2025, 10 (61s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Top 10 Pitfalls in Cloud Migration and How to Avoid Them

Rajani Jayantha Independent Researcher, USA

ARTICLE INFO

ABSTRACT

Received: 29 Dec 2024 Revised: 15 Feb 2025 Accepted: 24 Feb 2025 Cloud migration offers organizations transformative potential for agility, scalability, and innovation, yet the journey is fraught with challenges that can derail even well-planned initiatives. Organizations frequently encounter pitfalls, including underestimated legacy system complexity, inadequate cost modeling, ineffective migration strategies, neglected security considerations, and skills gaps. Additional obstacles arise from poor data migration planning, insufficient governance frameworks, overlooked performance considerations, inadequate change management, and missed opportunities to leverage cloud-native capabilities. This article examines these common pitfalls based on empirical evidence and provides strategic approaches to navigate these obstacles. By understanding these challenges and implementing proactive strategies, organizations can accelerate their cloud transformation while minimizing disruption and maximizing business value.

Keywords: Cloud Transformation, Migration Strategy, Governance Frameworks, Change Management, Performance Optimization

INTRODUCTION

Cloud migration represents a transformative journey for organizations seeking agility, scalability, and innovation in today's digital landscape. The cloud services market continues to expand at a remarkable pace, with the worldwide public cloud services market forecast to grow 20.4% in 2025, reflecting the accelerating shift from traditional IT deployment models to cloud-first strategies across industries [1]. Despite this momentum, the path to successful cloud adoption remains challenging for many organizations attempting to navigate complex migration processes.

The complexity of cloud migration extends beyond technical considerations to encompass organizational, financial, and strategic dimensions. Recent industry surveys reveal that a significant majority of organizations encounter substantial timeline extensions and budget overruns during migration initiatives, with nearly three-quarters of projects taking longer than anticipated and over half exceeding planned financial allocations [2]. These disparities between expectations and outcomes underscore the critical importance of thorough preparation and realistic planning before embarking on cloud transformation journeys.

Migration challenges frequently stem from underestimating the complexity of existing enterprise technology landscapes. Legacy environments have typically evolved over decades, accumulating technical debt, custom modifications, and interdependencies that remain undocumented until migration efforts begin in earnest. Cloud readiness assessments conducted across hundreds of organizations indicate that technical compatibility issues represent the primary obstacle during migration, with application dependencies and infrastructure requirements often proving more complex than initially assessed [1]. These unexpected complications cascade throughout migration timelines, forcing organizations to reallocate resources and revise implementation schedules.

The financial dimension introduces additional complexity, as cloud cost structures fundamentally differ from traditional capital expenditure models. The transition to consumption-based pricing requires new approaches to budgeting, forecasting, and cost governance. Market analysis indicates that nearly half of organizations struggle with cloud cost management, experiencing significant budget variances due to inadequate modeling of variable expenses and overlooked optimization opportunities [2]. This financial unpredictability creates tensions between technology teams and financial stakeholders, potentially undermining executive support for ongoing cloud initiatives.

2025, 10 (61s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Talent readiness emerges as another critical success factor in cloud migration. The shift toward cloud-native environments demands specialized expertise in areas including architecture design, security implementation, and operational management. Current industry research highlights a persistent skills gap affecting more than two-thirds of organizations undertaking cloud transformations, with proficiency in security, DevOps practices, and cloud architecture ranking as the most critical yet difficult-to-acquire capabilities [1]. This talent shortage directly impacts migration timelines and quality, as organizations struggle to build internal capabilities while simultaneously executing complex technical transitions.

1. Underestimating Legacy System Complexity

Legacy systems create unexpected migration challenges due to intricate interdependencies that have evolved organically over decades of operation. The technical architecture of these systems often resembles archaeological layers, with each stratum representing different technological eras and development philosophies. Comprehensive analysis of migration initiatives across multiple sectors demonstrates that applications initially classified as "simple" frequently reveal complex integration patterns once migration activities begin in earnest [3]. This complexity manifests not merely in technical connections but in subtle business logic embedded within outdated codebases.

Business Impact: Migration timelines extend by 40-60% when legacy complexity is underestimated, resulting in budget overruns, delayed business initiatives, and potential loss of competitive advantage during extended transition periods.

The challenge extends beyond visible interfaces to encompass hidden operational dependencies that maintain critical business functions. Research examining legacy modernization efforts reveals numerous instances where essential business rules exist solely within application code, having never been formally documented in organizational knowledge repositories [4]. These undocumented elements represent significant risk factors during migration planning, as migration teams must essentially reverse-engineer existing functionality before attempting transformation. Healthcare and financial organizations face particularly acute challenges in this domain due to regulatory requirements that have been incrementally incorporated into legacy systems over extended periods.

Addressing these complexities demands multifaceted discovery approaches combining technological tools with human expertise. Effective discovery methodologies employ sophisticated dependency mapping technologies that can trace communication patterns between application components, revealing connection points that might otherwise remain invisible [3]. However, technology alone proves insufficient without accompanying institutional knowledge. Migration initiatives that incorporate long-tenured staff members who understand historical system evolution demonstrate markedly higher success rates in identifying critical dependencies before migration begins [4]. This human element proves particularly valuable when dealing with systems developed before modern documentation standards were established.

Organizations achieving the highest migration success rates implement phased approaches beginning with peripheral systems before addressing core business applications. This methodology allows migration teams to develop practical experience with the organization's specific technical environment while working with lower-risk workloads [3]. The knowledge gained during these initial phases creates an experiential foundation that significantly enhances planning accuracy for subsequent, more critical migrations. Establishing detailed knowledge management systems to capture insights from each migration phase further enhances organizational capabilities for addressing increasingly complex workloads [4].

2025, 10 (61s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

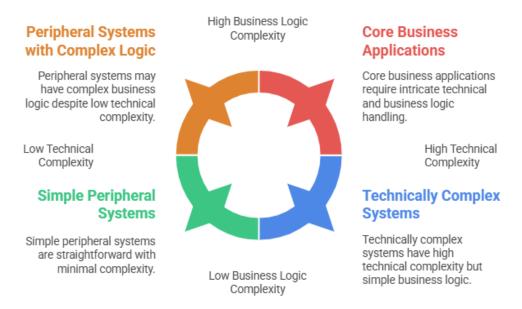


Fig 1: Legacy System Migration Complexity [3, 4]

2. INADEQUATE COST MODELING

Cloud migration financial models frequently fail to account for the fundamental paradigm shift from capital-intensive to consumption-based expenditure patterns. Traditional infrastructure budgeting practices, built around periodic hardware refresh cycles and depreciation schedules, prove inadequate for projecting costs in dynamic cloud environments where resources scale with demand [3]. This misalignment between established financial practices and cloud economic models creates significant challenges for organizations attempting to budget accurately for migration initiatives.

The financial complexity increases substantially when considering the multidimensional nature of cloud pricing structures. Experienced cloud practitioners recognize that costs extend far beyond basic compute and storage elements to encompass data transfer fees, specialized service charges, management tooling, and support costs [4]. Organizations new to cloud environments frequently overlook these additional cost dimensions during initial planning, creating substantial variances between projected and actual expenditures once migration completes. The complexity multiplies in multi-cloud environments where pricing models differ significantly between providers, complicating efforts to develop standardized cost projection methodologies.

Effective cloud financial management requires sophisticated modeling techniques that incorporate consumption patterns unique to each organization. Detailed analysis of successful cloud transformations highlights the importance of understanding workload characteristics such as cyclical demand patterns, data processing volumes, and storage growth trajectories [3]. Organizations demonstrating cloud financial maturity implement dedicated cost management functions with specialized expertise in cloud economics, enabling more accurate forecasting and optimization. This specialized focus becomes increasingly important as cloud environments scale and diversify, introducing additional variables into financial projections.

Resource governance emerges as a critical factor in managing cloud economics effectively. Migration initiatives that implement comprehensive tagging and categorization strategies from project inception demonstrate substantially better cost visibility throughout the cloud lifecycle [4]. These governance mechanisms enable accurate cost attribution to business units, projects, and environments, creating accountability for resource consumption. Automated policies for resource management, such as scheduled deactivation of development environments during non-business hours, provide additional economic benefits without requiring ongoing manual intervention [3]. The combination of visibility and automation creates a foundation for sustainable cloud cost management beyond the initial migration phase.

2025, 10 (61s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

3. LIFT-AND-SHIFT WITHOUT REARCHITECTING

Migrating applications without architectural adaptation represents a common approach that ultimately limits cloud benefits. Detailed examination of modernization initiatives reveals that applications migrated through simple rehosting strategies typically maintain the same inefficiencies present in on-premises environments while adding new complexities related to networking, security, and distributed systems management [3]. This approach essentially transfers existing technical debt to a new environment without addressing fundamental design limitations, creating situations where organizations pay premium rates for cloud resources while receiving minimal additional value.

Performance analysis conducted across diverse application portfolios demonstrates clear efficiency patterns related to architectural alignment with cloud principles. Applications designed for traditional data center environments frequently assume continuous availability of high-performance storage, predictable network behavior, and vertical scaling capabilities [4]. These assumptions conflict with cloud design philosophies emphasizing horizontal scaling, eventual consistency, and resilience to component failures. The resulting impedance mismatch creates performance inefficiencies that increase operational costs while reducing application reliability and user satisfaction.

Organizations achieving transformative outcomes from cloud initiatives employ systematic assessment methodologies to determine appropriate migration strategies for each application. These frameworks evaluate applications across multiple dimensions, including business criticality, architectural complexity, data characteristics, and strategic importance [3]. This nuanced approach enables decision-makers to allocate transformation resources effectively, focusing redesign efforts on applications where architectural changes will deliver the greatest business value while accepting simpler migration approaches for less strategic workloads or those nearing retirement.

The modernization spectrum offers multiple options between complete rehosting and full refactoring. Analysis of successful transformation programs highlights containerization as a particularly effective intermediate strategy that provides meaningful benefits with moderate implementation effort [4]. Containerized applications gain deployment flexibility and environment consistency while requiring less extensive architectural changes than complete refactoring to microservices. This middle path proves especially valuable for organizations with limited cloud expertise or those facing tight transformation timelines while still delivering substantive improvements over basic rehosting approaches [3].

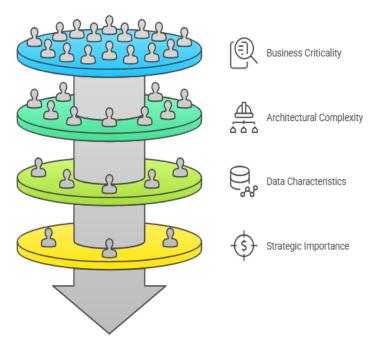


Fig 2: Cloud Migration Strategy Funnel [3, 4]

2025, 10 (61s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

4. Neglecting Security and Compliance

Security and compliance considerations frequently receive insufficient attention during cloud migration planning, creating significant vulnerabilities once workloads transition to cloud environments. The fundamental shift from perimeter-based security models to distributed responsibility frameworks requires a comprehensive rethinking of protection strategies across all layers of the technology stack. Enterprise cloud adoption studies reveal that organizations achieving successful migrations typically dedicate between 20-30 percent of overall migration resources specifically to security and compliance activities, recognizing these domains as foundational rather than peripheral concerns [5]. This resource allocation reflects the understanding that security architecture must evolve alongside application and infrastructure modernization rather than being applied retroactively.

The shared responsibility model creates particular confusion regarding security accountability boundaries, especially as organizations adopt multiple service models spanning infrastructure, platform, and software services. Analysis of cloud migration initiatives indicates that organizations frequently misunderstand provider responsibilities, creating dangerous security gaps, particularly around data protection, access management, and network security [6]. These misunderstandings become particularly problematic in hybrid and multi-cloud architectures where security models differ significantly between environments. The resulting inconsistency creates administrative complexity while increasing vulnerability surfaces that sophisticated threat actors can exploit.

Regulatory compliance adds another dimension of complexity to cloud migration, particularly for organizations operating in highly regulated industries such as healthcare, financial services, and the public sector. Migration assessment frameworks frequently underestimate the effort required to translate existing compliance controls to cloud environments, creating potential regulatory exposure during and after migration [5]. This challenge intensifies when considering international operations where data sovereignty requirements, cross-border transfer restrictions, and regional regulations create a complex compliance landscape. Organizations with mature cloud governance practices establish dedicated compliance engineering functions that work alongside security teams to ensure regulatory requirements receive appropriate consideration throughout the migration journey.

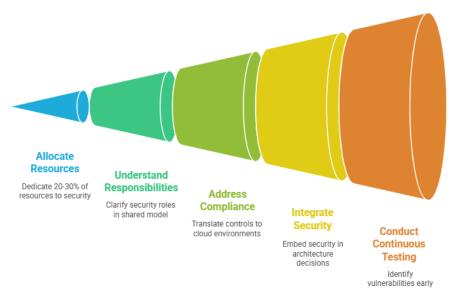


Fig 3: Enhancing Security and Compliance in Cloud Migration [5, 6]

Organizations demonstrating security leadership integrate security functions throughout the migration lifecycle rather than treating security as a final validation step. Cloud migration programs with the strongest security outcomes incorporate security architects into initial planning phases, ensuring that security requirements influence fundamental architecture decisions rather than requiring costly remediation later [6]. Implementation of infrastructure-as-code methodologies with embedded security controls provides consistent protection while enabling automated compliance validation. These programmatic approaches minimize human configuration errors while creating auditable deployment processes that satisfy regulatory requirements. Continuous security testing

2025, 10 (61s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

throughout the migration process identifies vulnerabilities before production deployment, substantially reducing remediation costs and potential business disruptions [5].

5. INSUFFICIENT SKILLS DEVELOPMENT

The cloud technology landscape demands fundamentally different capabilities than traditional infrastructure environments, creating significant skills challenges that impede migration success. Organizational assessments conducted across industries reveal substantial capability gaps in critical domains, including cloud architecture, security implementation, data engineering, and financial management [5]. These deficiencies manifest in practical migration challenges, including extended timelines, suboptimal design decisions, and operational inefficiencies that persist long after migration completion. The capability gap extends beyond technical skills to encompass changes in operational models, with many organizations struggling to adapt established IT service management processes to cloud-native approaches.

The cloud skills shortage affects organizations across all migration phases, but becomes particularly problematic during the operational transition following initial migration. Technology leadership surveys indicate that while many organizations can temporarily augment capability gaps during migration execution through external partnerships, the post-migration operational phase requires sustainable internal capabilities [5]. Without adequate internal skill development, organizations frequently experience deteriorating performance, security, and cost management after partner engagements conclude. This pattern leads to growing disillusionment with cloud outcomes as operational realities fail to match initial transformation promises.

Traditional talent acquisition strategies prove increasingly ineffective in addressing cloud capability needs given market dynamics. The demand for experienced cloud professionals substantially exceeds available supply across all major cloud platforms, creating extended recruitment cycles and compensation escalation that many organizations find unsustainable [6]. This market imbalance particularly affects mid-market organizations that cannot match the compensation packages offered by larger enterprises or technology firms. The situation necessitates more creative approaches to capability development that balance targeted external hiring with internal talent development programs.

Organizations achieving sustainable cloud success implement multifaceted talent strategies that combine formal learning with experiential development opportunities. Creating structured cloud enablement programs that pair traditional training with hands-on implementation responsibilities accelerates practical skill development while addressing immediate project needs [5]. Establishing cloud centers of excellence provides institutional structures for knowledge sharing while creating advancement opportunities for cloud practitioners. These organizational constructs help retain newly skilled professionals by providing clear career progression paths aligned with cloud technology domains. Strategic partnerships with implementation firms enable knowledge transfer when structured with explicit capability development objectives rather than focusing exclusively on delivery timelines [6].

6. POOR DATA MIGRATION PLANNING

Data migration represents one of the most technically challenging aspects of cloud transformation initiatives, frequently becoming a critical bottleneck in migration timelines. The complexity extends far beyond simple data transfer to encompass intricate considerations around data structures, dependencies, quality, and business continuity requirements throughout the transition process. Many organizations discover that data migration complications create cascading effects throughout the entire transformation program, impacting application functionality, integration patterns, and ultimately business operations [7]. This underestimation of data migration complexity ranks consistently among the top challenges reported by technology leaders overseeing cloud transformation initiatives.

The scale of enterprise data presents significant migration challenges, particularly for organizations with mature digital operations. Large enterprises typically manage vast data ecosystems spread across multiple repositories, including relational databases, data warehouses, unstructured file stores, and legacy systems with proprietary storage mechanisms [8]. This heterogeneity creates substantial technical hurdles for migration teams, particularly regarding transfer methodologies, transformation requirements, and validation processes during transition periods.

2025, 10 (61s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Organizations frequently discover that theoretical migration approaches must be significantly modified when confronted with the practical realities of diverse data landscapes and operational constraints.

Data quality emerges as another critical challenge during migration initiatives. The migration process essentially serves as an unintended data quality audit, exposing historical data management deficiencies that have accumulated over decades of system operation [7]. These quality issues manifest in various forms, including inconsistent formatting, duplicate records, referential integrity problems, orphaned data, and incomplete datasets. Many organizations discover that addressing these quality issues becomes a prerequisite for successful migration, creating unplanned remediation efforts that extend timelines and increase project complexity. The situation becomes particularly challenging when dealing with mission-critical data, where quality issues directly impact business operations.

Organizations achieving successful data migrations implement comprehensive preparation methodologies beginning with detailed data profiling activities. Assessment frameworks that evaluate data across dimensions, including volume, sensitivity, quality, and business criticality, enable more accurate migration planning and appropriate strategy selection [8]. Implementing staged migration approaches with distinct phases for different data categories reduces risk while maintaining business continuity. Creating formal data governance frameworks that clearly define ownership, quality standards, and retention requirements provides essential structure for migration decisions. Extensive testing using production-scale data samples under realistic load conditions identifies potential issues before full-scale migration, reducing business disruption during actual cutover periods [7].

7. LACK OF A CLEAR GOVERNANCE MODEL

Cloud governance represents a fundamental capability that determines long-term cloud success, yet it frequently receives insufficient attention during migration planning. The rapid evolution of cloud environments demands structured approaches to resource management, security implementation, cost control, and compliance oversight that many organizations struggle to establish [7]. Without effective governance frameworks, cloud adoption frequently creates increasing complexity that eventually undermines anticipated benefits through escalating costs, security vulnerabilities, and operational inefficiencies that could have been prevented through proactive governance design.

Without effective governance mechanisms, cloud environments typically experience rapid entropy that complicates management and increases operational risk. As cloud adoption expands beyond initial use cases, ungoverned environments naturally evolve toward increasing complexity through the proliferation of accounts, services, and configuration variations [8]. This unchecked expansion occurs across multiple dimensions, including identity structures, network configurations, and resource provisioning practices, creating an increasingly complex landscape that becomes progressively more difficult to secure and manage effectively. The resulting operational friction slows innovation while increasing security and compliance risks that may eventually necessitate costly remediation efforts.

The financial implications of governance deficiencies prove particularly significant for organizations operating at scale. Cloud financial management represents a distinct discipline that differs fundamentally from traditional IT financial practices, requiring new approaches to budgeting, cost allocation, and optimization [7]. Organizations lacking mature governance frequently experience significant cost escalation as cloud environments grow, creating financial pressure that can undermine executive support for continued transformation. These cost management challenges stem from multiple factors, including suboptimal resource selection, insufficient utilization of discount mechanisms, idle resources, and limited visibility into consumption patterns across the organization.

Effective governance requires cross-functional collaboration across traditionally siloed organizational functions. Cloud operating models that prove most effective establish clear decision rights and accountability mechanisms spanning technology, security, finance, and business stakeholders [8]. These collaborative structures develop policies addressing resource management, security implementation, cost controls, and compliance requirements with clear accountability for enforcement. Implementing automated policy enforcement through cloud management platforms ensures consistent application of governance standards while reducing manual oversight requirements. Creation of standardized templates and service catalogs further enhances governance by embedding best practices into the

2025, 10 (61s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

provisioning process, reducing configuration variations that create management complexity and security vulnerabilities [7].

8. OVERLOOKING APPLICATION PERFORMANCE

Application performance frequently deteriorates following cloud migration when organizations fail to adapt their architectures and monitoring approaches for distributed environments. The transition from traditional data center environments to cloud infrastructure introduces fundamental changes in network behavior, storage characteristics, and resource allocation that can significantly impact application responsiveness [7]. These performance considerations often receive inadequate attention during migration planning as teams focus primarily on functional correctness rather than user experience factors. The resulting performance issues create negative perceptions of cloud migration among business stakeholders and end users, potentially undermining support for broader transformation initiatives.

The distributed nature of cloud infrastructure creates new performance considerations that traditional application designs may not accommodate effectively. Applications developed under assumptions of low-latency networks, dedicated hardware, and predictable storage performance often struggle in cloud environments where these characteristics differ substantially [8]. Database-intensive applications present particular challenges during migration, as query patterns optimized for on-premises infrastructure may perform poorly when migrated without adaptation to cloud database services. These architectural misalignments create persistent performance challenges that significantly impact user satisfaction with migrated applications and may require substantial re-architecting to resolve effectively.

Traditional monitoring tools provide inadequate visibility into cloud application performance, further complicating optimization efforts. Monitoring approaches designed for monolithic applications running on dedicated infrastructure typically fail to provide adequate observability in distributed cloud environments [7]. This visibility gap creates significant challenges for support teams attempting to diagnose performance issues, extend resolution times, and increase business impact during outage scenarios. The situation becomes particularly problematic in microservices architectures where transactions span numerous components and services, creating complex dependency chains that prove difficult to monitor with traditional tools.

Organizations achieving performance success in cloud environments implement comprehensive approaches beginning with pre-migration benchmarking to establish clear baseline metrics. Performance engineering methodologies that specifically address cloud architectural considerations demonstrate substantially better outcomes than traditional approaches [8]. Implementing cloud-native monitoring solutions that provide end-to-end transaction visibility enables more effective optimization and troubleshooting. Architectural adaptations leveraging cloud-native capabilities such as auto-scaling, content delivery networks, and regional distribution strategies further enhance performance while improving resource utilization. These combined approaches enable organizations to deliver equivalent or superior performance in cloud environments compared to traditional infrastructure while maintaining cost efficiency [7].

9. INADEQUATE CHANGE MANAGEMENT

The human dimension of cloud migration frequently receives insufficient attention despite representing a critical success factor in transformation initiatives. Change management challenges emerge consistently across migration projects regardless of technical complexity or organization size, highlighting the universal importance of addressing cultural and organizational factors alongside technical considerations. Research examining cloud adoption patterns reveals that organizational culture represents one of the most significant barriers to successful implementation, with resistance manifesting at multiple organizational levels despite clear technical and financial benefits [9]. This pattern demonstrates that technical excellence alone proves insufficient without corresponding attention to the human aspects of transformation.

Cloud adoption fundamentally disrupts established operational patterns, creating uncertainty that naturally generates resistance among impacted stakeholders. Studies exploring organizational resistance during technological transitions identify multiple psychological factors that contribute to change resistance, including fear of competency

2025, 10 (61s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

loss, uncertainty about new role expectations, and concerns about job security [9]. These factors create both passive and active resistance patterns that can substantially impede migration progress despite strong executive sponsorship. Technical staff members often experience particular anxiety during cloud transitions due to concerns about skill relevance in the new environment, creating potential resistance from the very individuals whose expertise proves most valuable during implementation phases.

Change management challenges extend beyond individual resistance to encompass broader organizational dynamics, including governance structures, operational processes, and deeply embedded cultural norms. Examination of information technology governance models reveals that traditional frameworks typically emphasize control and standardization approaches that align poorly with cloud operating models prioritizing agility and innovation [9]. This fundamental misalignment creates execution barriers that delay implementation despite technical readiness. Organizations frequently discover that decision-making processes, approval mechanisms, and risk management approaches designed for traditional technology deployment models prove incompatible with cloud adoption patterns, necessitating comprehensive procedural redesign alongside technical transformation.

Organizations achieving successful change outcomes implement multi-faceted approaches beginning with a clear articulation of the transformation vision and benefits. Effective change management methodologies emphasize stakeholder analysis to identify potential resistance sources and develop targeted engagement strategies for each stakeholder group [9]. Identifying and empowering champions within business units creates advocacy networks that extend change momentum throughout the organization. Implementing formal training programs that address both technical and procedural changes enables affected staff members to develop confidence in the new environment. Creating feedback mechanisms that capture implementation challenges in real-time allows adaptation of migration approaches based on organizational realities rather than theoretical plans. These combined approaches recognize that successful cloud adoption requires equal attention to people, processes, and technology rather than treating human factors as secondary considerations.

10. MISSING THE CLOUD-NATIVE OPPORTUNITY

Many organizations approach cloud migration with excessively narrow technical perspectives, focusing primarily on infrastructure migration rather than embracing the transformative potential of cloud-native approaches. Cloud migration initiatives frequently concentrate on infrastructure cost reduction and basic operational improvements while overlooking the strategic opportunity to fundamentally reimagine application architectures and delivery models [10]. This limited perspective represents a significant missed opportunity that diminishes potential competitive advantages from cloud adoption. Organizations focusing exclusively on infrastructure aspects essentially transfer existing limitations to new environments rather than achieving genuine digital transformation.

Cloud-native technologies, including containerization, orchestration platforms, serverless computing, and managed services, offer fundamentally different approaches to application development and operation compared to traditional models. Research examining cloud-native architecture patterns reveals substantial advantages in deployment efficiency, operational resilience, and resource utilization compared to traditional application designs [10]. These technical benefits translate directly to business outcomes, including improved time-to-market for new capabilities, enhanced system reliability, and more efficient resource utilization that supports both financial and sustainability objectives. The modular nature of cloud-native architectures enables incremental evolution rather than requiring monolithic replacement, creating implementation approaches that balance transformation goals with practical business constraints.

The transformative potential of cloud-native adoption extends beyond technical architecture to encompass broader software delivery processes and organizational structures. Analysis of digital transformation outcomes demonstrates that organizations achieving the greatest business impact implement comprehensive changes spanning application architecture, development methodologies, operational practices, and team structures [10]. These multidimensional transformations enable fundamentally different approaches to software delivery that dramatically improve responsiveness to changing business requirements. Traditional project-oriented delivery models with fixed requirements and extended timelines evolve toward product-oriented approaches emphasizing continuous delivery of incremental value based on ongoing stakeholder feedback.

2025, 10 (61s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Realizing cloud-native benefits requires holistic transformation approaches extending beyond technology to encompass processes, culture, and organizational structure. Detailed examination of cloud-native implementation challenges identifies organizational silos, traditional development methodologies, and skills gaps as primary obstacles to successful adoption [10]. Creating cross-functional teams with end-to-end responsibility for services replaces traditional, siloed approaches that impede innovation velocity. Implementing modern engineering practices, including infrastructure-as-code, automated testing, and continuous delivery, provides essential technical foundations for cloud-native operations. Establishing innovation programs that explicitly encourage experimentation with cloud-native services creates learning opportunities that accelerate capability development across the organization. These combined approaches recognize that effective cloud-native adoption represents a comprehensive business transformation rather than merely a technical implementation.

Pitfall	Primary Challenge	Key Solution
1. Legacy System Complexity	Hidden dependencies and undocumented business logic	Comprehensive discovery with dependency mapping tools and institutional knowledge
2. Cost Modeling Failures	Transition from CapEx to consumption-based OpEx	Sophisticated modeling with tagging strategies and automated resource management
3. Lift-and-Shift Limitations	Transferred inefficiencies with minimal cloud benefits	Systematic assessment using the "6 R's" framework (rehost, replatform, repurchase, refactor, retire, retain)
4. Security & Compliance Gaps	Shared responsibility confusion across environments	Security-first approach with infrastructure-as-code and embedded controls
5. Skills Development Shortfalls	Critical capability gaps in cloud-specific domains	Multifaceted talent strategy with cloud centers of excellence and hands-on learning
6. Data Migration Complications	Scale, heterogeneity, and quality issues	Comprehensive data profiling with staged migration approaches
7. Governance Model Deficiencies	Uncontrolled environment growth and inconsistencies	Cross-functional cloud business office with automated policy enforcement
8. Performance Oversights	Architecture misalignment with cloud principles	Pre-migration benchmarking with cloud-native monitoring solutions
9. Change Management Neglect	Organizational resistance and process incompatibility	Stakeholder analysis with a champions network and feedback mechanisms
10. Missed Cloud- Native Opportunities	Limited transformation vision beyond infrastructure	Cross-functional teams adopting product-oriented delivery approaches

Table 1: Top 10 Cloud Migration Pitfalls and Strategic Solutions [1-10]

CONCLUSION

Successful cloud migration demands a balanced approach addressing both technical considerations and organizational dynamics. The journey requires thorough preparation, realistic planning, and continuous adaptation as challenges emerge. Organizations that achieve the greatest value from cloud initiatives recognize migration as a holistic transformation rather than merely a technical exercise. By anticipating common pitfalls and implementing appropriate countermeasures, organizations can navigate the complexities of cloud migration while maintaining

2025, 10 (61s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

momentum toward strategic objectives. The most effective migrations establish robust foundations for ongoing evolution, enabling organizations to progressively capture increasing value from cloud capabilities. Rather than viewing cloud adoption as a one-time project, forward-thinking organizations treat it as a continuous transformation journey that fundamentally reshapes both technology capabilities and business operations.

REFERENCES

- [1] IDC, "Worldwide Spending on Public Cloud Services is Forecast to Double Between 2024 and 2028, According to New IDC Spending Guide," 2024. [Online]. Available: https://my.idc.com/getdoc.jsp?containerId=prUS52460024
- [2] Pluralsight, "State of Cloud Report," Pluralsight, 2023. [Online]. Available: https://go.pluralsight.com/rs/303-MNI-809/images/state-of-cloud-2023-report.pdf
- [3] European Organization for Nuclear Research, "2023-2024 Progress Report on PS215/Cloud," 2024. [Online]. Available: https://cds.cern.ch/record/2917256/files/SPSC-SR-355.pdf
- [4] Markku Pulkkinen, "Cloud migration strategy factors and migration processes," University of Helsinki, 2020. [Online]. Available: https://helda.helsinki.fi/server/api/core/bitstreams/188695f4-5946-4509-943c-4021dcbe9093/content
- [5] Tara Balakrishnan et al., "Cloud-migration opportunity: Business value grows, but missteps abound," McKinsey & Company, 2021. [Online]. Available: https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/cloud-migration-opportunity-business-value-grows-but-missteps-abound
- [6] Sumanth Tatineni, "Security and Compliance in Parallel Computing Cloud Services," ResearchGate, 2023.

 [Online].

 Available: https://www.researchgate.net/publication/376681602 Security and Compliance in Parallel Computing Cloud Services
- [7] Deloitte, "Closing the cloud strategy, technology, and innovation gap". [Online]. Available: https://www.deloitte.com/us/en/services/consulting/content/cloud-strategy-innovation-survey-report.html
- [8] Suraj Patel, "Migrating To the Cloud: A Step-By-Step Guide for Enterprise," IRE Journals, 2023. [Online]. Available: https://www.irejournals.com/formatedpaper/1707193.pdf
- [9] Dr. Ibraheem Alzahrani, "The Use of Cloud Computing in Higher Education: Reality, Expectation and Challenges," The West East Institute, 2015. [Online]. Available: https://www.westeastinstitute.com/wp-content/uploads/2015/07/Ibraheem-Alzahrani.pdf
- [10] Vincent Ugwueze, "Cloud Native Application Development: Best Practices and Challenges," ResearchGate, 2024.

 [Online].

 Available:

 https://www.researchgate.net/publication/387296473 Cloud Native Application Development Best Pract ices and Challenges