.com/articles/openbmc-overview/
https://archive.fosdem.org/2021/schedule/event/firmware_oiapg/attachments/slides/4633/export/events/attachments/firmware_oiapg/slides/4633/OpenBMC_Intro_Porting_Guide_FOSDEM_2021_SaravananPalanisamy.pdf
https://archive.fosdem.org/2021/schedule/event/firmware_oiapg/attachments/slides/4633/export/events/attachments/firmware_oiapg/slides/4633/OpenBMC_Intro_Porting_Guide_FOSDEM_2021_SaravananPalanisamy.pdf
https://archive.fosdem.org/2021/schedule/event/firmware_oiapg/attachments/slides/4633/export/events/attachments/firmware_oiapg/slides/4633/OpenBMC_Intro_Porting_Guide_FOSDEM_2021_SaravananPalanisamy.pdf
https://www.opencompute.org/files/OCP18-OpenBMC-State-of-Development.pdf
https://gerrit.openbmc.org/plugins/gitiles/openbmc/docs/+/HEAD/CONTRIBUTING.md

