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The increasing penetration of Electric Vehicles (EVs) and rooftop photovoltaic (PV) 

systems introduces substantial operational complexities into radial distribution networks, 

including voltage instability, harmonic distortion, and uneven power flows. Existing 

methodologies often treat planning and control separately, lacking real-time adaptability 

under stochastic demand-generation patterns. To bridge this critical gap, this study 

proposes a novel Multi-Objective Differential Parrot Optimization (MODPO) algorithm 

integrated with a Hierarchical Reinforced Predictive Load Control (HRPLC) framework. 

The MODPO algorithm ensures optimal siting and sizing of EV charging stations and PV 

units by minimizing power loss, voltage deviation, and operational cost. Simultaneously, 

HRPLC coordinates dynamic G2V/V2G operations using a deep deterministic policy 

gradient (DDPG) agent embedded within a predictive MPC layer. Extensive simulations 

on an IEEE 69-bus system show a 60.38% cost reduction, 9.84 kW loss minimization, and 

voltage deviation contained to 4.06%, while 100% PV utilization is achieved under 

harmonic and voltage unbalance constraints. This unified optimization-control 

framework provides a scalable pathway for reliable, cost-efficient, and quality-assured 

operation of future distribution networks with high DER proliferation. 

 

Keywords: Electric vehicles (EVs), Distributed Renewable Energy Sources (DRES), 

energy management, Reinforcement Learning (RL), and Optimization. 

1. Introduction 

The increasing urgency to address carbon dioxide emissions and mitigate global warming, 

coupled with the transition toward zero-emission transportation, has accelerated the adoption of Plug-

in Electric Vehicles (PEVs). These vehicles are anticipated to significantly contribute to lowering air 

pollution levels in the transportation sector [1]. Moreover, implementing effective strategies for PEV 

operation and charging schedule optimization can yield substantial economic advantages, including 

notable reductions in fuel expenditure. Unlike traditional internal combustion engine vehicles, PEVs 

rely on battery recharging through charging stations connected to the power grid [2]. Consequently, 

PEVs introduce additional load on distribution networks, which, if not properly managed, can lead to 

challenges such as transformer and transmission line overloading, increased power losses, peak 

demand surges, poor voltage profiles, and overall voltage stability concerns [3]. Uncoordinated PEV 

charging and improper placement of charging stations further exacerbate these issues, necessitating 

strategic planning for optimal Electric Vehicle Charging Stations (EVCS) integration [4]. The 

integration of EVCS powered by Renewable Energy Sources (RES), such as solar and wind, plays a 
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crucial role in promoting sustainable energy solutions and mitigating greenhouse gas emissions [5]. The 

increasing adoption of EVs is primarily driven by the rising costs of fossil fuels and the global push 

towards eco-friendly transportation [6]. However, this surge in EV demand places a significant burden 

on the existing grid infrastructure. In this context, EVCSs that utilize RES like PV and wind power offer 

a viable alternative to conventional grid-based charging stations, thereby enhancing sustainability and 

reducing dependency on fossil fuels [7]. 

RES, particularly solar PV systems, have become increasingly prominent in reducing 

environmental pollution and mitigating the greenhouse effect [8]. As a well-established and widely 

adopted power generation technology, PV energy aligns with the Sustainable Development Goals and 

enhances energy security. With advancements in distributed generation (DG), PV systems can now 

operate on a smaller scale as Distributed Energy Resources (DERs) [9]. This decentralized approach to 

power generation ensures that energy is supplied closer to the load demand, thereby minimizing 

transmission losses and enhancing system efficiency. Nevertheless, photovoltaic (PV) energy is 

inherently intermittent and variable, primarily influenced by fluctuations in solar irradiance, transient 

cloud cover, the orientation of panels, and the accumulation of dust, all of which can adversely impact 

the stability of power generation [10]. Furthermore, substantial PV penetration within distribution 

networks may lead to operational challenges, including voltage rise, reverse power flow, and elevated 

energy losses, thereby underscoring the necessity for well-optimized PV integration methodologies [11]. 

However, inadequate integration of large-scale EVCSs can pose significant risks to power 

systems, including distribution feeder imbalances, increased current levels, and bi-directional power 

flow complications [12]. Moreover, unregulated and haphazard EV charging can result in excessive 

power losses and voltage fluctuations that exceed permissible limits, potentially compromising grid 

stability and reliability. To address these challenges, optimal EVCS placement in distribution networks 

is essential to minimize adverse effects and ensure efficient operation [13]. Several studies have focused 

on employing heuristic techniques for optimizing EVCS allocation within distribution networks. 

Heuristic algorithms are widely favoured due to their ability to provide rapid and practical solutions for 

scheduling and planning problems [14]. These algorithms offer immediate and easily interpretable 

results, making them particularly suitable for real-world applications. Through the application of 

heuristic optimization techniques, researchers seek to determine optimal locations for EVCSs that 

minimize adverse effects on the power grid, improve overall energy utilization, and facilitate the smooth 

integration of RES [15]. With the rapid shift toward sustainable transportation, the formulation of 

advanced optimization frameworks for EVCS deployment becomes essential to maintaining the long-

term reliability, stability, and resilience of contemporary power distribution systems. In this context, 

the present study proposes an innovative co-optimization and control framework designed for the 

strategic planning and adaptive management of distribution networks characterized by substantial PV 

and EV penetration based upon the following contribution: 

• A MODPO algorithm is developed to ensure optimal siting and sizing of PV systems and EV charging 

stations, minimizing power loss, voltage deviation, and operational cost under multi-constraint 

conditions. 

• A Hierarchical Reinforced Predictive Load Control (HRPLC) strategy is proposed, combining DDPG-

based real-time learning with MPC-based grid forecasting to coordinate G2V/V2G dynamics adaptively. 

• The proposed system integrates harmonic filtering and smart inverter control, enabling power quality 

preservation through localized voltage and THD mitigation. 

• Extensive simulations on the IEEE 69-bus network validate the framework's superiority over existing 

methods, showing significant reductions in operational cost (60.38%), power losses (9.84 kW), and 

enhanced PV utilization (100%). 

Section 2 describes the literature works done much related to this proposed work. Section 3 details 

the proposed MODPO and HRPLC frameworks. Section 4 presents simulation setups and data 
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generation processes and discusses results, comparative analysis, and sensitivity studies. Finally, 

Section 5 concludes with key findings and future research directions. 

2. Literature Survey 

In recent years, the rapid adoption of EVs has significantly increased the focus on deploying 

EVCS as a key element in promoting environmental sustainability. A substantial body of literature has 

explored the environmental benefits associated with EVCS, yet integrating these stations into existing 

distribution grids poses considerable challenges. Researchers have reported that the incorporation of 

DRES and Battery Energy Storage Systems can further complicate grid operations, leading to issues 

such as elevated power losses and voltage instability. To address these technical challenges, recent 

studies have increasingly investigated smart charging schemes, where the distribution system operator 

(DSO) strategically oversees EV charging operations to achieve specific technical and financial 

objectives. This literature survey provides an overview of current research on EVCS integration, 

highlighting the complex interplay between renewable integration, grid stability, and the emerging role 

of smart charging strategies.  

Ali et al. [16] developed a multi-objective planning framework aimed at determining the 

optimal placement of EVCSs alongside the sizing and siting of RES. The framework addresses three key 

objectives: minimizing voltage deviations, reducing line energy losses, and improving EV user 

satisfaction. The optimization strategy incorporates advanced control mechanisms for coordinating 

RES inverter operations with EVCS charging and discharging processes. To address the inherent trade-

offs among the objectives and variables, a two-level multi-objective metaheuristic was formulated using 

the Multi-Objective Dragonfly Algorithm. Evaluations across three case studies demonstrated 

substantial performance gains, with RES-enabled inverters delivering improved reactive power 

support, reducing voltage deviations by 96%, and decreasing energy losses by 71%. 

Ahmadi et al. [17] proposed a robust and adaptable optimization methodology for managing 

the bidirectional charging of PEVs, employing a stochastic, multi-objective heuristic approach based on 

the Firefly Algorithm. The framework seeks to minimize operational costs and CO₂ emissions while 

accounting for uncertainties related to RES generation, load demand, and charging/discharging 

schedules. Implemented on a modified IEEE 69-bus system within a MATLAB simulation environment, 

the method achieved a 48% reduction in operating expenses and a 55% decrease in CO₂ emissions. The 

results further suggested operating PEVs in grid-to-vehicle (G2V) mode when electricity prices and 

emission levels are low, and adopting vehicle-to-grid (V2G) operation during periods of high prices and 

emissions. This approach yielded notable economic benefits for PEV owners, with daily cost savings 

estimated at $787.7, while improving the network’s voltage profile by up to 6%. 

Muthusamy et al. [18] introduced the Honey Badger Optimization Algorithm (HBOA), a 

novel metaheuristic designed to enhance convergence speed and optimize multi-objective performance 

metrics. The algorithm determines EVCS placement by considering V2G operation capabilities and user 

driving patterns over a full 24-hour period. When tested on the modified IEEE 69-bus and the Indian 

28-bus radial distribution networks, the method delivered significant outcomes, including a 62% 

reduction in power losses for the IEEE 69-bus system and a 66% reduction in CO₂ emissions for the 

Indian 28-bus system. 

KK.N. et al. [19] investigated the influence of EVs and RES on the Voltage Unbalance Factor (VUF) 

and operational characteristics of distribution networks, including voltage stability, reliability, and the 

voltage–reliability–power loss (VRP) index, using a modified IEEE 33-bus system under three distinct 

operating scenarios. To maintain VUF within acceptable thresholds, a coordinated charging–

discharging strategy was proposed. The inherent uncertainties in solar and wind generation, as well as 

their availability during varying load demands, were modeled using a Monte Carlo Simulation (MCS). 

A fuel cell system was incorporated as a backup source to address variability in renewable generation. 
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The optimization problem was solved using two metaheuristic approaches: a modified JAYA algorithm 

and the Whale Optimization Algorithm (WOA). 

Abdelaziz et al. [20] addressed the optimal placement and sizing of EVCSs, PV units, and 

Distribution Static Compensators (DSTATCOMs) to enhance grid performance. The study employed 

the Renewable Distributed Generation Hosting Factor (RDG-HF) and EV Hosting Factor (EV-HF) as 

primary metrics, in combination with the Hippopotamus Optimization Algorithm (HO) for strategic 

planning within the IEEE 69-bus network. Simulation results indicated power loss reductions of up to 

31.5% and reactive power loss reductions of up to 29.2%. An economic analysis demonstrated payback 

periods ranging from 2.7 to 10.4 years, with potential profits reaching $1,052,365 over a 25-year 

operational horizon. 

Niknami et al. [21] proposed a comprehensive operational planning framework for microgrids aimed 

at enhancing both economic performance and system resilience. The model incorporated uncertainties 

related to weather variability, EV charging patterns, RES integration, market price fluctuations, and 

load demand, while also accounting for EV user satisfaction and demand-side management. The 

approach coordinated network topology reconfiguration, EV movement patterns, and weather impacts, 

with MCS applied to represent uncertainties. A multi-objective optimization algorithm was employed 

to maximize profits for both network operators and private sector stakeholders. Results demonstrated 

notable improvements, including a 37.1% reduction in unsupplied energy costs, a 5% increase in 

operator profits, and a 23.1% increase in EVCS profits. 

Das et al. [22] developed a probabilistic load modeling framework for Plug-in Electric Vehicle (PEV) 

charging demand at public stations, utilizing probability distribution functions (PDFs) to represent 

charging start time, initial state of charge, and daily travel distance. A centralized scheduling scheme 

based on time-of-use (TOU) pricing was incorporated into a multi-objective smart charging model, 

which was reduced to a single-objective problem using the weighted sum method. The objectives 

considered included minimizing power losses, reducing load variance, and lowering charging costs. 

Testing on IEEE 33-bus and IEEE 69-bus distribution systems revealed that the proposed strategy 

enhanced grid performance while delivering economic benefits to consumers. 

Eisa et al. [23] focused on the optimal integration of distributed generators (DGs) into radial 

distribution networks (RDNs) operating under uncoordinated PEV charging conditions. The study 

sought to minimize daily energy losses, improve voltage profiles, and enhance voltage stability. The 

Walrus Optimization Algorithm (WO) was applied to determine the optimal DG locations and capacities 

while minimizing the multi-objective function (MOF) without violating network constraints. The 

proposed model was validated on IEEE 33-bus, IEEE 69-bus, and a real distribution system in El-

Shourok City (District 8), Egypt. Results confirmed that the WO-based approach significantly improved 

RDN performance when integrated with PEV loads, offering high-quality and computationally efficient 

solutions. 

Aljafari et al. [24] explored the often-overlooked aspect of reliability and resilience enhancement in 

DRES. The study introduced optimization techniques based on the Spotted Hyena Optimization 

Algorithm to determine the optimal size and location of DG units and EVCSs operating in V2G mode. 

The approach was designed to strengthen RDS performance by evaluating the effects of EVCS loads and 

DG integration on consumer and energy-oriented reliability indices, voltage stability, and power 

delivery capacity. 

Rene et al. [25] presented a hybrid optimization framework combining Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO) for the optimal siting of PEVCS within distribution networks with 

high Distributed Generation (DG) penetration. Photovoltaic units with a power factor of 0.95 were 

modeled as DGs, and six penetration scenarios were examined. The objective was to minimize both 

active and reactive power losses and reduce voltage deviation indices. The methodology was tested on 

IEEE 33-bus and IEEE 69-bus networks using MATLAB simulations. Results demonstrated that the 
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inclusion of PEVCSs maintained minimum bus voltages within acceptable limits, with the IEEE 69-bus 

case yielding a minimum voltage of 0.973 p.u. The findings reinforced the role of EV integration in 

reducing emissions and supporting the transition toward a carbon-neutral energy landscape. 

Table 1 Comparative table of existing literature works 

Reference Test 
system 

Scope Key performance 
gains 

Limitations 
identified 

[16] Modified 
69-bus 

Multi-objective EVCS & 
RES placement using 
MODA considering 
voltage deviation, losses, 
and user dissatisfaction 

Reduction in voltage 
deviation by 96%, 
decrease in energy 
loss by 71% 

Does not consider 
dynamic vehicle 
behavior or 
operational cost 

[17] Modified 
69-bus 

Stochastic EV 
charge/discharge 
optimization with Firefly 
algorithm under 
RES/load uncertainties 

Decrease in operating 
cost by 48%, decrease 
in CO₂ emissions by 
55%, increase in 
Voltage by 6% 

Ignores grid-side 
constraints and 
long-term 
planning aspects 

[18] 69-bus & 
Indian 28-
bus 

EVCS placement with 
V2G support using 
Honey Badger Optimizer 

Decrease in power 
loss by 62%, 
reduction in CO₂ 
emissions by 66% 

Demand 
forecasting and 
economic aspects 
not addressed 

[19] Modified 
33-bus 

Impact of EV & RES on 
VUF, VRP index; uses 
Monte Carlo + hybrid 
optimization 

Maintains VUF 
within limits, 
improves voltage and 
reliability 

Relies on assumed 
fuel cell backup, 
lacks cost-
performance 
analysis 

[20] 69-bus Optimal placement of 
PV, EVCS, and 
DSTATCOM using 
Hippopotamus 
Optimizer 

Power loss by 31.5%,  
Reactive losses 
decreased by 29.2%, 
Payback <10 years 

System-wide 
resilience and 
dynamic EV usage 
patterns not 
explored 

[21] Microgrid 
& Real-
world 
networks 

Operational planning 
with uncertainties in 
RES, EVs, and load; 
economic profit 
maximization 

Eliminated 
unsupplied energy by 
37%, improved EV 
profits by 23.1%, and 
operator profit by 5% 

High computation 
cost, lacks control 
flexibility for real-
time operation. 

[22] IEEE 33 & 
69-bus 

Smart PEV load 
modeling with multi-
objective pricing and 
charging control 

Improves load 
variance, cost, and 
power loss mitigation 

Focuses on 
centralized 
pricing; ignores 
reactive power 
and grid 
congestion 

[23] 33-bus, 69-
bus, Egypt 
Real 
System 

DG planning with EV 
integration using Walrus 
Optimizer 

Improved voltage 
profile and 
minimized daily 
energy loss 

No coordinated 
EV charge 
scheduling; 
reactive power 
handling limited 

[24] Radial 
network 

Resilience improvement 
with V2G-enabled EVCS 
and DG placement using 
Spotted Hyena 
Optimization 

Improved reliability 
indices and voltage 
stability 

Lacks economic 
analysis; limited 
consideration of 
user-side behavior 

[25] 33 & 69-
bus 

PEVCS placement with 
DG using GA-PSO; 
evaluates voltage and 
power loss 

Maintains voltage ≥ 
0.973 pu under high 
DG & PEVCS 
penetration 

Cost impact and 
THD/VUF factors 
not evaluated 
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Table 1 concisely presents comparative insights, contextualizes each study’s methodology and 

scope, and pinpoints where your proposed method fills the gap, especially regarding dynamic EV-PV 

coordination, cost reduction, and grid resilience under uncertainty. When studies overlook the 

unpredictable and variable charging demands of EV owners as well as the intermittency of renewable 

energy generation, they fail to account for several critical variables. On the EV side, these include the 

time when vehicles arrive and depart, the state-of-charge (SOC) upon arrival, the battery capacity, and 

the duration of charging sessions. On the renewable generation side, key variables include solar 

irradiance and temperature fluctuations, which are influenced by weather conditions such as cloud 

cover, temperature, and seasonal patterns, as well as the inherent ramp-up and ramp-down rates of 

solar panels and wind turbines. Together, these factors introduce significant uncertainty into system 

planning and operation, necessitating advanced modeling and management strategies to ensure grid 

stability and efficiency. 

3. Proposed Methodology 

To address the increasingly intricate interdependence between EVCS infrastructure and RES 

penetration in modern distribution systems, this study introduces a novel, holistic control strategy, 

Sustainable EVs Intelligent Management Framework (SEIMF), which unifies infrastructure planning 

with dynamic operational optimization. The existing works on EVCS-RES integration tend to 

compartmentalize optimization goals, often prioritizing cost or loss minimization, while overlooking 

critical grid reliability parameters, such as the Voltage Unbalance Factor (VUF), Total Harmonic 

Distortion (THD), and dynamic load imbalances induced by stochastic EV charging behaviours. 

Furthermore, RES, particularly PVs, are inherently intermittent and affected by environmental 

conditions, which compounds the complexity of real-time load and voltage management. Conventional 

methods often lack the adaptive capability to accommodate such volatility, leading to localized voltage 

deviations, thermal stress on grid components, and inefficient utilization of available renewable energy.  

 

Figure 1: System architecture of the proposed SEIMF framework integrating MODPO-

based planning and HRPLC-based control in EVCS-RES-grid coordination. 
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The SEIMF framework addresses these limitations by proposing an integrated architecture that 

combines infrastructure-level optimization with intelligent, decentralized control mechanisms. The 

overall architectural layout of SEIMF is illustrated in Figure 1, which displays the interplay between 

optimization, forecasting, learning control, and grid interfaces, facilitating comprehensive system 

coordination. At its core lies a novel Multi-Objective Differential Parrot Optimization (MODPO) 

algorithm, which simultaneously determines optimal siting and sizing of EVCS and PV systems using a 

two-phase search strategy that balances convergence efficiency and Pareto front diversity. A 

Hierarchical Reinforced Predictive Learning Control (HRPLC) module, wherein deep reinforcement 

learning (DRL) agents adaptively manage G2V/V2G operations based on real-time grid states and 

forecasted load-generation profiles, guided by a centralized Model Predictive Control (MPC) layer that 

forecasts grid dynamics over a 24-hour horizon, further augments this. The synergy between RL agents 

and MPC ensures pre-emptive voltage regulation and congestion avoidance. Additionally, the use of 

smart inverters embedded with harmonic filters facilitates localized power quality correction. By jointly 

addressing planning, operation, and quality aspects under a single integrated paradigm, SEIMF ensures 

grid resilience, economic feasibility, and environmental sustainability, demonstrating significant 

advancement over existing siloed approaches. 

3.1 Distribution System Model and Objective Functions 

The standard IEEE 69-bus radial distribution test system, which is frequently used in the 

literature to assess grid performance in distributed energy integration scenarios, is used to model and 

validate the suggested framework. With its high R/X ratios, unbalanced node configurations, and mix 

of residential and commercial load profiles, the network is an ideal testbed for evaluating the effects of 

RES and EVCS in real-world operating scenarios. Figure 2 illustrates the simplified architecture of the 

IEEE 69-bus radial distribution network incorporating PV generation and EVCS. The schematic 

highlights the integration of key system elements: the main grid connection at Bus 1, distributed feeder 

lines, and strategically located PV arrays and EVCS units across selected buses such as 11, 17, 52, and 

64. The PV array injects renewable power into the feeder, while EVCS units support both G2V and 

vehicle-to-grid (V2G) operations, dynamically interacting with the distribution system.   

 

Figure 2: Part of the network in the proposed distribution system model 

Selected nodes from the proposed methodology in this study are set up to support EVCS and 

PV arrays while maintaining system operational limitations like feeder capacity, phase load balancing, 

and voltage magnitude limits. To capture the variability introduced by PV generation, solar irradiance 
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and ambient temperature are modelled as time-dependent variables, with irradiance profiles derived 

from standardized test conditions and typical meteorological data. The EVCS is assumed to serve PEVs 

whose arrival, dwell time, and energy demand are modelled probabilistically, though detailed stochastic 

modelling is abstracted to maintain tractability. Power flows are computed using backward-forward 

sweep techniques, and the system is operated over a 24-hour time horizon divided into equal time slots 

to accommodate load and generation fluctuations. 

The planning and control tasks are framed as a constrained multi-objective optimization 

problem. The goal is to simultaneously minimize total real power losses 𝑃𝑙𝑜𝑠𝑠, voltage deviations 𝑉𝑑𝑒𝑣, 

operational cost 𝐶𝑜𝑝, VUF, and THD, while maximizing the effective utilization of renewable energy 𝑈𝑟𝑒𝑠

.  

The decision variable vector 𝑥 encapsulates the siting and sizing of PV and EVCS, as well as 

real-time operational set points. Power loss 𝑃𝑙𝑜𝑠𝑠 is defined as the sum of branch-wise losses over all 

lines 𝑙 ∈ ℒ: 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝑅𝑙 (
𝑃𝑙

2+𝑄𝑙
2

𝑉𝑙
2 )𝑙∈ℒ      (1) 

Here, 𝑅𝑙 is the resistance of line 𝑙, 𝑃𝑙  and 𝑄𝑙  are the real and reactive power flows, and 𝑉𝑙 is the 

sending-end voltage magnitude. 

Voltage deviation is computed as the aggregated squared deviation of all bus voltages from the nominal 

voltage 𝑉𝑛𝑜𝑚, given by: 

𝑉𝑑𝑒𝑣 = ∑ (𝑉𝑖 − 𝑉𝑛𝑜𝑚)2
𝑖𝜖𝐵     (2) 

Operational cost includes both the cost of imported grid electricity and penalties for RES curtailment, 

formulated as: 

𝐶𝑜𝑝 = ∑ (𝜆𝑡 . 𝑃𝑔𝑟𝑖𝑑,𝑡 + 𝜇. 𝑃𝑐𝑢𝑟𝑡,𝑡)𝑇
𝑡=1     (3) 

Where 𝜆𝑡 is the real-time electricity price at time 𝑡, 𝑃𝑔𝑟𝑖𝑑,𝑡 is power drawn from the grid, 𝑃𝑐𝑢𝑟𝑡,𝑡 is 

curtailed PV power, and 𝜇 is a penalty coefficient reflecting curtailment aversion. 

VUF is calculated using the negative- and positive-sequence voltage components: 

𝑉𝑈𝐹 =
∣𝑉−∣

∣𝑉+∣
× 100%      (4) 

Similarly, THD is computed using harmonic voltage components 𝑉𝑛 for 𝑛 > 1 as: 

𝑇𝐻𝐷 = √∑ (
𝑉𝑛

𝑉1
)

2

× 100%𝑁
𝑛=2     (5) 

Renewable utilization 𝑈𝑟𝑒𝑠  is expressed as the ratio of consumed PV energy to total available PV energy 

over the time horizon. The optimization problem is subject to standard equality and inequality 

constraints. These include power balance equations at each node, voltage magnitude bounds 𝑉𝑚𝑖𝑛 ≤

𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥, feeder capacity limits, maximum charging/discharging rates of EVCS, and inverter limits for 

both real and reactive power injection. 

3.2 Multi-Objective Differential Parrot Optimization (MODPO) 

The optimal planning of EVCS and RES in a distribution system introduces a complex multi-

objective optimization problem characterized by non-linearity, high-dimensionality, and 

interdependent conflicting objectives. In this context, classical deterministic techniques are often 

inadequate due to their sensitivity to initial conditions and local optima. Traditional evolutionary 

algorithms, including the widely adopted NSGA-II and MOPSO, offer notable advantages in exploring 

Pareto fronts; however, they often exhibit slow convergence rates, reduced diversity in high-
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dimensional objective spaces, and premature stagnation in multi-modal functions. To address these 

limitations, this work proposes a novel optimization paradigm termed MODPO, a hybrid metaheuristic 

that synergistically combines the socially adaptive intelligence of the Parrot Optimization Algorithm 

(POA) with the robust search mechanics of Differential Evolution (DE). 

The base POA algorithm is inspired by the learning behavior of parrots, where each candidate 

solution imitates behaviors, adapts based on memory and social feedback, and seeks optimal fitness 

through collaborative exploration. Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} ⊂ 𝑅𝑑 denote a population of 𝑁 candidate 

solutions, each represented by a d-dimensional vector. Each element of 𝑥𝑖 denotes a specific decision 

variable, such as the location index of EVCS or PV, inverter rating, or charging station capacity. The 

multi-objective evaluation for each solution 𝑥𝑖 is given by a vector-valued function 𝐹(𝑥𝑖) =

[𝑓1(𝑥𝑖), 𝑓2(𝑥𝑖), … , 𝑓𝑚(𝑥𝑖)], where 𝑚 represents the number of objective functions. In our problem, the 

functions include minimizing power loss, minimizing voltage deviation, minimizing operational cost, 

minimizing the VUF, minimizing THD, and maximizing renewable energy utilization. 

In the initialization phase, a random population 𝑋0 is generated by sampling uniformly within 

feasible bounds defined for each decision variable 𝑥𝑖,𝑗 ∈ [𝑥𝑗
𝑚𝑖𝑛 , 𝑥𝑗

𝑚𝑎𝑥]. Each candidate’s performance is 

then evaluated over all objective functions, and a dominance-based ranking is applied. Pareto 

dominance is used to establish solution quality: a solution 𝑥𝑖 is said to dominate 𝑥𝑗 if 𝑓𝑘(𝑥𝑖) ≤ 𝑓𝑘(𝑥𝑗)for 

all 𝑘 = 1, … , 𝑚 and 𝑓𝑘(𝑥𝑖) < 𝑓𝑘(𝑥𝑗)for at least one objective 𝑘. 

The MODPO algorithm proceeds in two distinct phases. In Phase I, the Pareto-optimal front is 

generated using a memory-based update strategy rooted in the POA logic. Both its historical best 

performance and the best non-dominated individual in its neighborhood influence each solution’s 

position. Mathematically, the update for each position 𝑥𝑖
(𝑡+1)

 in iteration 𝑡 is governed by: 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝛼1 ⋅ (𝑝𝑖
(𝑡)

− 𝑥𝑖
(𝑡)

) + 𝛼2 ⋅ (𝑔(𝑡) − 𝑥𝑖
(𝑡)

) + 𝜖  (6) 

where 𝑥𝑖
(𝑡)

 is the personal best of solution 𝑖, 𝑔(𝑡) is the global non-dominated solution (selected 

from the elite archive), 𝛼1, 𝛼2 ∈ [0,1] are learning factors, and 𝜖 ∼ 𝑁(0, 𝜎2) is Gaussian noise to ensure 

exploration. 

To enhance exploitation capabilities, Phase II invokes a Differential Evolution (DE) operator-

based refinement. A mutant vector 𝑣𝑖 is constructed for each individual using DE’s mutation strategy: 

𝑣𝑖 = 𝑥𝑟1 + 𝐹 ⋅ (𝑥𝑟2 − 𝑥𝑟3)    (7) 

Where 𝑥𝑟1,𝑥𝑟2,𝑥𝑟3 are randomly selected distinct vectors from the population, and 𝐹 ∈ [0.4,1.0] 

is a user-defined scaling factor that controls the amplification of the differential variation. The crossover 

operator combines the target vector 𝑟𝑖 and mutant vector 𝑣𝑖 to yield a trial vector 𝑢𝑖 as: 

𝑢𝑖,𝑗 = {
𝑣𝑖,𝑗          𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑖,𝑗                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (8) 

Where 𝐶𝑅 ∈ [0,1] is the crossover probability, 𝑟𝑎𝑛𝑑𝑗 ∼ 𝑈(0,1) is a uniformly distributed random 

number, and 𝑗𝑟𝑎𝑛𝑑  ensures at least one component is inherited from the mutant vector. The trial solution 

𝑢𝑖 replaces 𝑥𝑖 only if it is non-dominated or dominates the parent, following: 

𝑥𝑖
(𝑡+1)

= {
𝑢𝑖 ,        𝑖𝑓 𝑢𝑖 ≺ 𝑥𝑖

𝑥𝑖 ,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (9) 

An elite archive 𝒜 stores all non-dominated solutions found during the optimization. To 

maintain diversity, a crowding-distance-based selection is performed on 𝒜, ensuring uniformly 

distributed solutions on the Pareto front. The termination criterion is met when a maximum number of 

generations 𝐺𝑚𝑎𝑥  is reached or when no significant improvement is observed over a fixed stagnation 
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threshold. The final archive provides a diverse set of trade-off solutions from which planners can select 

an operating point based on system priorities. 

 

Figure 3: Flowchart of the MODPO Algorithm 

The flowchart describes the iterative MODPO process, including population initialization, 

objective evaluation, Pareto front generation, memory-based social updates (POA phase), DE-based 

mutation and crossover (refinement phase), and elite archive maintenance. In the context of the 

proposed SEIMF framework, the MODPO algorithm simultaneously determines the optimal buses for 

PV and EVCS deployment, their rated capacities, and inverter setpoints. Each decision vector 𝑥𝑖 maps 

to a full design configuration for the distribution network, and the evaluation of objectives is performed 

using network power flow simulations. By optimizing across multiple objectives and ensuring solution 

diversity, MODPO provides planners with a Pareto front that balances cost, technical performance, and 

environmental sustainability. 

3.3. Hierarchical Reinforced Predictive Learning Control (HRPLC) 

To ensure real-time operational stability under the dynamically evolving charging demands of 

PEVs and the intermittent nature of renewable generation, a dual-layered control architecture, termed 

HRPLC, is integrated into the system operation stage. This control framework harmonizes the learning-

driven adaptability of DRL with the predictive capabilities of MPC, thereby enabling decentralized 

decision-making at the local EVCS level and centralized supervisory regulation at the network level. 
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Figure 4: Workflow of proposed HRPLC technique 

At the core of the lower control layer, each EVCS node is equipped with a decentralized DDPG 

agent, trained to continuously adjust bidirectional charging behavior (G2V and V2G) based on localized 

state observations. The agent interacts with the environment modeled as a Markov Decision Process 

(MDP) defined by a tuple 𝑀 = (𝑆, 𝐴, 𝑃, 𝑟, 𝛾), where 𝑆 denotes the state space, 𝐴 the action space, 𝑃 the 

transition probability function, 𝑟 the reward function, and 𝛾 ∈ (0,1) the discount factor. 

The state vector 𝑠𝑡 ∈ 𝑆 at time step 𝑡 is defined as: 

𝑠𝑡 = [𝑉𝑖
𝑡 ,  𝑆𝑂𝐶𝑖

𝑡 ,  𝑃𝑃𝑉
𝑡 ,  𝜆𝑡]    (10) 

Where 𝑉𝑖
𝑡 is the nodal voltage magnitude at bus 𝑖, 𝑆𝑂𝐶𝑖

𝑡 is the state-of-charge of the battery at the 𝑖𝑡ℎ 

EVCS, 𝑃𝑃𝑉
𝑡  is the PV power injection at time 𝑡, and 𝜆𝑡 is the electricity price signal. The action vector 𝑎𝑡 ∈

𝐴 comprises the charging or discharging power command 𝑃𝐸𝑉
𝑖,𝑡, constrained within: 

𝑃𝐸𝑉
𝑖,𝑡 ∈ [−𝑃𝑚𝑎𝑥

𝑉2𝐺 , 𝑃𝑚𝑎𝑥
𝐺2𝑉]     (11) 

The reward signal is constructed to balance three primary objectives: minimizing grid stress, preserving 

battery health, and reducing operational cost. A representative reward function 𝑟𝑡 can be expressed as: 

𝑟𝑡 = −𝛼 ⋅ (𝑉𝑖
𝑡 − 𝑉𝑟𝑒𝑓)2 − 𝛽 ⋅ (𝑆𝑂𝐶𝑖

𝑡 − 𝑆𝑂𝐶𝑟𝑒𝑓)2 − 𝛾 ⋅ 𝐶𝐸𝑉
𝑖,𝑡   (12) 
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Where 𝑉𝑟𝑒𝑓  and 𝑆𝑂𝐶𝑟𝑒𝑓  are the reference voltage and battery SOC, respectively, 𝐶𝐸𝑉
𝑖,𝑡  is the instantaneous 

charging cost, and 𝛼, 𝛽, 𝛾 are weighting coefficients to modulate agent behavior. 

Each agent learns an optimal policy 𝜋: 𝑆 → 𝐴 via a parameterized actor–critic architecture where the 

actor network approximates 𝜋𝜃(𝑠) and the critic estimates the action–value function 𝑄𝜋(𝑠, 𝑎). The critic 

network is trained to minimize the Bellman error: 

𝐿(𝜃𝑄) = 𝐸𝑠,𝑎,𝑟,𝑠′[(𝑄𝜋(𝑠, 𝑎) − (𝑟 + 𝛾𝑄𝜋(𝑠′, 𝜋(𝑠′)))2] (13) 

Meanwhile, the actor is updated through the policy gradient: 

𝛻𝜃𝐽 ≈ 𝐸𝑠∼𝐷[𝛻𝑎𝑄𝜋(𝑠, 𝑎)𝛻𝜃𝜋𝜃(𝑠)]   (14) 

To prevent instability due to non-stationary policy updates, target networks and experience 

replay buffers are employed, conforming to state-of-the-art DRL training protocols. Operating above 

the decentralized DDPG agents is a supervisory MPC layer that aggregates system-wide states and 

forecasts to guide agent-level decisions. This layer solves a rolling-horizon optimization problem every 

𝜏 time intervals to predict grid behavior over a finite time window [𝑡, 𝑡 + 𝑇]. The MPC uses solar 

irradiance forecasts, load demand profiles, and grid voltage trajectories to anticipate congestion and 

voltage violation events. The optimization problem solved at each MPC timestep is given by: 

min
𝑢𝑡→𝑡+𝑇

∑ (𝑤1 ⋅ 𝑃𝑙𝑜𝑠𝑠
𝑘 + 𝑤2 ⋅ 𝛥𝑉𝑘 + 𝑤3 ⋅ 𝜎𝑉𝑈𝐹

𝑘 )𝑡+𝑇
𝑘=𝑡    (15) 

Which was subjected to nodal voltage bounds, i.e., 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖
𝑘 ≤. SOC dynamics formulated as 𝑆𝑂𝐶𝑖

𝑘+1 =

𝑆𝑂𝐶𝑖
𝑘 + 𝜂 ⋅ 𝑃𝐸𝑉

𝑖,𝑘 ⋅ 𝛥𝑡, Grid power limits, and  EVCS charging constraints. 

The output of the MPC is a set of target nodal constraints and economic signals 𝜆𝑘, which are broadcast 

to the local agents to bias their policy decisions. This top-down coordination ensures that the distributed 

policies align with global grid objectives such as congestion mitigation and renewable energy 

absorption. 

Moreover, each PV system is equipped with smart inverters integrated with harmonic filtering 

capabilities, modeled to dynamically attenuate local total harmonic distortion (THD) through adaptive 

filter tuning. The harmonic current 𝐼ℎ injected at each inverter node is minimized by adjusting the phase 

compensation angle 𝜙ℎ such that: 

min
𝜙ℎ

∣ 𝐼ℎ
𝑜𝑢𝑡(𝜙ℎ) ∣,      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ∑ 𝑇𝐻𝐷ℎ ≤ 𝜖𝑇𝐻𝐷

𝐻
ℎ=1   (16) 

Where 𝑇𝐻𝐷ℎ is the harmonic distortion level at harmonic order ℎ, and 𝜖𝑇𝐻𝐷 is the acceptable limit 

specified by IEEE 519 standards. In combination, the HRPLC architecture ensures adaptive, fine-

grained, and forecast-aware operation of the integrated RES–EVCS system. The lower-level DDPG 

agents respond autonomously to real-time local conditions, while the MPC layer guarantees proactive 

system-level coordination. The hybrid closed-loop design significantly enhances voltage profile 

regulation, mitigates network congestion, maximizes renewable utilization, and supports power quality 

compliance under uncertain and time-varying conditions. 

4. Results and discussion 

This section presents the simulation outcomes of the proposed HRPLC-based PV-EV control 

and placement strategy. The results are analysed to assess system performance across key reliability, 

power quality, and operational metrics. 

4.1 Simulation setup 

The simulation and performance evaluation of the proposed Sustainable Electric Vehicles 

Intelligent Management Framework (SEIMF) were executed using MATLAB R2024a, taking advantage 

of its enhanced support for DRL, multi-objective optimization, and Simulink-based power system 
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modeling. The implementation was performed on a standard desktop computing platform equipped 

with an Intel® Core™ i7-12700K processor operating at 3.6 GHz, supported by 32 GB of DDR4 RAM, 

and running on Windows 11 Pro 64-bit operating system. The IEEE 69-bus radial distribution system 

was chosen for simulation due to its complexity and practicality. The simulation framework integrates 

load, generation, and control components over a 24-hour operational horizon. A sequence-based radial 

distribution network topology was generated and optimized using a MODPO algorithm to determine 

ideal integration points for distributed PV systems and EVCSs. A backward–forward sweep (BFS) 

method was employed for unbalanced power flow calculations in radial networks, modified to 

accommodate dynamic loading conditions. A DRL structure was implemented through manually coded 

DDPG agents, where the Q-learning update mechanism managed EV charging/discharging actions 

based on voltage-aware state transitions. A MPC layer was embedded in parallel, solving a quadratic 

cost minimization problem at each hour using MATLAB’s quadprog function, relying on forecasted load 

demand and PV generation profiles. Dynamic load modeling incorporated tariff-driven demand-side 

management, while EV charging power was adaptively regulated using bus voltage deviation factors to 

ensure grid stability. Random line outages were simulated stochastically to evaluate network reliability, 

where Energy Not Supplied (ENS), SAIDI, and SAIFI were computed using graph-theoretic connectivity 

checks. Smart inverter behavior was modeled at PV buses, including harmonic filtering through time-

domain signal manipulation. THD and VUF were computed using base-coded FFT functions and 

statistical logic. The system architecture thus demonstrates a hybridized, multi-layered decision control 

capable of self-learning, predictive optimization, and reliability assessment under real-world 

constraints and uncertainty. The simulation ensured smooth execution of large-scale power flow 

computations and iterative optimization. 

 

Figure 5: Initial Topology of the Distribution Network 

Figure 5 shows the spatial topology of a radial distribution network, illustrating the connectivity 

and arrangement of different consumer types. The network consists of multiple buses, classified based 

on consumer type: residential, industrial, and agricultural. The interconnections are light blue lines, 

representing distribution branches. This configuration reflects a multi-sectoral, geographically 

dispersed feeder topology, serving diverse load types. The proposed HRPLC framework was entirely 

developed in MATLAB through fully customized code modules without the use of proprietary toolboxes. 

The simulation framework integrates load, generation, and control components over a 24-hour 

operational horizon. A sequence-based radial distribution network topology was generated and 

optimized using a MODPO algorithm to determine ideal integration points for distributed PV systems 

and EVCSs. A BFS method was employed for unbalanced power flow calculations in radial networks, 

modified to accommodate dynamic loading conditions. A DRL structure was implemented through 

manually coded Deep Deterministic Policy Gradient (DDPG) agents, where the Q-learning update 

mechanism managed EV charging/discharging actions based on voltage-aware state transitions. An 
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MPC layer was embedded in parallel, solving a quadratic cost minimization problem at each hour using 

MATLAB’s quadprog function, relying on forecasted load demand and PV generation profiles. Dynamic 

load modeling incorporated tariff-driven demand-side management, while EV charging power was 

adaptively regulated using bus voltage deviation factors to ensure grid stability. Random line outages 

were simulated stochastically to evaluate network reliability, where Energy Not Supplied (ENS), SAIDI, 

and SAIFI were computed using graph-theoretic connectivity checks. Smart inverter behavior was 

modeled at PV buses, including harmonic filtering through time-domain signal manipulation. THD and 

VUF were computed using base-coded FFT functions and statistical logic. The system architecture thus 

demonstrates a hybridized, multi-layered decision control capable of self-learning, predictive 

optimization, and reliability assessment under real-world constraints and uncertainty. 

 The simulation environment integrated planning and operational phases into a closed-loop 

MATLAB-Simulink architecture, enabling a seamless transition from infrastructure planning to real-

time grid operation under dynamic PEV and RES conditions. 

4.2 Dataset description 

The proposed SEIMF framework uses a synthetic dataset to simulate grid behavior, EV charging 

patterns, and renewable energy generation under temporal variability. The IEEE 69-bus radial 

distribution system was chosen for simulation due to its representative topology and widespread use in 

network research. The simulation testbed included multiple load nodes representing residential, 

industrial, and agricultural consumers. The load types were probabilistically allocated, with 60% 

residential, 25% industrial, and 15% agricultural. Real power demand was randomly assigned to each 

non-substation bus within the 10–100 kW range. 

Table 2: Initial simulation parameters and range of values used to train the proposed 

network 

Parameter Value / Range 

Number of buses 69 

Load per bus 10–100 kW 

Load types Residential (60%),  

Industrial (25%),  

Agricultural (15%) 

Nodes per bus 1–3 

EVCS penetration 10% 

PV penetration 20% 

PV peak capacity 50 kW 

Load forecast horizon 168 hours 

EV charging pattern 5–15 kW during 7–9 AM, 5–7 PM 

ToU tariffs 0.10–0.20 $/kWh 

THD threshold ≤ 0.5% 

Voltage limits 150–230 V 

SOC bounds 20–100% 

Max charging/discharging rate ±15 kW 

Line current and S limits 300 A, 100 kVA 

 

A Prufer-based algorithm was used to construct a tree topology for a network, ensuring radial 

connectivity and heterogeneity in line lengths and impedances. Line parameters were modeled 

proportionally with line length, and all information was saved in structured MATLAB objects for power 
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flow analysis and radiality enforcement. Load demand forecasts were generated for 168 hours with 

hourly resolution, and PV generation profiles were synthesized using Gaussian irradiance curves. 

Approximately 20% of buses were PV-equipped, with a peak generation capacity of 50 kW. The study 

focuses on modeling EVCSs using 10% of buses as nodes. These profiles were generated using a time-

of-day logic, with peak charging windows between 7-9 AM and 5-7 PM. Each profile displayed 

randomized power levels within a 5-15 kW range during active periods and idled during off-peak hours. 

The data was consolidated in EVChargingProfiles.mat. A Time-of-Use tariff structure was implemented 

with four rate blocks across the 24-hour cycle, reflecting dynamic electricity pricing policies. The tariff 

profiles were saved as ToUTariff.mat. Technical and operational constraints were defined to govern the 

optimization space, including maximum allowable line currents, apparent power limits, power quality 

thresholds, voltage operating limits, state-of-charge bounds, charging/discharging limits, and cost 

ceilings for investment and operational expenditure, as listed in Table 2. 

4.3 Initial simulated parameters 

 

Figure 6 PV Generation Forecasts Across Distributed Nodes 

Figure 6 illustrates the hourly PV power generation forecasts for ten buses within the IEEE 69-

bus radial distribution network that are designated as PV-equipped nodes. These forecasts were 

generated to replicate solar irradiance behavior in temperate climates, following a Gaussian temporal 

distribution centered around solar noon. The expected generation patterns show a common bell-shaped 

curve peaking between 11:00 and 13:00, where maximum PV output approaches or slightly exceeds 50 

kW. This aligns with conventional PV output modeling methodologies, which follow a near-normal 

distribution with minor temporal jitter due to cloud-induced intermittency and panel orientation 

differences. The study uses a vertical spread among bus curves to simulate spatial heterogeneity in PV 

generation, aiming to mimic real-world operational diversity in distributed PV deployments. The values 

were generated using Monte Carlo perturbation and normalized against a maximum PV capacity of 50 

kW per bus, consistent with small-scale distributed rooftop solar installations. The dataset serves as a 

crucial input to the MPC module, enabling anticipatory charging-dispatch decisions under variable 

renewable energy availability. 
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Figure 7 Hourly Load Forecast Profiles for Sampled Buses 

Figure 7 presents the simulated hourly load demand profiles for a subset of ten representative buses in 

the IEEE 69-bus radial distribution network. The forecast covers a 24-hour horizon and incorporates a 

mix of residential, industrial, and agricultural load types. The time-series data was generated using 

sinusoidal daily demand cycles modulated by random noise components to reflect consumption 

variability due to weather, occupancy, and industrial shift timings. Buses 2, 3, 7, and 10 display 

significantly higher demand magnitudes, with peaks reaching approximately 100 kW during mid-

morning hours. Buses 1 and 4 exhibit flatter and lower-magnitude curves, likely corresponding to 

residential or grid-terminal points with minimal end-user loads. This heterogeneity in demand levels 

supports the need for adaptive planning algorithms and reinforces the challenge of maintaining voltage 

stability and minimizing losses under spatially non-uniform loading. The synthetic forecasts serve as 

dynamic inputs to the proposed HRPLC and MODPO frameworks, enabling proactive and data-

informed decision-making in the co-optimization of EVCS siting, RES integration, and grid operation. 

 

Figure 8 Hourly EV Charging and discharging demand profiles at selected EVCS buses 

Figure 8 illustrates simulated hourly charging demand patterns for five EVCS-equipped buses 

across a 24-hour operating window. The demand is constructed using a time-dependent probabilistic 

function and constrained stochasticity to reflect variability in vehicle arrival times, battery SOC levels, 
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and user preference diversity. The charging power varies between 5 kW to 15 kW, indicating level-2 fast-

charging behavior under moderate usage density. The morning session shows a gradual ramp-up to 

peak power, followed by a steep decline post 09:00, likely representing workplace or school-bound 

usage scenarios. The evening charging window exhibits a faster ramp-up and a slightly prolonged 

duration, likely representing post-work residential charging behavior. Buses such as Bus 16 and Bus 14 

show maximum peak demand, while Bus 47 exhibits lower but more consistent charging loads, 

reflecting usage diversity across spatially distinct feeder nodes. This temporal non-uniformity in EVCS 

load contributes significantly to localized voltage dips, reverse power flow in RES-dominant zones, and 

harmonic distortions, necessitating adaptive grid response mechanisms. The forecast dataset is integral 

to the proposed HRPLC framework, which leverages these temporal insights to schedule V2G/G2V 

operations, minimize grid congestion, and proactively mitigate voltage violations. 

 

Figure 9: Daily and Weekly Time-of-Use (ToU) Tariff Profiles 

Figure 9 presents the daily and weekly Time-of-Use (ToU) electricity tariff structure employed 

in the simulation environment to mimic realistic market-based energy pricing schemes. The ToU 

electricity tariff structure is used in a simulation environment to mimic market-based energy pricing 

schemes. The tariff structure is divided into three blocks: off-peak hours (01:00–06:00), mid-peak 

hours (07:00–12:00 and 19:00–24:00), and on-peak hours (13:00–18:00). The lowest tariff rate is 

$0.10/kWh, aiming to encourage consumption during low-demand intervals and mitigate overnight 

generation surplus. Mid-peak hours are moderately priced at $0.15/kWh, representing transitional 

periods with moderate grid stress. On-peak hours coincide with maximum residential and commercial 

load aggregation, assigned the highest tariff rate of $0.20/kWh. The inclusion of tariff heterogeneity is 

crucial for system optimization, as it ensures temporally aware sizing and placement of renewable 

energy resources and EV charging units. The interplay of ToU tariffs with load profiles, PV generation, 

and EV charging dynamics significantly affects voltage regulation and reverse power flow trends, 

making ToU modeling indispensable for intelligent distribution system planning. 
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4.4  Optimization output 

 

Figure 10: Convergence Behaviour of the MODPO Algorithm 

Figure 10 illustrates the convergence trajectory of the proposed MODPO algorithm over 200 

generations. The MODPO algorithm is a multi-objective optimization method that combines multiple 

conflicting targets, such as energy losses, voltage deviation, investment costs, and ToU-based 

operational cost, using a scalarization technique with weight balancing. It starts with a high objective 

value, indicating a randomly distributed initial population. As generations progress, the curve shows a 

steep decline during the first 40 generations, indicating the algorithm rapidly explores promising 

regions of the solution space. The moderate decline phase between generations 40 and 120 reflects the 

transition from exploration to exploitation, where the algorithm refines local optima and avoids 

suboptimal entrapment. From generation 120 onwards, the curve flattens, showing asymptotic 

convergence towards a near-global optimal solution around 1.000. This convergence behavior is 

desirable in multi-objective optimization, as it suggests solution quality and robust convergence 

stability under complex nonlinear constraints. This convergence pattern is consistent with advanced 

bio-inspired optimization methods used for DER planning, such as NSGA-II, MOPSO, or hybrid DE 

variants, and confirms the MODPO algorithm as an efficient and stable alternative for large-scale multi-

objective decision problems in active distribution networks. 

 

Figure 11: Bus-wise Installation Placement of PV Systems and EV Charging Stations 
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Figure 11 illustrates the optimized installation layout of PV systems and EVCS across the 

distribution network buses. The diagram shows bus numbers and two levels of installation categories: 

PV systems in nodes 3, 10, 13, 14, 19, 24, 27, 28, 31, 39, 43, 44, 47, 55, 59, 62, 64, 65, 67, and 69 and 

EVCSs in nodes 1, 2, 6, 8, 11, 12, 17, 26, 30, 32, 42, and 53. The placement pattern is based on a multi-

objective optimization model that minimizes power losses, maintains voltage stability, and ensures 

balanced integration of distributed generation and charging demand. PV systems are installed as single 

units at each bus, promoting a balanced generation profile. EVCSs are deployed in slightly higher 

capacity, reflecting anticipated charging demands at those nodes. This configuration enhances voltage 

support and grid reliability, minimizes distribution losses by reducing long-distance power flows, and 

prevents localized congestion due to simultaneous PV injection or EV charging. The co-optimized siting 

and sizing approach leads to a technically sound and scalable deployment of distributed RES systems 

in the distribution system. 

4.5 Output results 

 

Figure 12 EV Charging and Discharging Profile for 10 EVs 

Figure 12 illustrates the optimized hourly charging profiles for 10 EVs over a 24-hour 

scheduling horizon as determined by the proposed MODPO method. Most EVs exhibit a nearly constant 

charging power level after the initial hours, ensuring a fast and efficient charging schedule. However, 

some EVs follow intermittent charging trajectories, which MODPO detects and avoids adaptively. For 

example, EV 10 charges at the maximum permissible rate initially but drops significantly to around 3 

kW between hours 2 to 18, with a resurgence post-hour 18. This pattern aligns with low PV availability 

and high tariff periods, demonstrating that MODPO defers charging to off-peak windows where it 

becomes more cost-effective and less disruptive. EV 7 shows a staggered pattern, scheduling charging 

during selectively optimal hours, highlighting the multi-phase scheduling capabilities of MODPO for 

vehicles with constrained time windows or cost-sensitive users. The charging profile ensures total EV 

load is balanced and smoothed, aligning with PV generation peaks where possible, effectively utilizing 

green energy and reducing dependence on grid-imported energy. Tariff-aware scheduling is achieved, 

EVs avoid high tariff periods, minimizing operational costs. This optimized behaviour highlights the 

effectiveness of MODPO in multi-objective scheduling, integrating economic dispatch, grid constraints, 

and renewable synergy into a coherent and adaptive framework. 
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4.6 Performance Evaluation 

 

Figure 13 Hourly Distribution of Voltage Violations under HRPLC Control 

Figure 13 presents the hourly occurrence of voltage violations observed in the distribution 

network during a typical operational day under the proposed HRPLC. The Hybrid proposed control 

model monitors voltage violations in the distribution network during a typical operational day. The 

scheme focuses on a narrow window between 8:00 AM and 10:00 AM, with a peak of 3 violations at 

9:00 AM. This period is typically triggered by morning residential and commercial demand and a surge 

in EV charging activity. The HRPLC algorithm effectively prevents voltage excursions outside this peak 

window by proactively forecasting load and generation behavior, scheduling EV charging and 

discharging cycles, and adaptively using PV generation to offset real-time demand. The absence of 

violations in other hours demonstrates the model's resilience and adaptability, particularly in 

maintaining voltage within regulatory limits. HRPLC also demonstrates superior mitigation of voltage 

instability by dynamically balancing DER operation with system constraints. 

 

Figure 14 RL Cumulative Accuracy Profile 
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Figure 14 shows the cumulative accuracy of the RL model over 24 hours. The model's learning 

curve is presented in a layered staircase form, showing how accuracy improves over time and iterations. 

At hour 1, the accuracy distribution starts at a minimal level, with lower layers representing early 

exploration. As the hours progress, the density of higher layers increases, and the cumulative accuracy 

approaches 100% in the latter half of the day. By hour 6, 50% of the layers reach or surpass 0.6 in 

cumulative accuracy, indicating the agent consolidates useful policy knowledge. From hour 10, most 

trajectories begin exceeding 0.8 accuracy, and by hour 18, nearly all policy trajectories reach the optimal 

decision boundary of 0.9 to 1.0, indicating strong convergence and stable policy reinforcement. The 

integrated RL strategy successfully adapts to complex, dynamic system states, ensuring online 

adaptability, which is critical for managing non-stationary, stochastic smart grid environments. 

 

Figure 15: SAIDI and SAIFI per hour 

Figure 15 shows the hourly evaluation of power system reliability using two fundamental 

indices: SAIDI and SAIFI. The TOU metric measures the average interruption duration experienced by 

a customer during the day, with a high value in hour 1 and low values in multiple segments. A spike 

occurs at hours 7 and 13, with a maximum near hour 24. The SAIFI profile mirrors the patterns of 

SAIDI, with higher interruption frequencies observed at hours 7, 13, and 24. SAIFI values drop to near-

zero across a significant portion of the day, showcasing the control strategy's capability to minimize 

interruption frequency and duration during strategic load management and distributed generation 

balance. The system demonstrates sustained reliability over critical operational hours, with scattered 

peaks potentially attributed to dynamic load transitions or EV charging events not fully synchronized 

with grid stability thresholds. The low magnitude of SAIFI and long durations of SAIDI null intervals 

justify the robustness of the proposed intelligent scheduling scheme. 

 

Figure 16: Temporal profile of total power loss and operational cost 
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Figure 16 illustrates the impact of the proposed MODPO-based energy management strategy 

on total power loss and operational cost. The system starts with a minimal loss of 0.13 kW at hour 1, 

which increases due to growing load demand. The loss drops sharply after hour 13 and reaches its lowest 

values between hours 18 and 22, attributed to optimal dispatch of distributed generation resources, 

regulated EV charging, and the time-of-use tariff structure. The operational cost profile reflects the 

economic efficiency achieved under the proposed scheme, starting at around $1.3 during early hours 

and increasing steadily to approximately $5.3. Post-peak, the cost trajectory mirrors the drop in losses, 

decreasing progressively and stabilizing between $0.5 and $1.0 during hours 18 to 22. The system's 

efficacy in achieving dual objectives of loss minimization and cost efficiency is validated by dynamically 

adjusting operational variables in response to load profiles and tariff variations. 

 

Figure 17: Temporal profile of average THD and VUF 

Figure 17 shows the dynamic variation of two power quality indices, THD and VUF, over a 24-

hour time horizon. THD, which indicates harmonic content in voltage waveforms, shows a sinusoidal 

variation throughout the day, peaking at 0.050 p.u. Around hours 5 and 23, and dropping to a minimum 

of 0.030 p.u., near hour 14. This trend indicates that harmonics are most pronounced during early 

morning and late-night hours, coinciding with high simultaneous charging activity. However, the THD 

remains well below the IEEE 519 recommended threshold of 0.05 p.u., confirming compliance with 

power quality norms. The VUF, a critical reliability index, shows a decreasing pattern from 0.020 p.u. 

at hour 1 to a minimal value near hour 15, followed by a gentle increase during evening hours. This 

behavior demonstrates that the proposed method achieves effective phase balancing during periods of 

high EV penetration and ensures symmetrical voltage distribution through decentralized coordination 

strategies. The minimal VUF during peak load windows reinforces the robustness of the proposed 

scheme in upholding grid reliability standards. 

Table 3: Performance of the proposed model 

Metric Value 

Total Power Loss (kW) 9.84 

Total Energy Not Supplied (ENS, kWh) 0.24 

Average SAIDI (min) 0.77 

Average SAIFI 0.01 

Voltage Violations (count) 7 

Average Voltage Deviation (%) 4.06 
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Average THD (%) 4.16 

Maximum THD (%) 5.00 

Average VUF (%) 0.77 

Maximum VUF (%) 1.98 

REUT (PV Utilization, %) 100.00 

Total Operational Cost (%) 60.38 

RL Action Match Accuracy (%) 100.00 

The proposed MODPO-RL-based multi-objective framework has demonstrated significant 

performance in terms of operational, reliability, and power quality metrics, as shown in Table 3. The 

total power loss across the optimization horizon is limited to 9.84 kW, demonstrating the algorithm's 

ability to strategically route power flows and avoid congested branches during peak demand periods. 

The Energy Not Supplied (ENS) indicator is low at just 0.24 kWh, demonstrating effective voltage and 

load balancing even under stochastic EV charging patterns and renewable intermittency. The System 

Average Interruption Duration Index (SAIDI) and System Average Interruption Frequency Index 

(SAIFI) are minimal, indicating the robustness of the RL coordination in preventing frequent and 

prolonged outages. Power quality indices further reinforce the efficacy of the proposed method, with 

the average THD maintained at 4.16% and the average VUF limited to 0.77% and 1.98%, respectively, 

ensuring minimal voltage asymmetries across three phases. The Renewable Energy Utilization reached 

nearly 100%, indicating efficiently absorbed and utilized PV energy with zero curtailment. The 

operational cost was reduced by 60.38%, highlighting the cost-effectiveness of the solution. The RL 

agent achieved 100% action match accuracy, demonstrating its reliability in replicating optimal control 

policies and adapting accurately to system dynamics. In summary, the proposed method achieves multi-

objective trade-offs among energy cost, grid losses, and renewable utilization while upholding stringent 

standards for reliability and power quality. 

4.7 Comparative results 

 

Figure 18: Performance of the network by varying the number of EVCS installed 

Figure 18 illustrates the impact of varying the number of EVCS on key performance metrics of 

the distribution network. As the number of EVCS increases from 5 to 25, a consistent improvement is 

observed across all parameters. Specifically, the operational cost reduces significantly from 61.85% to 
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56.71%, indicating enhanced economic efficiency. Power losses also show a gradual decline from 10.2 

kW to 9.31 kW. In terms of power quality, the THD decreases from 4.32% to 3.55%, while the VUF 

improves from 0.82% to 0.66%. These results demonstrate that optimal placement and higher 

penetration of EVCS can contribute to reduced operational burden and better power quality in the 

network. 

 

Figure 19: Performance of the network by varying the number of PV installed 

Figure 19 illustrates the sensitivity of key operational parameters, namely, total operational 

cost, power losses, THD, and VUF, concerning varying counts of PV installations in the distribution 

network. As the number of PV units increases from 5 to 25, a clear downward trend is observed across 

all metrics. Specifically, operational cost reduces significantly from 63.10% to 54.10%, primarily due to 

increased local generation offsetting grid power purchases. Correspondingly, power losses drop from 

10.55 kW to 8.75 kW, attributed to the shorter transmission paths and load-sharing by distributed PV 

sources. Additionally, THD values decrease from 4.48% to 3.42%, reflecting improved waveform quality 

due to reduced grid loading and inverter-based smoothing. The VUF also exhibits a consistent decline, 

from 0.84% to 0.65%, indicating enhanced voltage symmetry and phase balance with higher PV 

penetration. Overall, the trend confirms that increasing the number of strategically placed PV systems 

not only improves network efficiency and quality but also contributes to economic gains, validating the 

technical and financial viability of DER deployment. 

 

Figure 20: Performance of the network by varying the number of EVs in the network 
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Figure 20 presents the performance evaluation of the proposed optimal placement and control 

strategy in response to varying levels of EV integration, quantified by the total number of EVs ranging 

from 50 to 250. The figure demonstrates how increasing the EV population affects critical network 

parameters such as operational cost, power losses, THD, and VUF. As the number of EVs increases, a 

gradual deterioration in all metrics is observed. Specifically, operational cost rises from 60.92% to 

69.85%, primarily due to increased energy demand and higher grid dependency during peak charging 

periods. Similarly, power losses escalate from 9.96 kW to 13.41 kW, attributed to intensified loading 

and extended current flow paths. THD and VUF values also increase steadily from 4.21% to 5.39% and 

0.78% to 1.03%, respectively, indicating degradation in waveform quality and voltage symmetry, mainly 

due to uncoordinated charging behavior and elevated inverter-induced distortions. Despite these 

increases, the trends remain within permissible operational thresholds, affirming the effectiveness of 

the proposed control scheme in managing growing EV penetration without compromising grid stability 

or power quality. 

 

 

Figure 21: Performance of the network by varying EV charging pattern in the network 

Figure 21 provides a comparative evaluation of different EV operational strategies, ranging from full 

charging to full discharging and mixed configurations, on key distribution system performance 

indicators. When all EVs are set to charging mode, the system experiences a relatively high operational 

cost of 61.77%, accompanied by a power loss of 10.25 kW. These elevated values stem from increased 

load draw during synchronized charging periods, which intensifies network stress and energy 

procurement from the grid. Conversely, in the full discharging mode, EVs function as distributed energy 

sources, resulting in a slight reduction in operational cost (60.05%) and power loss (9.87 kW), 

highlighting the grid support role of vehicle-to-grid (V2G) operations. The hybrid scenario, where 50% 

of EVs are charging and 50% are discharging, achieves the most favorable performance, with the lowest 

operational cost (58.45%) and power loss (9.53 kW), along with improved power quality metrics—THD 

at 3.87% and VUF at 0.71%. This balanced mode offers dynamic load leveling and effective harmonic 

mitigation through distributed control. The 70% charge and 30% discharge mode also exhibits 

improved stability compared to full charging but remains suboptimal relative to the 50/50 case. Overall, 

the results confirm that intelligently balanced bidirectional EV operation under the proposed control 

strategy enhances efficiency, reduces stress on the network, and ensures better power quality 

compliance. 
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Table 4 Comparison with state-of-the-art methods 

Technique Power 

Loss (kW) 

Voltage 

Deviation (%) 

THD 

(%) 

VUF 

(%) 

Operational Cost 

Reduction (%) 

ARSBX [26] 10.85 4.22 4.50 0.82 58.14 

Hybrid GA-PSO 

[27] 

10.55 4.36 4.41 0.81 59.12 

SSA [28] 10.72 4.08 4.16 0.77 60.01 

SHOA [29] 10.91 4.37 4.67 0.83 57.88 

WO [30] 10.64 4.19 4.24 0.80 58.37 

Proposed 

(MODPO + 

HRPLC) 

9.84 4.06 4.16 0.77 60.38 

 

The comparative results in Table 4 demonstrate that the proposed MODPO + HRPLC 

framework outperforms recent methods across multiple critical performance metrics. The comparative 

methods, including Adaptive Rotation-based Simulated Binary Crossover (ARSBX) [26], Hybrid 

Genetic Algorithm–Particle Swarm Optimization (GA-PSO) [27], Salp Swarm Algorithm (SSA) [28], 

Spotted Hyena Optimization Algorithm (SHOA) [29], and Walrus Optimization Algorithm (WOA) [30], 

were all applied and validated on the IEEE 69-bus distribution system, which is also the simulation base 

for our proposed MODPO + HRPLC framework. These techniques focused on various objectives such 

as power loss, voltage deviation, reliability, and economic optimization. The proposed method 

distinguishes itself by integrating both planning and adaptive control, leading to superior performance 

across all key metrics. 

While all five works reviewed exhibit competent outcomes in reducing power loss and 

operational costs, they primarily rely on static scheduling or heuristic-based strategies without 

predictive adaptability. In contrast, the proposed framework achieves the lowest power loss (9.84 kW) 

and smallest voltage deviation (4.06%), indicating enhanced grid efficiency and stability under dynamic 

load and generation conditions. Furthermore, while THD and VUF values across existing works remain 

within acceptable standards, only the proposed approach integrates RL with predictive MPC, ensuring 

real-time bidirectional EV coordination, which is crucial for high DER penetration scenarios. The 

operational cost saving of 60.38%, paired with 100% PV utilization, further highlights the economic and 

environmental viability of the method. In essence, the MODPO + HRPLC system not only meets but 

exceeds the performance benchmarks of contemporary studies, while also addressing key gaps such as 

dynamic adaptability, power quality assurance, and scalable real-world implementation. 

4.8 Discussion 

The overall results and discussion of the proposed methodology, centered on MODPO and 

HRPLC, demonstrate a robust, technically advanced framework for optimizing the planning and 

operation of distributed energy resources (DERs) within a complex radial distribution system. 

Implemented on the IEEE 69-bus network, the results substantiate the framework’s effectiveness across 

key power system performance indices, economic costs, and power quality measures. The MODPO-

based placement and sizing of PV systems and EVCS led to a significantly optimized DER deployment 

strategy. The co-optimization successfully minimized power losses (down to 9.84 kW), ensured a highly 

uniform voltage profile with average deviation of only 4.06%, and achieved complete PV utilization 

(REUT = 100%). Moreover, the system maintained harmonic distortion and voltage unbalance within 
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acceptable limits, recording average Total Harmonic Distortion (THD) and Voltage Unbalance Factor 

(VUF) of 4.16% and 0.77%, respectively. 

The RL module integrated with predictive control (HRPLC) further enhanced dynamic operational 

behavior. Comparative voltage profile plots under G2V, V2G, and mixed modes highlighted the mixed 

operation's superiority, where adaptive EV dispatch significantly improved voltage regulation. The 

HRPLC’s learning-driven response effectively minimized voltage violations, maintaining system 

resilience even during critical demand peaks. Sensitivity analyses across varying DER penetration 

scenarios (EVs, PVs, and EVCS counts) confirmed the scalability and consistency of the framework. 

Incremental PV penetration notably reduced power losses and operational costs while improving 

harmonic and unbalance indices. Conversely, increased EV deployment, although elevating system 

stress, was effectively managed by the control strategy. Mixed-mode EV operation (e.g., 50% charge and 

50% discharge) provided the most balanced performance, minimizing losses, THD, and VUF. When 

benchmarked against recent studies, the proposed model achieved highly competitive outcomes. While 

prior works showed notable loss and voltage improvements, this study uniquely demonstrated superior 

operational cost reduction (60.4%) while maintaining technical indices within regulatory margins. This 

dual-layer framework not only addresses planning but also fills the operational control gap often 

overlooked in static optimization studies. Overall, the proposed MODPO-HRPLC approach integrates 

long-term planning and real-time adaptive control, achieving a highly optimized, economically viable, 

and technically resilient distribution system architecture, marking a significant contribution in the field 

of intelligent grid optimization. 

Conclusion 

This study presents a dual-layer optimization-control framework combining the MODPO 

algorithm with the HRPLC scheme, offering a robust solution for the joint planning and operation of 

EVs and RES in active distribution networks. MODPO enables multi-objective planning by optimally 

placing and sizing DERs, while HRPLC provides adaptive real-time coordination using DRL embedded 

within an MPC structure. The simulation on a practical IEEE 69-bus network demonstrated that the 

system could minimize power losses to 9.84 kW, reduce operational costs by 60.38%, and maintain 

voltage deviation at 4.06%, alongside achieving 100% PV utilization, THD < 5%, and VUF < 2%. 

Comparative analysis with state-of-the-art metaheuristics and recent RL-based strategies confirmed 

superior performance in power quality, cost-effectiveness, and resilience. The inclusion of smart 

inverter controls and load forecast-based voltage scheduling further strengthened system stability. 

Future extensions will focus on stochastic uncertainty modelling, multi-agent cooperation, and real-

time market-driven demand response to enhance dispatch ability and economic integration of 

distributed assets. The proposed framework serves as a practical and scalable architecture toward 

future-ready, self-healing smart distribution grids. 
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