
Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 417 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Cost-Aware CI/CD Systems: Techniques for Cloud Cost

Optimization in Build and Release Pipelines

Sridhar Nelloru

Cisco, USA

ARTICLE INFO ABSTRACT

Received:01 Sept 2025

Revised:10 Oct 2025

Accepted:20 Oct 2025

As businesses expand their engineering activities across distributed teams and

multi-cloud infrastructures, the cost of Continuous Integration and Continuous

Delivery pipelines has become a latent but significant operational cost.

Enterprises spend a lot on establishing automated testing, validating, and

deploying workflows, but have no end-to-end visibility into the costs of the

associated infrastructure. This article presents cost-conscious CI/CD that

allows engineering teams to monitor, budget, and optimize pipeline

expenditure through realistic tagging practices, observability models, and

reporting infrastructure. The recommended methods promote financial

responsibility with development velocity and reliability requirements

sustained. An example case from a huge-scale business deployment illustrates

the efficacy of these methods and achieves sizable cost savings for the

company. Modern CI/CD implementations usually eat large chunks of overall

cloud infrastructure budgets, but this cost is not usually subjected to the same

scrutiny as the cost of production workloads. Old approaches privilege CI/CD

infrastructure as a utility service to be consumed without bounds, establishing

a tragedy of the commons situation in which individual teams have little reason

to optimize pipeline efficiency. Key implementation challenges, technical

limitations, and potential future directions are considered to yield a

comprehensive framework for organizations that would like to maximize their

CI/CD infrastructure investments.

Keywords: CI/CD Cost Optimization, Cloud Resource Allocation, Pipeline

Cost Attribution, Infrastructure Tagging Strategies, DevOps Financial

Accountability

1. Introduction

CI/CD pipelines have become basic building blocks of contemporary software delivery methodologies,

allowing organizations to deliver deployment frequencies that were previously impossible through

manual means. These self-service systems coordinate intricate workflows involving source code

compilation, unit testing, integration validation, security scanning, artifact creation, and incremental

deployment strategies across various environments [1]. The patterns of resource utilization in these

pipelines usually go unseen and untuned, and as a result, there is a tremendous amount of waste and

operational inefficiency that accumulates with organizations scaling engineering operations. Modern

CI/CD practices usually take up somewhere between 15% and 40% of overall cloud infrastructure

expenses, but this cost is often not given the same amount of scrutiny as production workload costs.

As companies grow their development teams and product catalogs, centralized CI/CD platforms often

support hundreds of engineering teams across several business units and geographies. This scale

presents considerable difficulty in linking usage of resources with parties held accountable, designing

accountability structures, and applying fruitful cost optimization approaches. Conventional methods

view CI/CD infrastructure as a utility service with no limits of consumption, leading to a tragedy of the

commons situation where each team has little incentive to optimize the efficiency of their pipeline.

The economic implications of this strategy grow more difficult as cloud computing prices increase and

companies are under pressure to show return on investment for their engineering infrastructure

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 418 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

spending. Enterprise deployments analysis shows that typical pipeline run times vary from 8 minutes

for microservice builds to 45 minutes for monolithic applications, with compute costs proportionally

varying from $0.40 to $4.20 per run based on infrastructure settings and test coverage demands.

This paper supports a core change in organizational culture and technical design, suggesting that

CI/CD infrastructure must be viewed as metered, cost-assigned resources like other cloud resources.

The study presents end-to-end methods to make engineering teams cost-conscious without sacrificing

critical productivity metrics or reliability levels. By applying fine-grained tracking, transparent

reporting, and smart optimization approaches, organizations can reduce costs significantly without

compromising pipeline efficiency or developer experience. The suggested framework is designed to

easily integrate with current CI/CD platforms such as Jenkins, GitLab CI/CD, GitHub Actions,

CircleCI, and cloud-native services like AWS CodePipeline and Azure DevOps, making it widely

applicable across a variety of technology stacks.

1.1 Motivation and Problem Statement

In most modern organizations, CI/CD systems are provisioned as gratis shared services from the

vantage point of individual development teams. Engineering teams invoke automated builds, run

large test suites, and initiate deployment workflows without having any knowledge or regard for the

associated infrastructure expense. This disconnect between usage and responsibility creates a number

of systemic issues that deteriorate over time as the organization grows. Teams also often put in place

redundant and costly validation steps that offer small incremental value, such as executing full

regression test suites on each commit instead of having smart test selection strategies in place.

Infrastructure resources sit idle or heavily underutilized because of ineffective scheduling algorithms

and always-on runner configurations that use up compute capacity independent of actual workload

demand.

Definitions in pipelines grow larger over time as groups introduce new validation steps without

eliminating old, deprecated, or redundant phases, resulting in workflows that use too much compute

power and unnecessarily increase build times. The combined impact of these inefficiencies produces

high operational overhead for centralized DevOps teams responsible for infrastructure capacity

management, performance issue troubleshooting, and budget overrun recovery without full visibility

into which projects or teams are consuming the resources. Enterprise organizations generally see 20%

to 35% CI/CD infrastructure costs growth annually, fueled mainly by team growth and higher

automation instead of corresponding business value delivery [2].

The basic objective of this research is to offer an end-to-end, actionable approach to making CI/CD

costs transparent and traceable at the team level, promoting fiscal responsibility through open-

reporting and incentives within organizations, allowing data-driven optimization based on empirical

usage patterns and cost analysis, and implementing artificial intelligence and machine learning

methods to predict, control, and optimize CI/CD spending within an organization. By meeting these

goals, organizations are able to turn their CI/CD systems from unmanaged cost centers into managed,

cost-effective infrastructure that provides quantifiable business return while running within specified

budget allowances.

2. CI/CD Cost Metrics Per Team

Providing complete cost visibility entails the establishment of and measurement of a consistent set of

standardized metrics that effectively measure consumption patterns for resources across various

pipeline configurations and run environments. The following metrics are critical data points to use in

attributing and analyzing CI/CD costs at the team-level granularity, allowing comparative analysis

and the establishment of areas for optimization.

Total pipeline spend is the sum of all the costs of the resources spent by a team's CI/CD pipelines

within a given time frame, usually monthly or quarterly. This measurement captures compute

resources such as virtual machine hours, container runtimes, and serverless function calls, storage

fees for build output, container images, test results, and logs, network transfer charges for distributing

artifacts and data transfer between regions, and licensing fees for commercial tools plugged into the

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 419 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

pipeline [3]. Enterprise deployments tend to budget large sums for centralized CI/CD infrastructure

serving several engineering teams, whose cost per team can differ considerably as a function of

pipeline complexity, execution frequency, and resource allocation patterns.

Cost per build or job offers a normalized measurement that allows for comparison among teams with

varying execution frequencies and patterns of workloads. This measure is derived by dividing overall

monthly spend by the number of successful build runs, offering pipeline efficiency insight regardless

of scale. Organizations that use this measure generally find high variability between teams with

lightweight microservice builds using containerized environments and cached dependencies having

significantly reduced costs over large, complex monolithic applications involving in-depth

compilation, full test execution across many environments, and artifact production for many

deployment targets. These differences yield useful data for the identification of optimization potential

via architectural refactoring, dependency management optimizations, and test suite optimization

techniques. Resource consumption breakdown metrics break down aggregated costs into parts such as

virtual CPU hours used across pipeline stages, memory allocation in GB-hours based on peak usage

patterns, permanent and transient disk storage needs, and network bandwidth used for artifact

exchanges and outside service communications. Detailed instrumentation of these metrics enables

engineering teams to identify specific bottlenecks and optimization opportunities within their pipeline

architecture. Memory-intensive compilation stages may benefit from vertical scaling to reduce

execution time while maintaining equivalent or lower total cost, whereas network-bound artifact

publishing stages might achieve better cost efficiency through content delivery network integration or

regional artifact caching strategies. Idle resource cost measures wasted spend due to provisioned but

unused infrastructure capacity. This measurement is most important for organizations with always-on

build agents or poorly scheduled pipeline runs that leave compute resources idle at night [4].

Enterprise CI/CD deployments are usually analyzed and found to have idle resource expenses that

account for significant percentages of total infrastructure spend, which are substantial areas of

optimization potential through better scheduling algorithms, ephemeral agent provisioning, and

workload consolidation techniques. Organizations that used auto-scaling configurations on build

agents, set up to scale zero to full capacity based on queue depth measurements, have realized

spectacular idle cost savings over conventional always-on infrastructure patterns.

Pipeline failure rate and frequency metrics give insight into cost-effectiveness and efficiency in

running operations. High-failure-rate teams are much more expensive because failed builds absorb

resources and create no value, and invoke automatic retry mechanisms, which consume a lot of

resources. Rolling out pre-commit validation hooks, enhancing test stability using improved isolation

and determinism, and using progressive deployment techniques that fail fast can greatly enhance

these metrics while minimizing related expenses.

Table 1: CI/CD Cost Metrics Framework [3, 4]

3. Cost Attribution Methods and Implementation Strategy

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 420 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Cost attribution within common CI/CD environments calls for advanced allocation methods that are

accurate, lightweight, and align with organizational incentives. There are various allocation methods,

each with unique features that are appropriate for various organizational infrastructures and levels of

operational maturity.

3.1 Cost Allocation Methodologies

The even split method allocates total shared cost equally across all projects or teams using the CI/CD

platform, ignoring actual usage patterns. This method provides optimal simplicity with low

implementation cost, involving no tagging or usage-tracking infrastructure. It results in poor

attribution accuracy and creates perverse incentives for heavy users to subsidize light users, which will

deter optimization efforts by already efficient teams. Organizations use this approach only in the case

of first-time cost awareness programs or infrastructure items where tracking detailed usage is

technically not possible.

Fixed allocation allocates predetermined cost percentages to teams on the basis of organizational

structure, number of employees, or past expenditure behavior. This approach gives stable cost

attribution that helps budgeting and financial planning functions with moderate implementation

complexity. Engineering leadership sets allocation percentages by negotiation or review of historical

usage habits, then uses the ratios to allocate monthly infrastructure expenses. Although more refined

than even splitting, fixed allocation does not capture actual usage fluctuations over time and may

reinforce historical inefficiencies instead of rewarding optimization [5]. Organizations typically

employ fixed allocation for shared infrastructure parts such as centrally located artifact repositories,

security scan services, and monitoring systems that offer organization-wide functionality.

Usage-based allocation has costs apportioned in proportion to actual consumption of resources

tracked through detailed measurements of compute time, job runs, storage usage, and network

transfer volumes. This strategy supports the highest attribution accuracy and most compelling

optimization incentives, as teams see firsthand the cost impact of their pipeline configuration choices.

Its deployment necessitates extensive tagging schemes, granular usage monitoring instrumentation,

and data processing pipelines to sum up consumption metrics and derive team-specific expenditures.

The formulaic calculation of usage-based allocation computes team cost as team usage multiplied by

total usage and then divided by total shared cost, with usage being expressed in terms of compute

hours, job quantity, data transfer, or composite measures of two or more dimensions.

Hybrid cost allocation models integrate aspects of fixed and variable cost allocation to reconcile

disparate organizational goals [6]. A popular hybrid strategy assigns a fraction of costs equally to

create joint ownership of platform functionalities and allocates the rest in proportion to usage to

create incentives for optimization, while not causing extreme cost volatility that makes budgeting

processes difficult. Companies using hybrid models indicate that they have achieved high cost

attribution accuracy and kept higher cost predictability and organizational acceptability.

3.2 Implementation Strategy and Architecture

Cost-conscious implementation of CI/CD systems involves organizational, process, and cultural

changes as well as technical infrastructure modifications. The implementation strategy adopts a

phased approach starting with basic tagging and gathering data, followed by automated alerting and

reporting, and leading to ongoing optimization with the help of machine learning methods.

The initial stage formulates a thorough tagging strategy that prescribes standard metadata labels that

facilitate cost attribution and resource tracing across disparate CI/CD infrastructure. Core tags are

team identifier that defines the engineering team or business unit owning the pipeline, repository

name that correlates costs with specific code repositories and projects, environment designation that

differentiates development, staging, production, and special validation environments, a pipeline

identifier that allows tracking of costs through complicated multi-stage workflows, and a cost center

alignment that makes integration with enterprise financial systems easier. Standard tagging

documentation in centralized wikis or developer portals guarantees its uniform implementation

across teams and easy onboarding of new staff.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 421 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The second stage incorporates tag mechanisms into CI/CD pipeline definitions and infrastructure

provisioning workflows. Pipeline-as-code configurations deployed in YAML, JSON, or domain-specific

languages must have tag declarations that are automatically inherited by all resources provisioned

during pipeline runs. Ephemeral compute resources, such as containerized build agents, virtual

machine instances, and serverless function invocations, must be assigned proper tags at the time of

their provisioning life cycle to ensure proper cost tracking.

The third stage includes enforcement mechanisms and automated usage data collection systems for

guaranteeing tagging compliance and deriving detailed usage metrics. Organizations must install

policy-as-code frameworks for confirming tag existence and accuracy before pipeline execution or

resource provisioning. Data collection systems collect usage metrics from multiple sources, such as

cloud billing APIs, CI/CD platform logs, container orchestration systems, and network monitoring

tools.

Table 2: Cost Allocation Methodologies [5, 6]

4. Case Study: Cost-Aware CI/CD at Enterprise Scale

4.1 Context of Implementation and Initial State

A centralized CI/CD platform supporting multiple engineering teams across an application

performance management product organization consumed substantial monthly infrastructure costs

across cloud and on-premises data centers, with no visibility into per-team consumption patterns or

cost drivers. The platform orchestrated thousands of pipeline executions monthly, utilizing

heterogeneous infrastructure including always-on Jenkins agents running on large EC2 instances

consuming significant vCPU cores continuously, containerized build environments deployed on

Kubernetes clusters with substantial aggregate capacity, specialized build agents for mobile and

embedded platforms running on dedicated hardware, and extensive storage infrastructure

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 422 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

maintaining substantial volumes of build artifacts, container images, and test results across

distributed object storage systems [7].

Engineering teams had evolved pipelines independently over multiple years, resulting in substantial

variation in efficiency and cost effectiveness. Analysis of baseline pipeline characteristics revealed that

teams were triggering comprehensive regression test suites on every commit, regardless of code

change scope, consuming significant compute time and infrastructure costs per execution. Large-scale

integration test environments remained provisioned continuously even during off-hours and

weekends when minimal development activity occurred, consuming considerable monthly idle

resource costs. Teams maintained excessive artifact retention policies, keeping all build outputs

indefinitely rather than implementing intelligent cleanup strategies, resulting in storage costs growing

annually without corresponding business value. Performance profiling demonstrated that compilation

stages consumed substantial portions of total pipeline execution time, with automated testing

representing the largest share, followed by security scanning and artifact generation comprising

smaller portions of the overall workflow duration.

4.2 Implementation Process and Technical Architecture

The implementation process followed a phased rollout beginning with pilot teams and progressively

expanding to the entire organization. The initial phase established a comprehensive tagging taxonomy

including team identifier, product component, repository name, environment type, pipeline stage, and

cost center alignment. DevOps teams developed shared libraries providing reusable pipeline

components that automatically injected required tags into all provisioned resources, reducing

implementation burden for individual engineering teams. Infrastructure provisioning templates were

updated to include tag propagation logic, ensuring all EC2 instances, Kubernetes pods, Lambda

functions, and storage resources received appropriate metadata.

Policy validation rules implemented through cloud governance frameworks and automated functions

validated tag compliance across all resources, with automated alerting for remediation of non-

compliant infrastructure. The enforcement mechanism initially operated in audit mode for several

weeks, allowing teams to adapt their workflows before transitioning to enforcement mode, which

prevented provisioning of untagged resources. During the audit phase, tagging compliance improved

substantially as teams gradually adopted standardized practices.

The data collection and processing architecture leveraged cloud cost APIs to extract detailed billing

data at hourly granularity, correlated with monitoring metrics providing resource utilization data, and

platform APIs extracting job execution metadata including duration, resource consumption, and

success rates [8]. These data sources were aggregated through Apache Kafka streaming pipelines

processing millions of events daily, with Apache Spark jobs performing attribution calculations and

generating team-specific cost summaries. Results were stored in Amazon Redshift analytical

databases, enabling complex queries and time-series analysis of cost trends across multiple

dimensions.

Custom dashboard applications built with modern web frameworks provided engineering teams with

self-service access to their cost data through intuitive visualizations. The dashboard presented

monthly spending trends showing week-over-week and month-over-month comparisons, comparative

analysis against peer teams enabling benchmarking, detailed breakdowns by pipeline and job type

revealing cost concentration patterns, identification of top cost-driving workflows consuming

disproportionate resources, and actionable recommendations for optimization opportunities derived

from usage pattern analysis. Integration with Slack communication platforms enabled automated

weekly cost reports delivered directly to team channels, reducing friction for cost data consumption

and maintaining continuous visibility into infrastructure expenditure patterns.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 423 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Table 3: Enterprise Implementation Phases [7, 8]

5. Challenges, Limitations, and Future Directions

5.1 Implementation Challenges and Mitigation Strategies

Implementation of cost-conscious CI/CD systems faced a number of key challenges that organizations

can expect and prepare for when undertaking similar initiatives. Comprehensive tagging compliance

in all teams and infrastructure elements was achieved through persistent effort and organizational

dedication. Early tagging coverage was only 58% within the first month of rollout, with wide variation

across teams from 89% compliance among early adopter teams to 12% among teams that had complex

legacy pipeline environments. The application of tag standards enforcement via policy-as-code

frameworks created pushback from certain engineering teams that saw compliance obligations as

bureaucratic overhead slowing development speed [9].

Mitigation efforts centered on minimizing implementation friction via reusable pipeline parts,

automated tag injection systems, and phased enforcement timeframes, enabling teams to

incrementally adjust workflows. The offer of extensive documentation, sample pipeline

configurations, and support channels manned by DevOps engineers assisted teams in resolving

technical issues and lowered time-to-compliance from a mean of 14 weeks to 8 weeks. Sponsorship

from engineering leadership at the executive level was instrumental in creating organizational buy-in

and responsibility for tagging compliance with team-level compliance metrics included in quarterly

business reviews and performance reviews.

Shared resource charges attribution posed constant technical challenges because of limitations in the

underlying infrastructure monitoring, and billing infrastructures. Shared caches, such as Docker layer

caches and dependency artifact repositories, benefit multiple teams at the same time, rendering

accurate cost attribution mathematically unsolvable without arbitrary allocation heuristics. Nested

container structures in which build containers run inside bigger orchestration environments introduce

attribution uncertainty since infrastructure expenses at the cluster level need to be broken down to

individual container runs via inference and estimation. Cloud billing information has latency of 12 to

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 424 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

24 hours, disallowing actual real-time cost monitoring and introducing temporal misalignment

between resource usage and cost attribution.

Organisational change management was among the most important challenges that arose, since cost

consciousness implied a cultural shift in engineering and team responsibility. The initial resistance

took the form of doubt regarding the accuracy of cost data, fear of being penalized for issues outside

team control, and concern over budget limitations hampering innovation and testing. Survey

information gathered in the initial quarter of implementation showed that 37% of engineers reported

apprehension regarding the fairness of cost allocation, whereas 28% reported concerns about the

accuracy of methods of attributing costs. Intervening in these apprehensions involved open

communication, highlighting that cost consciousness was intended to maximize efficiency, not to

enact arbitrary budget reductions, and that funds saved could be reallocated to higher-value projects.

5.2 Technical Limitations and Future Research Directions

Existing cost attribution methods have a number of technical constraints that present areas for future

tool development and research. The validity of usage-based cost allocation hinges critically on the

granularity and accuracy of underlying measures of resource utilization, which differ significantly

between different CI/CD systems and infrastructure providers [10]. Container orchestration layers

have pod-level metrics available through APIs, but these are scheduled requests for resources rather

than actual usage, over-attribute costs by 15% to 35% for underloaded containers.

Subsequent research needs to explore hybrid attribution models, which blend several data sources

such as billing APIs, usage metrics, and performance telemetry in order to provide more accurate cost

attribution with less instrumentation overhead. Machine learning methods may be able to deduce

fine-grained patterns of resource usage from coarse-grained bill information through correlation with

high-level telemetry on representative sample workloads in order to provide precise cost attribution

even for infrastructure that does not have extensive instrumentation.

Table 4: Implementation Challenges and Solutions [9,10]

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 425 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Conclusion

CI/CD environments are a massive but traditionally underappreciated cost category in contemporary

software development, with corporate organizations often pouring enormous sums into infrastructure

without corresponding visibility, attribution, or optimization potential. The methods outlined

illustrate how applying cost-conscious practices via full-spectrum tagging strategies, open-reporting

mechanics, and organizational accountability systems allows for significant cost savings while at the

same time enhancing pipeline efficiency and developer experience. This enterprise deployment case

affirms these methods under real-world conditions with extensive monthly cost savings equating to a

substantial decrease in overall CI/CD infrastructure expenditures. The framework discussed here

prioritizes practical implementation plans, balancing precision with ease, with the understanding that

ideal cost attribution is frequently unrealistic and unwarranted as long as teams remain well-enough

informed to notice significant areas of potential optimization and measure improvement over time.

Phased deployment, starting with pilot teams and gradually rolling out throughout the organization,

reduces disruption while developing organizational capacity and delivering value. Integration of

artificial intelligence and machine learning methods allows proactive management of costs, anomaly

identification, and smart provisioning of resources that augment human judgment instead of trying to

replace it. Organizations undertaking cost-conscious CI/CD projects should be aware that technical

deployment is merely one aspect of the change involved. Organizational change management, cultural

transformation toward collective accountability, and leadership focus on addressing infrastructure

efficiency as a priority goal are equally important success criteria. The most effective deployments tie

cost optimization into larger engineering excellence programs, framing efficient use of resources as a

professional obligation and best practice in engineering instead of a budget restriction dictated by

business management. Key areas for future development are the deployment of more sophisticated

machine learning methods to predictive cost modeling and automated optimization, the establishment

of more sophisticated cost attribution methods for advanced shared infrastructure, and the

development of end-to-end platforms optimizing multiple aspects of engineering effectiveness at once.

As the cost of cloud computing increases and companies are under greater pressure to show return on

investment for engineering infrastructure, cost-conscious CI/CD practices will shift from

discretionary optimization options to fundamental operational capabilities.

 References

[1] M. Lokesh Gupta, et al., “Continuous Integration, Delivery and Deployment: A Systematic Review

of Approaches, Tools, Challenges and Practices," Recent Trends in AI-Enabled Technologies,

2024. Available: https://link.springer.com/chapter/10.1007/978-3-031-59114-3_7

[2] Valerie Silverthorne and Stephen Hendrick, "Cloud Native 2024: Approaching a Decade of Code,

Cloud, and Change," The Linux Foundation, 2025. Available: https://www.cncf.io/wp-

content/uploads/2025/04/cncf_annual_survey24_031225a.pdf

[3] Alexandru Iosup, et al., "On the Performance Variability of Production Cloud Services, "IEEE

Xplore, 2011. Available: https://ieeexplore.ieee.org/document/5948601

[4] Trieu C. Chieu, et al., "Dynamic Scaling of Web Applications in a Virtualized Cloud Computing

Environment," IEEE Xplore, 2009. Available: https://ieeexplore.ieee.org/document/5342101

[5] Luis M. Vaquero, et al., "A Break in the Clouds: Towards a Cloud Definition," ACM SIGCOMM

Computer Communication Review, 2009. Available: http://ccr.sigcomm.org/online/files/p50-

v39n1l-vaqueroA.pdf

[6] Michael Armbrust, et al., "A view of cloud computing," ACM Digital Library, 2010.

Available:https://dl.acm.org/doi/10.1145/1721654.1721672

[7] Deepal Jayasinghe, et al., "Improving Performance and Availability of Services Hosted on IaaS

Clouds with Structural Constraint-Aware Virtual Machine Placement," IEEE Xplore, 2011.

Available: https://ieeexplore.ieee.org/document/6009246

https://link.springer.com/chapter/10.1007/978-3-031-59114-3_7
https://www.cncf.io/wp-content/uploads/2025/04/cncf_annual_survey24_031225a.pdf
https://www.cncf.io/wp-content/uploads/2025/04/cncf_annual_survey24_031225a.pdf
https://ieeexplore.ieee.org/document/5948601
https://ieeexplore.ieee.org/document/5342101
http://ccr.sigcomm.org/online/files/p50-v39n1l-vaqueroA.pdf
http://ccr.sigcomm.org/online/files/p50-v39n1l-vaqueroA.pdf
https://dl.acm.org/doi/10.1145/1721654.1721672
https://ieeexplore.ieee.org/document/6009246

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 426 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

[8] Jez Humble and Joanne Molesky, "Why Enterprises Must Adopt DevOps to Enable Continuous

Delivery," Cutter IT Journal, 2011. Available: https://www.cutter.com/article/why-enterprises-

must-adopt-devops-enable-continuous-delivery-416516

[9] Michal, "The Rise of DevOps: Integrating Development and Operations for Seamless Software

Delivery," Future Code IT Consulting, 2024. Available: https://future-

code.dev/en/blog/integrating-development-and-operations-for-seamless-software-delivery/

[10] Ang Li, et al., "CloudCmp: comparing public cloud providers," ACM Digital Library, 2010.

Available: https://dl.acm.org/doi/10.1145/1879141.1879143

https://www.cutter.com/article/why-enterprises-must-adopt-devops-enable-continuous-delivery-416516
https://www.cutter.com/article/why-enterprises-must-adopt-devops-enable-continuous-delivery-416516
https://future-code.dev/en/blog/integrating-development-and-operations-for-seamless-software-delivery/
https://future-code.dev/en/blog/integrating-development-and-operations-for-seamless-software-delivery/
https://dl.acm.org/doi/10.1145/1879141.1879143

