Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Pathways to Becoming an OpenBMC Developer: Skills, Tools,
and Community Integration

Maheswara Kurapati

Independent Researcher, USA

ARTICLE INFO ABSTRACT

Received:01 Sept 2025 This discourse establishes methodical trajectories for engineers and technical specialists

seeking competence in OpenBMC advancement. The text examines core technical

abilities necessary for productive involvement, encompassing Linux kernel

Accepted:15 Oct 2025 programming, Yocto construction framework proficiency, and interaction protocols
fundamental for baseboard administration controllers. The manuscript elaborates
configuration procedures for development settings, equipment simulation approaches,
and troubleshooting methodologies, jointly facilitating productive firmware creation
without necessitating tangible equipment access. The discussion investigates
OpenBMC's component-based structure, including service arrangement, monitoring
frameworks, and protocol compatibility, establishing an adaptable groundwork for
platform-specific customization while preserving uniform administration interfaces.
The exposition additionally considers community participation procedures, including
contribution workflows, evaluation involvement, and guidance prospects supporting
knowledge dissemination between veteran contributors and newcomers. Through
organized explanation covering both technical prerequisites and community practices,
the manuscript provides extensive progression planning supporting valuable
contributions toward this essential open-source firmware environment.

Revised:05 Oct 2025

Keywords: Baseboard Management Controller (BMC), Firmware
Development, Yocto Build System, Server Management, Open Source
Collaboration

1. Introduction

The development of OpenBMC marks a transformative advancement in server control technology,
delivering an open-source firmware foundation specifically crafted for Baseboard Management
Controllers within contemporary server architectures. This joint initiative satisfies the pressing
requirement for standardized, transparent, and expandable firmware options capable of
administering increasingly intricate server equipment across varied implementation environments [1].
According to documentation from the OpenBMC Project, the goal centers on establishing a highly
adaptable structure for BMC execution that delivers uniform management interfaces while
accommodating particular specifications of varied hardware configurations. The fundamental
principle underlying OpenBMC highlights community-based advancement, with source code
preserved under an accommodating Apache 2.0 license, enabling widespread commercial and non-
commercial implementation throughout the industry.

The landscape of data center infrastructure undergoes continuous transformation, propelled by
requirements for greater computational concentration, superior power conservation, and improved
Reliability, Availability, and Serviceability. Such progression has generated considerable difficulties
regarding hardware administration complexity, as current server platforms feature sophisticated
power regulation mechanisms, intricate thermal management solutions, and complex sensor
arrangements necessitating specialized firmware approaches. The diversity of server hardware
configurations, spanning conventional architectures to proprietary silicon designs, intensifies these
difficulties by requiring adaptable management interfaces compatible with heterogeneous hardware
environments. Examination of the OpenBMC GitHub repository reveals this intricacy through its

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 30
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

comprehensive collection of code bases addressing numerous facets of BMC operation, including
system processes, sensor observation structures, and platform-specific implementations
accommodating detailed requirements of distinct server designs [2]. Such a modular organization
allows developers to modify individual elements without necessitating a thorough comprehension of
the entire code structure, thereby enabling focused contributions while preserving system integration.

The sophistication characterizing modern data center hardware has subsequently generated a
substantial need for specialists possessing expertise in OpenBMC advancement. This requirement
extends across numerous commercial sectors, from cloud-based service operators aiming to enhance
infrastructure administration to equipment manufacturers seeking customized BMC implementations
for their server products. The knowledge requirements for productive OpenBMC development—
encompassing embedded Linux frameworks, Yocto construction systems, and various hardware
interaction protocols including IPMI, Redfish, and MCTP—constitute significant obstacles for
potential participants. The OpenBMC initiative addresses these challenges through extensive
instructional materials, including preliminary guides, structural summaries, and contribution
procedures, providing organized access points for developers with differing proficiency levels [1].
Furthermore, the community sustains dynamic correspondence lists, immediate communication
channels, and scheduled technical consultations, facilitating information dissemination and
collaborative resolution among contributors.

This article tackles these impediments by establishing a thorough progression path for engineers and
technical enthusiasts pursuing competency in OpenBMC development. Through the delivery of a
methodical approach toward acquiring essential technical foundations, arranging development
settings, and participating with the OpenBMC community, the article aims to expedite the integration
process for new contributors while ensuring the acquisition of solid capabilities required for
meaningful ecosystem participation. The extensive documentation within OpenBMC repositories
demonstrates that successful contributors must cultivate familiarity with project coding conventions,
testing frameworks, and review methodologies to navigate the contribution process effectively [2].
This includes comprehension of automated integration pipelines that validate submissions against
established quality standards, guaranteeing new code maintains compatibility with existing
implementations while adhering to security guidelines.

The OpenBMC ecosystem comprises numerous components collectively enabling advanced server
management functions, including power regulation, sensor observation, event documentation, and
remote operation access. These capabilities prove essential for maintaining operational effectiveness
within modern data centers, where physical access to server equipment remains limited and
automated management systems grow increasingly vital. The implementation of industry-standard
protocols, including IPMI, Redfish API, PLDM, and MCTP, ensures interoperability with established
management applications while introducing enhanced capabilities through its contemporary service-
oriented structure [1]. This compatibility receives additional reinforcement through rigorous testing
infrastructure, incorporating both component-level evaluations and integration assessments, verifying
complete system functionality across diverse hardware arrangements and usage environments [2]. By
reducing entrance barriers for OpenBMC development, this article seeks to encourage a more
inclusive and extensive contributor community, ultimately improving stability, security, and
functionality of this critical infrastructure element.

II. Foundational Technical Skills

Achieving expertise in OpenBMC demands proficiency across numerous interconnected technical
disciplines forming the bedrock of BMC firmware creation. Central to these prerequisites stands
comprehensive knowledge regarding Linux kernel development basics. The OpenBMC architecture
utilizes the Linux kernel for its operational foundation, requiring thorough familiarity with kernel

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 31
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

structure, driver design/layout, and system interface mechanisms. Contributors need a clear
understanding of kernel interactions with physical components via device drivers, resource allocation
techniques, and task scheduling within restricted embedded environments. Such expertise
encompasses configuration parameters relevant for BMC functions, particularly supporting
specialized hardware protocols including 12C, SPI, GPIO, I3C, PCle, LTPI, eSPI, LPC, and UART,
facilitating server component communications. According to initial OpenBMC publications, the
framework emerged deliberately to establish an integrated, Linux-centered ecosystem addressing
limitations found in closed-source BMC solutions while enabling standardized system administration
approaches benefiting from Linux kernel stability and adaptability [3]. The component-based nature
present in both Linux kernel design and OpenBMC structure creates inherent compatibility, allowing
programmers to allowing developers to develop the manageability feature as an independent module
and integrate it into the OpenBMC framework.

Primary

Skill Category Components

Application in OpenBMC

Linux kernel, Device Hardware abstraction layers, Driver

System Programmin . .
¥ g & trees, C/C++ development, Boot sequence implementation

Yocto Project, BitBake, | Cross-compilation toolchains, Package

Build Systems ..
Layers management, Platform customization

Communication D-Bus, IPMI, PLDM Service interfaces, Hardware.: .n?onitoring,

Protocols Remote management capabilities

Table 1: Core Technical Skills for OpenBMC Development. [3, 4]

The Yocto Project construction system functions as the cornerstone for developing specialized Linux
distributions precisely crafted for BMC hardware configurations. OpenBMC employs this meta-build
framework to coordinate dependencies, perform cross-compilation of components for targeted
architectures, and produce uniform firmware packages across varied hardware implementations.
Programmers require an understanding of Yocto's layering methodology, wherein functionality exists
in separate modules selectively incorporated based on platform-specific requirements. This includes
proficiency with BitBake scripts defining how individual software elements undergo building,
packaging, and incorporation into completed system images. Yocto Project reference materials explain
how the build architecture revolves around fundamental concepts, including recipes, classes, and
configurations, jointly establishing complete build environments capable of generating customized
Linux distributions for embedded applications with exact control over package inclusion, system
parameters, and hardware compatibility [4]. The Yocto Project's focus on consistency ensures
OpenBMC builds maintain uniformity across development environments, supporting collaboration
between contributors while preserving the stability of firmware releases destined for production
environments.

Device tree configuration knowledge represents another fundamental capability for OpenBMC
development, particularly when introducing support for new hardware platforms or expanding
existing implementations. The device tree provides an organized methodology for describing
hardware components, connection patterns, and configuration settings platform-independently.
Within OpenBMC contexts, device trees specify essential elements including flash memory
organization, communication pathways, GPIO assignments, and sensor arrangements requiring
firmware management. Early OpenBMC implementations highlighted hardware abstraction
importance through device trees by creating common methodologies for defining server hardware

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 32
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

elements standardized across multiple platforms while supporting specific implementation variations,
thereby establishing adaptable yet consistent hardware description frameworks scaling across diverse
server designs [3]. This abstraction mechanism substantially decreases development requirements
when supporting new hardware platforms by allowing developers to concentrate on platform-specific
adjustments rather than recreating core functionality for each target environment.

D-Bus communication framework constitutes the central structure of OpenBMC's service-oriented
architecture, enabling inter-process communication between various firmware elements. This
messaging system facilitates structured interaction between system services while preserving clear
interface boundaries and dependency administration. OpenBMC developers require an understanding
of D-Bus principles, including service activation, object paths, interfaces, and methods, collectively
establishing the communication protocol between components. Initial OpenBMC frameworks
established D-Bus as the primary communication pathway between system services, implementing a
scalable architecture where additional functionality could be introduced through separate services
interacting via well-defined interfaces, enabling modular approaches to system administration that
characterize the project [3]. This service-centered architecture establishes natural divisions between
components, supporting parallel development activities while ensuring individual services evolve
independently without disrupting overall system operation, provided they maintain compatibility with
their established D-Bus interfaces.

C and C++ programming expertise tailored for embedded applications represents the principal
implementation languages for OpenBMC development. These languages deliver necessary
performance characteristics and low-level hardware accessibility required for firmware components
while providing structured programming methodologies for complex system design. Developers
require an understanding of memory management considerations specific to resource-limited BMC
environments, including static allocation techniques, stack utilization optimization, and efficient data
structures minimizing fragmentation. When developing embedded Linux distributions using Yocto,
programmers must implement component-specific optimizations utilizing C and C++, accounting for
the limited resources available in typical BMC hardware environments, including restrictions affecting
memory, processing capability, and storage capacity, necessitating careful consideration of resource
utilization and performance optimization throughout development cycles [4]. These limitations
frequently demand specialized programming strategies balancing functionality against resource
consumption, especially for components requiring responsive performance under variable system
loads.

Python competency supplements lower-level programming skills by facilitating efficient automation,
testing, and tool development within OpenBMC ecosystems. The language fulfills multiple roles in
development workflows, including build automation, test implementation, and management interface
creation. Contributors require an understanding of Python's object-oriented features, package
management, and integration with system interfaces through specialized libraries, including libdbus-
python for D-Bus communication and libgpiod for hardware interaction. Yocto build environments
extensively utilize Python for build automation, recipe processing, and dependency management,
making language proficiency essential for developers needing to customize build processes for specific
OpenBMC implementations or resolve issues during build operations [4]. Python's function within
OpenBMC ecosystems extends beyond build systems to include testing frameworks, configuration
utilities, and simulation environments, collectively enhancing development experiences while
ensuring contributed code quality.

Git version control and collaboration methodologies establish procedural foundations for effective
participation in OpenBMC projects. Beyond basic Git operations, developers require an understanding
of branching strategies, rebasing techniques, and patch management approaches, aligning with
project contribution guidelines. This includes familiarity with Gerrit Code Review, the platform

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 33
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

utilized by OpenBMC for collaborative code review and approval procedures. Since project inception,
OpenBMC has established structured contribution processes centered around Git workflows, ensuring
proper code review, testing, and integration while maintaining quality standards across distributed
developer communities [3]. The process around these workflows consists of continuous integration
systems that automatically validate contributions against the compliance check, build verification, and
test suites to ensure it is possible to contribute while maintaining the compatibility of their
contributions with the existing codebases and while being within the project quality and
documentation standards. OpenBMC communities adopt Git in common, which allows knowledge-
sharing between projects and enables developers already familiar with other open-source projects to
comfortably adjust to anything specific to OpenBMC contribution.

II1. Development Environment Setup and Tools

Creating a productive development workspace represents an essential initial phase for prospective
OpenBMC participants, demanding precise arrangement of computing assets, application
prerequisites, and compiler elements. A thorough OpenBMC development configuration typically
commences with a Linux-centered host arrangement, ideally operating a contemporary distribution
offering robust software administration capabilities. This groundwork must accommodate the
installation of fundamental development applications, including compiler collections, construction
automation instruments, and code management frameworks, forming the foundation for OpenBMC
development procedures. The workspace preparation sequence involves setting up the Yocto Project
construction framework with suitable layer depositories, determining hardware specifications, and
implementing workspace organization practices supporting simultaneous development across
multiple system aspects. Based on formal OpenBMC instructional materials, programmers should
initiate by replicating the OpenBMC repository and establishing necessary construction prerequisites,
comprising packages like git, build-essential, and python3, alongside particular dependencies
mandated by the Yocto construction framework [5]. The guidance emphasizes adopting systematic
procedures for environment arrangement, including establishing appropriate processor-specific
compiler chains and configuring terminal variables defining target platforms through the
TEMPLATECONF environment parameter, which references machine-specific arrangement
directories containing required customizations for diverse hardware targets.

Hardware simulation through QEMU (Quick Emulator) offers a crucial methodology for OpenBMC
advancement, permitting software evaluation and confirmation without necessitating physical contact
with destination server platforms. This simulation layer establishes virtual BMC equipment executing
the OpenBMC firmware collection within an isolated context, allowing programmers to verify
operation, evaluate new capabilities, and diagnose complications without hardware constraints. The
QEMU-centered approach accommodates various simulation targets representing common BMC
architectures, including ARM and x86 platforms with virtualized input/output interfaces imitating
hardware components like sensors, GPIOs, and communication channels. The authorized OpenBMC
development environment documentation provides comprehensive guidance for utilizing QEMU with
the gemu-system-arm instruction, arranging suitable parameters including machine classification,
kernel image position, and initramfs pathways, collectively establishing the virtual BMC environment
[6]. The instructions detail how programmers should configure networking for the simulated
environment, creating connections between host systems and virtualized BMCs, enabling evaluation
of management interfaces through standard protocols while delivering console admission for
monitoring system activities and troubleshooting complications during advancement.

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 34
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article
Component Function Implementation Approach
. . Code compilation, Image | Containerized setup with Yocto dependencies,
Build Environment .
generation Shared download caches
. Hardware simulation, QEMU with custom machine definitions,
Emulation Tools . . .
Testing Virtual hardware interfaces
Debugging Issue identification, GDB remote debugging, Serial console
Infrastructure Resolution logging, Memory analysis tools

Table 2: Development Environment Components. [6]

Debugging procedures and instruments particular to embedded firmware advancement constitute a
fundamental component within the OpenBMC programmer's toolkit, facilitating methodical
identification and resolution of complications throughout the firmware structure. Successful
debugging approaches combine conventional software debugging techniques with specialized
procedures for embedded frameworks, including serial console recording, JTAG interface debugging,
and memory examination tools providing visibility into system activities during operation. The
OpenBMC documentation describes several debugging strategies, with particular emphasis on console
admission through both serial interfaces and network connections, offering visibility into system
initialization sequences, service activation, and operational behavior through organized logging
frameworks [5]. These recording systems classify messages by importance levels and component
identifiers, supporting focused troubleshooting through filtering mechanisms that isolate pertinent
information from comprehensive log streams. The documentation additionally explains enabling
debug compilations with decreased optimization levels and supplementary instrumentation,
facilitating operational examination while providing more descriptive error notifications, and
accelerating troubleshooting procedures.

Cross-compilation considerations influence every dimension of OpenBMC advancement, reflecting
the basic reality that development transpires on host frameworks with different architectures and
capabilities than destination BMC equipment. This architectural distinction necessitates specialized
compiler chains capable of generating executable programs for target platforms while operating on
development hosts, requiring careful administration of compiler configurations, library dependencies,
and construction system parameters, ensuring consistent outcomes. The OpenBMC development
environment documentation explains how construction systems automatically establish suitable
cross-compilation toolchains through Yocto frameworks, generating target-specific compilers, linkers,
and associated instruments during initial construction processes [6]. These toolchains subsequently
function consistently throughout construction frameworks, ensuring all components undergo
compilation with compatible options and linking against appropriate libraries for destination
platforms. The documentation clarifies how programmers can access these toolchains directly when
operating outside construction frameworks, using environment configuration scripts to establish shell
environments with suitable pathways and variables, enabling direct compilation of components with
correct cross-compiler configurations.

Continuous integration practices establish procedural foundations for OpenBMC development
processes, guaranteeing contributions maintain quality standards through automated validation
against established criteria before integration into codebases. The project implements a
comprehensive CI pipeline automatically triggering upon submission of modifications to code review
systems, performing validation sequences including style verification, static analysis, construction
confirmation, and test execution across multiple target arrangements. The OpenBMC documentation
describes integration between the Gerrit code review system and the Jenkins automation server,
collectively implementing continuous integration procedures, explaining how submitted modifications
undergo automatic testing against multiple validation standards, including coding practice

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 35
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

compliance, successful compilation across supported platforms, and satisfactory unit tests verifying
functional accuracy [5]. This automation delivers immediate response to contributors regarding
potential complications in submissions, establishing rapid iteration cycles, improving code quality
while diminishing manual review requirements for project administrators. The documentation
specifies how contributors should interpret CI outcomes, addressing common failure scenarios and
troubleshooting strategies, and resolving issues identified during automated validation.

Documentation standards within OpenBMC projects establish uniform approaches toward knowledge
preservation and distribution, guaranteeing complex systems remain accessible to new contributors
while offering comprehensive reference materials for experienced programmers. The documentation
ecosystem encompasses multiple tiers, including code-level documentation through structured
annotations, component-level documentation describing service architecture and interfaces, and
system-level documentation covering overall firmware composition, construction procedures, and
deployment considerations. The project's principal documentation repository functions as a central
reference location for contributors, implementing a structured organization categorizing information
across topic areas, including development processes, architecture descriptions, user guides, and
administrative procedures [5]. This organization facilitates information discovery while establishing
clear locations for specific documentation categories, creating consistent patterns that assist both
contributors and users in navigating extensive knowledge repositories. The documentation follows
markdown formatting specifications, ensuring uniform presentation across different viewing
platforms while supporting collaborative editing through standard version control procedures,
tracking documentation modifications alongside code alterations.

Testing frameworks and validation approaches provide organized methodologies for verifying
OpenBMC functionality across different components, configurations, and hardware platforms. The
project implements a multilayered testing strategy combining unit testing for individual components,
integration testing for subsystem interaction, and system-level testing confirming end-to-end
functionality throughout complete firmware structures. The development environment
documentation explains how the OpenBMC project utilizes multiple testing frameworks depending
upon component category and programming language, including GoogleTest for C++ components,
pytest for Python modules, and shell script-based tests for system-level validation [6]. These
frameworks integrate with construction systems through dedicated recipe categories that
automatically compile and execute tests during building processes, providing immediate feedback
regarding potential complications while maintaining comprehensive test coverage as codebases
evolve. The documentation emphasizes test-driven development methodologies, where test
implementation precedes functional coding, ensuring thorough coverage of requirements while
establishing clear validation criteria for new features and defect corrections. This systematic approach
toward testing ensures OpenBMC firmware maintains reliability and compatibility across diverse
hardware platforms and deployment scenarios, establishing a foundation for trusted operation within
critical infrastructure environments.

IV. OpenBMC Architecture and Systems Integration

The OpenBMC framework employs modular service-oriented construction, delivering distinct
separation of responsibilities while supporting adaptable composition of capabilities across varied
hardware configurations. This structural methodology utilizes systemd for service administration,
arranging capabilities into separate background processes communicating through clearly defined D-
Bus interfaces while sustaining independent operational cycles and resource limitations. Each service
delivers specific aspects of BMC functionality—including sensor observation, event recording, or
hardware regulation—with explicit interface agreements defining function signatures, property access,
and signal transmission available to other system elements. Based on extensive OpenBMC technical

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 36
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

descriptions, the framework specifically disconnects hardware-specific implementations from
essential functionality through abstractions like D-Bus interfaces and the phosphor middleware
component, which establishes the foundation of shared services supporting platform-specific
modifications [7]. This design principle generates a distinct division between universal functionality
applicable across all platforms and specialized implementations necessary for particular hardware
arrangements, enabling a systematic approach to system expansion, maintaining architectural
consistency while accommodating diverse specifications. The technical materials highlight how this
component-based methodology enables separate advancement of different system elements, allowing
intricate subsystems like cooling regulation or power administration to progress without necessitating
adjustments to unrelated components, thereby supporting both preservation of current
implementations and creation of new capabilities through clearly established extension mechanisms
within the framework.

Sensor frameworks within OpenBMC deliver a standardized methodology for hardware observation,
establishing uniform interfaces accessing diverse sensor categories while abstracting underlying
implementation specifics varying across different server platforms. The sensor architecture
implements hierarchical arrangement categorizing sensors by classification (temperature, voltage,
current, rotation speed) and position (processor, memory, power distribution, motherboard),
establishing a structured naming convention that facilitates discovery and integration with monitoring
frameworks. According to OpenBMC adaptation documentation, the sensor implementation follows a
layered methodology where hardware-specific sensor drivers connect with a generic sensor framework
through defined adaptation interfaces, enabling a consistent representation of sensor information
regardless of underlying hardware mechanisms collecting the information [8]. This adaptation
component includes compatibility with multiple sensor protocols, including IPMI-style discrete and
threshold sensors, analog sensors with various conversion algorithms, and virtual sensors deriving
measurements from multiple physical readings representing higher-level system metrics. The
technical materials specifically describe how platform adaptation projects must recognize all
applicable sensors on target hardware and establish appropriate configuration files defining sensor
classifications, thresholds, and scaling factors specific to platform components, creating a
comprehensive monitoring structure delivering visibility into all aspects of system condition through a
unified interface pattern.

Component
Primary Services Responsibili
Layer Ty P ty
Hardware Sensor drivers, GPIO control, I2C | Direct hardware interaction, Platform-
Abstraction communication specific adaptations
. D-Bus interfaces, Event Communication infrastructure, Business
Middleware . .. .
management, State handling logic implementation
— Web interfaces, CLI tools, User-facing management capabilities,
Application . . .
Protocol endpoints External system integration

Table 3: OpenBMC Architectural Components. [7]

Protocol compatibility within OpenBMC encompasses numerous industry-standard management
interfaces, including IPMI (Intelligent Platform Management Interface), PLDM (Platform Level Data
Model), and MCTP (Management Component Transport Protocol), collectively enabling
interoperability with established management applications while delivering enhanced capabilities
through modern implementations. The detailed OpenBMC overview explains how the architecture
implements these protocols as separate services operating independently while providing consistent

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 37
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

access to underlying system functionality, enabling simultaneous support for multiple management
interfaces without requiring duplication of essential implementation logic [7]. The IPMI service
delivers standard command collection while extending capabilities through specialized commands
addressing limitations in the original specification, ensuring compatibility with established
management tools while providing enhanced functionality for platforms requiring additional
capabilities beyond the standard interface. The technical materials emphasize how Redfish API
implementation delivers a contemporary RESTful interface utilizing identical underlying system
capabilities as conventional protocols, demonstrating the architecture's capability to present
consistent system functionality through different interface methodologies according to management
requirements. This multi-protocol methodology enables a gradual transition from legacy management
applications to modern interfaces without disrupting established operational procedures, providing a
migration pathway that preserves investments in established management infrastructure while
enabling the adoption of enhanced capabilities as operational requirements advance.

Platform-specific arrangements within OpenBMC establish a customization layer that adapts the
generic firmware framework to the specific requirements of different server hardware
implementations. These arrangements encompass numerous aspects, including hardware definitions,
sensor mappings, GPIO assignments, and feature activation, collectively defining the behavior of BMC
firmware on specific platforms. The OpenBMC adaptation documentation provides detailed
instructions for implementing platform support, emphasizing the importance of creating a structured
platform layer within the Yocto build system containing all hardware-specific customizations arranged
according to standard patterns, maintaining compatibility with the core architecture [8]. This includes
establishing machine configuration files defining hardware capabilities, device tree extensions
describing hardware components and interconnections, and platform-specific service configurations
enabling appropriate functionality based on available hardware features. The documentation outlines
specific customization areas, including flash memory organization definitions, serial communication
configurations, network interface parameters, and hardware control interfaces requiring adaptation
for each supported platform. This organized approach to platform specialization establishes clear
boundaries between generic and platform-specific code, supporting maintenance of both the common
framework and customizations required for specific hardware targets while enabling knowledge
transfer across platform implementations through consistent organizational patterns.

Security considerations and established practices form an essential aspect of OpenBMC architecture
and implementation, reflecting the critical function of management controllers maintaining the
security posture of server infrastructure. The security architecture implements defense-in-depth
strategies combining access restrictions, encryption, secure initialization mechanisms, and
operational integrity validation, protecting both BMC firmware itself and server hardware under
management. The comprehensive OpenBMC overview specifically addresses how architecture
implements security through multiple layers, beginning with secure boot implementations verifying
firmware integrity during the initialization process and continuing through operational protections
including resource isolation, privilege separation, and access control mechanisms, collectively
minimizing potential impact of security vulnerabilities [7]. The authentication framework leverages
PAM (Pluggable Authentication Modules), supporting multiple authentication mechanisms, including
local user databases, LDAP integration, and certificate-based authentication, providing flexible
identity verification according to operational requirements. The documentation emphasizes the
importance of secure communication channels through TLS implementation, certificate
administration, and encrypted sessions, protecting sensitive information during transmission between
management systems and BMC. These security practices address the elevated privilege level of BMC
operations, acknowledging that management controllers typically possess extensive hardware access
capabilities potentially exploitable without proper protection, making robust security implementation
a critical aspect of OpenBMC architecture.

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 38
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Performance optimization techniques within OpenBMC balance resource efficiency with functional
requirements, recognizing constrained execution environments typical of BMC hardware while
delivering responsive management capabilities under varying operational conditions. These
optimizations span multiple dimensions, including memory utilization through efficient data
structures and shared libraries, processor usage through event-driven architectures minimizing
polling overhead, and input/output efficiency through batched operations and appropriate buffering
strategies, reducing system bus contention. According to OpenBMC adaptation documentation,
implementing efficient performance on resource-constrained BMC hardware requires careful
consideration of hardware capabilities during platform integration, including memory limitations,
processor performance characteristics, and input/output bandwidth constraints influencing firmware
design decisions [8]. The documentation emphasizes the importance of event-driven architectures,
minimizing resource utilization during inactive periods while maintaining responsiveness to system
events, leveraging D-Bus signal mechanisms and systemd activation patterns, loading components
only when necessary, rather than consuming resources continuously. Platform-specific performance
optimizations include sensor polling intervals customized to hardware capabilities, appropriate buffer
dimensions for communication interfaces, and customized thread priorities ensuring critical
management functions receive appropriate resources even under significant system load conditions.
These performance considerations become particularly important during platform adaptation efforts,
where generic OpenBMC functionality must accommodate specific hardware capabilities while
maintaining consistent management capabilities across diverse deployment scenarios with varying
resource availability.

Integration with hardware components represents a fundamental interface layer of OpenBMC, where
firmware functionality connects with physical server elements through various communication
channels and control interfaces. This integration encompasses multiple hardware domains, including
power regulation circuitry, thermal management systems, storage devices, network interfaces, and
platform-specific peripherals, collectively defining server management capabilities. The
comprehensive OpenBMC overview explains how the architecture implements hardware abstraction
through layered interfaces, where low-level drivers provide direct hardware access while higher-level
services interact with standardized interfaces concealing implementation details specific to particular
hardware components [7]. This approach enables consistent management functionality across diverse
hardware implementations by establishing a clear separation between hardware-specific code and
generic management logic. The documentation emphasizes the importance of standardized interfaces,
including I2C for sensor communication, IPMI for baseboard controller interaction, and GPIO for
discrete control signals, collectively providing comprehensive visibility and control of platform
hardware. These interfaces undergo further abstraction through service-oriented architectures,
exposing hardware functionality as D-Bus objects with clearly defined methods and properties,
enabling uniform access patterns regardless of underlying hardware mechanisms. This hardware
abstraction approach significantly reduces the complexity of supporting new platforms, as
implementation efforts can focus on mapping standardized interfaces to specific hardware
components rather than reimplementing entire management systems for each target environment.

V. Community Engagement and Contribution Processes

Exploring the OpenBMC upstream community demands familiarity with organizational frameworks,
correspondence pathways, and cooperative procedures collectively supporting productive involvement
within this sophisticated ecosystem. The community functions through a stratified administrative
structure encompassing a technical leadership committee, specialization groups focused on specific
technical domains, and component supervisors accountable for distinct subsystems within program
collections. This arrangement delivers transparent contribution mechanisms while guaranteeing
technical determinations undergo suitable examination from stakeholders possessing relevant

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 39
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

proficiency. According to the primary OpenBMC repository documentation, the initiative utilizes a
distributed supervision model wherein specific persons or groups maintain accountability for
particular components within program collections, establishing concentrated expertise while
distributing assessment responsibilities throughout contributor populations [9]. The repository
organization mirrors this supervision framework, with separate directories for different subsystems,
including phosphor-dbus-interfaces for interface specifications, bmcweb for browser application, and
assorted platform-specific implementations collectively delivering a comprehensive firmware
collection. The repository additionally contains infrastructure elements, including construction
scripts, arrangement documents, and continuous integration definitions, establishing a foundation for
collaborative advancement across organizational boundaries. These components collectively establish
an organized development environment wherein contributors identify applicable subsystems, locate
appropriate supervisors, and comprehend existing implementation patterns before developing
personal contributions aligning with established architectural principles.

Productive modification submission procedures within the OpenBMC initiative follow structured
methodologies ensuring contributions undergo appropriate assessment, maintain uniform quality
benchmarks, and integrate effectively into program collections without disrupting established
functionality. These procedures center around the Gerrit Code Review framework, providing a
collaborative platform for submitting, evaluating, and refining code modifications before
incorporation into the primary repository. Based on authorized OpenBMC contribution directions,
contributors should initially establish git commit verification mechanisms automatically checking
fundamental requirements, including Developer Certificate of Origin endorsement, appropriate
commit message formatting, and whitespace accuracy [10]. These verification mechanisms prevent
common submission errors while ensuring all contributions include proper attribution through signed
endorsement confirming compliance with project licensing requirements. The directions emphasize
the significance of self-contained commits implementing individual logical modifications, supporting
focused assessment while establishing a clear development chronology associating specific alterations
with the underlying purpose and implementation strategy. The contribution procedure includes
explicit requirements for commit communications, necessitating a descriptive subject line, a
comprehensive explanation clarifying both implemented modifications and underlying justification,
and appropriate categorization assisting future reference. These organized commit communications
establish a searchable development chronology, assisting supervisors and contributors in
understanding codebase evolution while providing essential background for future maintenance
activities, potentially revisiting identical program sections.

Code assessment participation methodologies within the OpenBMC community balance technical
precision with collaborative involvement, establishing constructive feedback mechanisms that
improve code quality while maintaining a supportive atmosphere for contributors across experience
levels. Effective reviewers approach submissions considering multiple dimensions, including
functional accuracy, architectural alignment, performance implications, security considerations, and
maintainability factors, collectively determining submission readiness for integration. The primary
OpenBMC repository contains extensive information regarding assessment procedures, explaining
how contributors should address feedback through incorporating suggested modifications into revised
submissions rather than debating merits within comment sections, maintaining focus on improving
code rather than defending initial implementations [9]. This improvement-centered approach
acknowledges that initial submissions rarely achieve perfection, establishing a collaborative
refinement process delivering superior quality outcomes through iterative enhancement. The
repository documentation explains how the Continuous Integration framework automatically
validates submissions against multiple assessment criteria, including successful compilation across
supported platforms, passing validation tests, and adherence to coding style guidelines, collectively
establishing minimum quality standards every submission must satisfy. These automated verifications

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 40
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

complement human assessment by addressing mechanical validation aspects, allowing the reviewer's
attention toward higher-level considerations, including architecture, security, and maintainability,
requiring human judgment and domain expertise for effective evaluation.

Documentation contributions represent a fundamental aspect of OpenBMC project participation,
establishing a knowledge foundation supporting effective development, deployment, and operation
across diverse hardware platforms. These contributions encompass multiple documentation
categories, including architecture descriptions, programming interface references, development
guides, deployment instructions, and operational procedures, collectively addressing requirements
from different audiences interacting with the project. According to contribution guidelines,
documentation should undergo submission using the identical workflow as programming
contributions, ensuring consistent quality verification while maintaining clear attribution for content
development throughout the project [10]. The guidelines particularly emphasize documentation
modifications warrant equivalent careful review as program modifications, recognizing accurate,
comprehensive documentation proves essential for project adoption and continued maintenance. The
contribution process for documentation includes specific formatting requirements utilizing
Markdown syntax, ensuring consistent presentation across different viewing platforms while
supporting version control integration, tracking documentation modifications alongside described
program code. This integration ensures documentation remains synchronized with implementation,
minimizing outdated or inaccurate information potentially mislead users or developers attempting to
understand system behavior. The guidelines explicitly encourage contributors to update
documentation simultaneously with program modifications, rather than treating documentation as a
separate, subsequent activity, establishing a development culture wherein documentation represents
an integral contribution component rather than an optional supplement.

Community resources and assistance channels provide essential infrastructure supporting knowledge
distribution, problem resolution, and collaboration throughout the OpenBMC ecosystem, enabling
both experienced and novice contributors to overcome challenges while developing collective
expertise. These resources include technical documentation repositories, development guides,
architectural descriptions, and reference implementations, establishing foundational knowledge
accessible to all community participants. The primary OpenBMC repository functions as a central
reference location for the community, containing not only essential program code but also critical
information regarding communication channels, including a mailing list for architectural discussions,
an IRC channel for immediate assistance, and an issue tracking system for defect reporting and
feature requests [9]. These communication channels establish multiple avenues supporting
contributor interaction, accommodating different communication preferences while ensuring
questions and discussions reach appropriate audiences possessing relevant expertise. The repository
provides specific information regarding development procedures, including environment
configuration instructions, build processes, and testing methodologies, collectively enabling new
contributors to establish functional development environments for creating and validating potential
contributions. This practical guidance reduces initial participation barriers by providing clear,
actionable information regarding technical prerequisites supporting effective contribution, allowing
newcomers to focus on understanding program collections and identifying potential improvement
areas rather than struggling with basic environment configuration.

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 41
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article
Contribution . .
Entry Requirements Progression Path
Type
Git basics, Development .
Code veiop Bug fixes — Feature enhancements —

environment, Component

Contributions . i Maintai hi

b understanding Subsystem redesigns — Maintainership

. Corrections — User guides
. Markdown knowledge, Technical . - 8 . -
Documentation . g Architecture documentation —
understanding, Clear writing
Standards development

Review Component familiarity, Critical Self-review — Peer review — Subsystem
Participation analysis, Constructive feedback review — Architectural review

Table 4: Community Contribution Pathways. [9]

Mentorship opportunities within the OpenBMC project establish structured pathways supporting
knowledge transfer between experienced contributors and newcomers, accelerating skill development
while ensuring project continuity through successive contributor generations. These mentorship
relationships manifest through various forms, including formal programs during specific community
events, ongoing supervisor-contributor relationships through the assessment process, and informal
guidance through communication channels wherein experienced participants assist newcomers in
navigating technical challenges. The contribution guidelines specifically encourage new contributors
beginning with modest, focused modifications addressing known issues or implementing minor
enhancements, establishing manageable initial experiences, building confidence while demonstrating
basic contribution procedures [10]. This approach recognizes that contribution processes themselves
require learning beyond technical aspects of program collections, including understanding review
expectations, responding effectively to feedback, and navigating project customs regarding
communication and collaboration. The guidelines emphasize that questions remain welcome
throughout the contribution process, establishing an environment wherein newcomers seek assistance
when encountering obstacles rather than becoming discouraged through initial challenges. This
supportive approach reflects project recognition that expanding the contributor community requires
deliberate inclusion efforts, reducing participation barriers while providing constructive pathways
supporting skill development, enabling increasingly sophisticated contributions over time.

Pathways toward component supervision within the OpenBMC project establish progression routes
from initial contribution through increasing responsibility toward eventual subsystem ownership,
creating clear advancement opportunities for dedicated contributors seeking deeper project
involvement. This progression typically begins with consistent contribution toward specific
subsystems, demonstrating both technical capability and sustained commitment toward project
improvement over extended periods. The primary OpenBMC repository contains MAINTAINERS
documentation recording current supervision assignments across different project components,
establishing clear contact points while providing transparency regarding project leadership structure
[90]. This documentation creates visibility into potential contribution areas wherein additional
supervisors might prove necessary, assisting contributors in identifying subsystems where sustained
involvement could eventually lead to supervision opportunities. The repository structure itself
facilitates specialized contributions through organizing program code into discrete components with
clear boundaries, enabling contributors to develop concentrated expertise within particular areas
while participating in a broader project ecosystem through interfaces and shared infrastructure. This
modular approach creates natural specialization opportunities wherein contributors progressively
assume greater responsibility for specific components based upon demonstrated expertise and

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 42
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

consistent participation within related development activities. The distributed supervision structure
throughout the project ensures advancement opportunities remain available across different technical
domains, accommodating diverse interests and skill sets while maintaining comprehensive coverage
throughout the entire program collection through collective expertise distributed across supervisor
teams.

Conclusion

The OpenBMC environment constitutes an essential element within contemporary server
infrastructure, delivering standardized administration capabilities across heterogeneous equipment
configurations while supporting customization for particular implementation requirements. The
trajectories described throughout this discourse establish organized progression pathways from
preliminary skill acquisition through environment configuration toward dynamic community
involvement, addressing substantial knowledge obstacles historically restricting contributor
populations for this fundamental firmware collection. Through delivering thorough guidance
regarding both technical prerequisites and community engagement procedures, the manuscript
creates accessible orientation pathways, potentially expanding and diversifying OpenBMC developer
populations. This broadened participation directly strengthens resilience, functionality, and
protection within OpenBMC firmware through expanded evaluation coverage, varied implementation
perspectives, and comprehensive testing across different deployment scenarios. The integration
between technical profundity and community participation described throughout the manuscript
establishes groundwork supporting sustainable ecosystem advancement, benefiting individual
contributors pursuing specialized expertise alongside broader data center industries increasingly
reliant upon sophisticated, dependable administration controllers supporting efficient infrastructure
operation.

References

[1] OpenBMC, "Defining a Standard Baseboard Management Controller Firmware Stack," OpenBMC
Project. [Online]. Available: https://www.openbmc.org/

[2] Open BMC, "A Linux Foundation Project open-source Baseboard Management Controllers (BMC)
Firmware Stack," GitHub. [Online]. Available: https://github.com/openbmc

[3] Tian Fang, "Introducing 'OpenBMC'": an open software framework for next-generation system
management,” Engineering at Meta, 2015. [Online]. Available:
https://engineering.fb.com/2015/03/10/open-source/introducing-openbmc-an-open-software-
framework-for-next-generation-system-management/

[4] Jakub Wincenciak, "Yocto Linux- Build Your Own Embedded Linux Distribution,” SOMCO, 2022.
[Online]. Available: https://somcosoftware.com/en/blog/yocto-linux-build-your-own-embedded-
linux-distribution

[5] OpenBMC Project, "OpenBMC documentation,” OpenBMC Gerrit Repository, 2023. [Online].
Available:
https://gerrit.openbmc.org/plugins/gitiles/openbme/docs/+/73266974f2d7904ea5132f11f18393e8ac
ccacb1/README.md

[6] OpenBMC Project, "OpenBMC Development Environment," OpenBMC Gerrit Repository, 2023.
[Online]. Available:
https://gerrit.openbmc.org/plugins/gitiles/openbmc/docs/+/692765c2edg9f1dc2e9123a268212bgag8
1457e7b/development/dev-environment.md

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 43
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.


https://www.openbmc.org/
https://github.com/openbmc
https://engineering.fb.com/2015/03/10/open-source/introducing-openbmc-an-open-software-framework-for-next-generation-system-management/
https://engineering.fb.com/2015/03/10/open-source/introducing-openbmc-an-open-software-framework-for-next-generation-system-management/
https://somcosoftware.com/en/blog/yocto-linux-build-your-own-embedded-linux-distribution
https://somcosoftware.com/en/blog/yocto-linux-build-your-own-embedded-linux-distribution
https://gerrit.openbmc.org/plugins/gitiles/openbmc/docs/+/73266974f2d7904ea5132f11f18393e8acccacb1/README.md
https://gerrit.openbmc.org/plugins/gitiles/openbmc/docs/+/73266974f2d7904ea5132f11f18393e8acccacb1/README.md
https://gerrit.openbmc.org/plugins/gitiles/openbmc/docs/+/692765c2ed9f1dc2e9123a268212b9a981457e7b/development/dev-environment.md
https://gerrit.openbmc.org/plugins/gitiles/openbmc/docs/+/692765c2ed9f1dc2e9123a268212b9a981457e7b/development/dev-environment.md

Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

[7] Lei YU, "OpenBMC overview,” IBM Developer, 2020. [Online]. Available:
https://developer.ibm.com/articles/openbmc-overview/

[8] Saravanan Palanisamy, "OpenBMC Introduction and Porting Guide,"” FOSDEM 2021,2021.
[Online]. Available:
https://archive.fosdem.org/2021/schedule/event/firmware_oiapg/attachments/slides/4633/export/

events/attachments/firmware_oiapg/slides/4633/OpenBMC_Intro_Porting_Guide_ FOSDEM_ 2021
_SaravananPalanisamy.pdf

[o] Brad Bishop, "OCP SUMMIT," GitHub, OpenBMC Project, 2018. [Online]. Available:
https://www.opencompute.org/files/OCP18-OpenBMC-State-of-Development.pdf

[10] OpenBMC Project, "Contributing to OpenBMC," OpenBMC Documentation. [Online]. Available:
https://gerrit.openbmc.org/plugins/gitiles/openbmec/docs/+/HEAD/CONTRIBUTING.md

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 44
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.


https://developer.ibm.com/articles/openbmc-overview/
https://archive.fosdem.org/2021/schedule/event/firmware_oiapg/attachments/slides/4633/export/events/attachments/firmware_oiapg/slides/4633/OpenBMC_Intro_Porting_Guide_FOSDEM_2021_SaravananPalanisamy.pdf
https://archive.fosdem.org/2021/schedule/event/firmware_oiapg/attachments/slides/4633/export/events/attachments/firmware_oiapg/slides/4633/OpenBMC_Intro_Porting_Guide_FOSDEM_2021_SaravananPalanisamy.pdf
https://archive.fosdem.org/2021/schedule/event/firmware_oiapg/attachments/slides/4633/export/events/attachments/firmware_oiapg/slides/4633/OpenBMC_Intro_Porting_Guide_FOSDEM_2021_SaravananPalanisamy.pdf
https://www.opencompute.org/files/OCP18-OpenBMC-State-of-Development.pdf
https://gerrit.openbmc.org/plugins/gitiles/openbmc/docs/+/HEAD/CONTRIBUTING.md

