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ARTICLE INFO ABSTRACT

Received: 02 Oct 2024 The increasing penetration of Electric Vehicles (EVs) and rooftop photovoltaic (PV)

systems introduces substantial operational complexities into radial distribution networks,

including voltage instability, harmonic distortion, and uneven power flows. Existing

Accepted: 29 Nov 2024 methodologies often treat planning and control separately, lacking real-time adaptability
under stochastic demand-generation patterns. To bridge this critical gap, this study
proposes a novel Multi-Objective Differential Parrot Optimization (MODPO) algorithm
integrated with a Hierarchical Reinforced Predictive Load Control (HRPLC) framework.
The MODPO algorithm ensures optimal siting and sizing of EV charging stations and PV
units by minimizing power loss, voltage deviation, and operational cost. Simultaneously,
HRPLC coordinates dynamic G2V/V2G operations using a deep deterministic policy
gradient (DDPG) agent embedded within a predictive MPC layer. Extensive simulations
on an IEEE 69-bus system show a 60.38% cost reduction, 9.84 kW loss minimization, and
voltage deviation contained to 4.06%, while 100% PV utilization is achieved under
harmonic and voltage unbalance constraints. This unified optimization-control
framework provides a scalable pathway for reliable, cost-efficient, and quality-assured
operation of future distribution networks with high DER proliferation.
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1. Introduction

The increasing urgency to address carbon dioxide emissions and mitigate global warming,
coupled with the transition toward zero-emission transportation, has accelerated the adoption of Plug-
in Electric Vehicles (PEVs). These vehicles are anticipated to significantly contribute to lowering air
pollution levels in the transportation sector [1]. Moreover, implementing effective strategies for PEV
operation and charging schedule optimization can yield substantial economic advantages, including
notable reductions in fuel expenditure. Unlike traditional internal combustion engine vehicles, PEVs
rely on battery recharging through charging stations connected to the power grid [2]. Consequently,
PEVs introduce additional load on distribution networks, which, if not properly managed, can lead to
challenges such as transformer and transmission line overloading, increased power losses, peak
demand surges, poor voltage profiles, and overall voltage stability concerns [3]. Uncoordinated PEV
charging and improper placement of charging stations further exacerbate these issues, necessitating
strategic planning for optimal Electric Vehicle Charging Stations (EVCS) integration [4]. The
integration of EVCS powered by Renewable Energy Sources (RES), such as solar and wind, plays a
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crucial role in promoting sustainable energy solutions and mitigating greenhouse gas emissions [5]. The
increasing adoption of EVs is primarily driven by the rising costs of fossil fuels and the global push
towards eco-friendly transportation [6]. However, this surge in EV demand places a significant burden
on the existing grid infrastructure. In this context, EVCSs that utilize RES like PV and wind power offer
a viable alternative to conventional grid-based charging stations, thereby enhancing sustainability and
reducing dependency on fossil fuels [7].

RES, particularly solar PV systems, have become increasingly prominent in reducing
environmental pollution and mitigating the greenhouse effect [8]. As a well-established and widely
adopted power generation technology, PV energy aligns with the Sustainable Development Goals and
enhances energy security. With advancements in distributed generation (DG), PV systems can now
operate on a smaller scale as Distributed Energy Resources (DERs) [9]. This decentralized approach to
power generation ensures that energy is supplied closer to the load demand, thereby minimizing
transmission losses and enhancing system efficiency. Nevertheless, photovoltaic (PV) energy is
inherently intermittent and variable, primarily influenced by fluctuations in solar irradiance, transient
cloud cover, the orientation of panels, and the accumulation of dust, all of which can adversely impact
the stability of power generation [10]. Furthermore, substantial PV penetration within distribution
networks may lead to operational challenges, including voltage rise, reverse power flow, and elevated
energy losses, thereby underscoring the necessity for well-optimized PV integration methodologies [11].

However, inadequate integration of large-scale EVCSs can pose significant risks to power
systems, including distribution feeder imbalances, increased current levels, and bi-directional power
flow complications [12]. Moreover, unregulated and haphazard EV charging can result in excessive
power losses and voltage fluctuations that exceed permissible limits, potentially compromising grid
stability and reliability. To address these challenges, optimal EVCS placement in distribution networks
is essential to minimize adverse effects and ensure efficient operation [13]. Several studies have focused
on employing heuristic techniques for optimizing EVCS allocation within distribution networks.
Heuristic algorithms are widely favoured due to their ability to provide rapid and practical solutions for
scheduling and planning problems [14]. These algorithms offer immediate and easily interpretable
results, making them particularly suitable for real-world applications. Through the application of
heuristic optimization techniques, researchers seek to determine optimal locations for EVCSs that
minimize adverse effects on the power grid, improve overall energy utilization, and facilitate the smooth
integration of RES [15]. With the rapid shift toward sustainable transportation, the formulation of
advanced optimization frameworks for EVCS deployment becomes essential to maintaining the long-
term reliability, stability, and resilience of contemporary power distribution systems. In this context,
the present study proposes an innovative co-optimization and control framework designed for the
strategic planning and adaptive management of distribution networks characterized by substantial PV
and EV penetration based upon the following contribution:

A MODPO algorithm is developed to ensure optimal siting and sizing of PV systems and EV charging
stations, minimizing power loss, voltage deviation, and operational cost under multi-constraint
conditions.

A Hierarchical Reinforced Predictive Load Control (HRPLC) strategy is proposed, combining DDPG-
based real-time learning with MPC-based grid forecasting to coordinate G2V/V2G dynamics adaptively.
The proposed system integrates harmonic filtering and smart inverter control, enabling power quality
preservation through localized voltage and THD mitigation.

Extensive simulations on the IEEE 69-bus network validate the framework's superiority over existing
methods, showing significant reductions in operational cost (60.38%), power losses (9.84 kW), and
enhanced PV utilization (100%).

Section 2 describes the literature works done much related to this proposed work. Section 3 details
the proposed MODPO and HRPLC frameworks. Section 4 presents simulation setups and data
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generation processes and discusses results, comparative analysis, and sensitivity studies. Finally,
Section 5 concludes with key findings and future research directions.

2. Literature Survey

In recent years, the rapid adoption of EVs has significantly increased the focus on deploying
EVCS as a key element in promoting environmental sustainability. A substantial body of literature has
explored the environmental benefits associated with EVCS, yet integrating these stations into existing
distribution grids poses considerable challenges. Researchers have reported that the incorporation of
DRES and Battery Energy Storage Systems can further complicate grid operations, leading to issues
such as elevated power losses and voltage instability. To address these technical challenges, recent
studies have increasingly investigated smart charging schemes, where the distribution system operator
(DSO) strategically oversees EV charging operations to achieve specific technical and financial
objectives. This literature survey provides an overview of current research on EVCS integration,
highlighting the complex interplay between renewable integration, grid stability, and the emerging role
of smart charging strategies.

Ali et al. [16] developed a multi-objective planning framework aimed at determining the
optimal placement of EVCSs alongside the sizing and siting of RES. The framework addresses three key
objectives: minimizing voltage deviations, reducing line energy losses, and improving EV user
satisfaction. The optimization strategy incorporates advanced control mechanisms for coordinating
RES inverter operations with EVCS charging and discharging processes. To address the inherent trade-
offs among the objectives and variables, a two-level multi-objective metaheuristic was formulated using
the Multi-Objective Dragonfly Algorithm. Evaluations across three case studies demonstrated
substantial performance gains, with RES-enabled inverters delivering improved reactive power
support, reducing voltage deviations by 96%, and decreasing energy losses by 71%.

Ahmadi et al. [17] proposed a robust and adaptable optimization methodology for managing
the bidirectional charging of PEVs, employing a stochastic, multi-objective heuristic approach based on
the Firefly Algorithm. The framework seeks to minimize operational costs and CO2 emissions while
accounting for uncertainties related to RES generation, load demand, and charging/discharging
schedules. Implemented on a modified IEEE 69-bus system within a MATLAB simulation environment,
the method achieved a 48% reduction in operating expenses and a 55% decrease in CO2 emissions. The
results further suggested operating PEVs in grid-to-vehicle (G2V) mode when electricity prices and
emission levels are low, and adopting vehicle-to-grid (V2G) operation during periods of high prices and
emissions. This approach yielded notable economic benefits for PEV owners, with daily cost savings
estimated at $787.7, while improving the network’s voltage profile by up to 6%.

Muthusamy et al. [18] introduced the Honey Badger Optimization Algorithm (HBOA), a
novel metaheuristic designed to enhance convergence speed and optimize multi-objective performance
metrics. The algorithm determines EVCS placement by considering V2G operation capabilities and user
driving patterns over a full 24-hour period. When tested on the modified IEEE 69-bus and the Indian
28-bus radial distribution networks, the method delivered significant outcomes, including a 62%
reduction in power losses for the IEEE 69-bus system and a 66% reduction in CO2 emissions for the
Indian 28-bus system.

KK.N. et al. [19] investigated the influence of EVs and RES on the Voltage Unbalance Factor (VUF)
and operational characteristics of distribution networks, including voltage stability, reliability, and the
voltage—reliability—power loss (VRP) index, using a modified IEEE 33-bus system under three distinct
operating scenarios. To maintain VUF within acceptable thresholds, a coordinated charging—
discharging strategy was proposed. The inherent uncertainties in solar and wind generation, as well as
their availability during varying load demands, were modeled using a Monte Carlo Simulation (MCS).
A fuel cell system was incorporated as a backup source to address variability in renewable generation.
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The optimization problem was solved using two metaheuristic approaches: a modified JAYA algorithm
and the Whale Optimization Algorithm (WOA).

Abdelaziz et al. [20] addressed the optimal placement and sizing of EVCSs, PV units, and
Distribution Static Compensators (DSTATCOMSs) to enhance grid performance. The study employed
the Renewable Distributed Generation Hosting Factor (RDG-HF) and EV Hosting Factor (EV-HF) as
primary metrics, in combination with the Hippopotamus Optimization Algorithm (HO) for strategic
planning within the IEEE 69-bus network. Simulation results indicated power loss reductions of up to
31.5% and reactive power loss reductions of up to 29.2%. An economic analysis demonstrated payback
periods ranging from 2.7 to 10.4 years, with potential profits reaching $1,052,365 over a 25-year
operational horizon.

Niknami et al. [21] proposed a comprehensive operational planning framework for microgrids aimed
at enhancing both economic performance and system resilience. The model incorporated uncertainties
related to weather variability, EV charging patterns, RES integration, market price fluctuations, and
load demand, while also accounting for EV user satisfaction and demand-side management. The
approach coordinated network topology reconfiguration, EV movement patterns, and weather impacts,
with MCS applied to represent uncertainties. A multi-objective optimization algorithm was employed
to maximize profits for both network operators and private sector stakeholders. Results demonstrated
notable improvements, including a 37.1% reduction in unsupplied energy costs, a 5% increase in
operator profits, and a 23.1% increase in EVCS profits.

Das et al. [22] developed a probabilistic load modeling framework for Plug-in Electric Vehicle (PEV)
charging demand at public stations, utilizing probability distribution functions (PDFs) to represent
charging start time, initial state of charge, and daily travel distance. A centralized scheduling scheme
based on time-of-use (TOU) pricing was incorporated into a multi-objective smart charging model,
which was reduced to a single-objective problem using the weighted sum method. The objectives
considered included minimizing power losses, reducing load variance, and lowering charging costs.
Testing on IEEE 33-bus and IEEE 69-bus distribution systems revealed that the proposed strategy
enhanced grid performance while delivering economic benefits to consumers.

Eisa et al. [23] focused on the optimal integration of distributed generators (DGs) into radial
distribution networks (RDNs) operating under uncoordinated PEV charging conditions. The study
sought to minimize daily energy losses, improve voltage profiles, and enhance voltage stability. The
Walrus Optimization Algorithm (WO) was applied to determine the optimal DG locations and capacities
while minimizing the multi-objective function (MOF) without violating network constraints. The
proposed model was validated on IEEE 33-bus, IEEE 69-bus, and a real distribution system in El-
Shourok City (District 8), Egypt. Results confirmed that the WO-based approach significantly improved
RDN performance when integrated with PEV loads, offering high-quality and computationally efficient
solutions.

Aljafari et al. [24] explored the often-overlooked aspect of reliability and resilience enhancement in
DRES. The study introduced optimization techniques based on the Spotted Hyena Optimization
Algorithm to determine the optimal size and location of DG units and EVCSs operating in V2G mode.
The approach was designed to strengthen RDS performance by evaluating the effects of EVCS loads and
DG integration on consumer and energy-oriented reliability indices, voltage stability, and power
delivery capacity.

Rene et al. [25] presented a hybrid optimization framework combining Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO) for the optimal siting of PEVCS within distribution networks with
high Distributed Generation (DG) penetration. Photovoltaic units with a power factor of 0.95 were
modeled as DGs, and six penetration scenarios were examined. The objective was to minimize both
active and reactive power losses and reduce voltage deviation indices. The methodology was tested on
IEEE 33-bus and IEEE 69-bus networks using MATLAB simulations. Results demonstrated that the
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inclusion of PEVCSs maintained minimum bus voltages within acceptable limits, with the IEEE 69-bus
case yielding a minimum voltage of 0.973 p.u. The findings reinforced the role of EV integration in
reducing emissions and supporting the transition toward a carbon-neutral energy landscape.

Table 1 Comparative table of existing literature works

Reference Test Scope Key performance Limitations
system gains identified
[16] Modified Multi-objective EVCS & | Reduction in voltage | Does not consider
69-bus RES placement using deviation by 96%, dynamic vehicle
MODA considering decrease in energy behavior or
voltage deviation, losses, | loss by 71% operational cost
and user dissatisfaction
[17] Modified Stochastic EV Decrease in operating | Ignores grid-side
69-bus charge/discharge cost by 48%, decrease | constraints and
optimization with Firefly | in CO2 emissions by | long-term
algorithm under 55%, increase in planning aspects
RES/load uncertainties Voltage by 6%
[18] 69-bus & EVCS placement with Decrease in power Demand
Indian 28- | V2G support using loss by 62%, forecasting and
bus Honey Badger Optimizer | reduction in CO2 economic aspects
emissions by 66% not addressed
[19] Modified Impact of EV & RES on Maintains VUF Relies on assumed
33-bus VUF, VRP index; uses within limits, fuel cell backup,
Monte Carlo + hybrid improves voltage and | lacks cost-
optimization reliability performance
analysis
[20] 69-bus Optimal placement of Power loss by 31.5%, | System-wide
PV, EVCS, and Reactive losses resilience and
DSTATCOM using decreased by 29.2%, | dynamic EV usage
Hippopotamus Payback <10 years patterns not
Optimizer explored
[21] Microgrid Operational planning Eliminated High computation
& Real- with uncertainties in unsupplied energy by | cost, lacks control
world RES, EVs, and load; 37%, improved EV flexibility for real-
networks economic profit profits by 23.1%, and | time operation.
maximization operator profit by 5%
[22] IEEE 33 & | Smart PEV load Improves load Focuses on
69-bus modeling with multi- variance, cost, and centralized
objective pricing and power loss mitigation | pricing; ignores
charging control reactive power
and grid
congestion
[23] 33-bus, 69- | DG planning with EV Improved voltage No coordinated
bus, Egypt | integration using Walrus | profile and EV charge
Real Optimizer minimized daily scheduling;
System energy loss reactive power
handling limited
[24] Radial Resilience improvement | Improved reliability Lacks economic
network with V2G-enabled EVCS | indices and voltage analysis; limited
and DG placement using | stability consideration of
Spotted Hyena user-side behavior
Optimization
[25] 33 & 69- PEVCS placement with Maintains voltage > Cost impact and
bus DG using GA-PSO; 0.973 pu under high | THD/VUF factors
evaluates voltage and DG & PEVCS not evaluated
power loss penetration
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Table 1 concisely presents comparative insights, contextualizes each study’s methodology and
scope, and pinpoints where your proposed method fills the gap, especially regarding dynamic EV-PV
coordination, cost reduction, and grid resilience under uncertainty. When studies overlook the
unpredictable and variable charging demands of EV owners as well as the intermittency of renewable
energy generation, they fail to account for several critical variables. On the EV side, these include the
time when vehicles arrive and depart, the state-of-charge (SOC) upon arrival, the battery capacity, and
the duration of charging sessions. On the renewable generation side, key variables include solar
irradiance and temperature fluctuations, which are influenced by weather conditions such as cloud
cover, temperature, and seasonal patterns, as well as the inherent ramp-up and ramp-down rates of
solar panels and wind turbines. Together, these factors introduce significant uncertainty into system
planning and operation, necessitating advanced modeling and management strategies to ensure grid
stability and efficiency.

3. Proposed Methodology

To address the increasingly intricate interdependence between EVCS infrastructure and RES
penetration in modern distribution systems, this study introduces a novel, holistic control strategy,
Sustainable EVs Intelligent Management Framework (SEIMF), which unifies infrastructure planning
with dynamic operational optimization. The existing works on EVCS-RES integration tend to
compartmentalize optimization goals, often prioritizing cost or loss minimization, while overlooking
critical grid reliability parameters, such as the Voltage Unbalance Factor (VUF), Total Harmonic
Distortion (THD), and dynamic load imbalances induced by stochastic EV charging behaviours.
Furthermore, RES, particularly PVs, are inherently intermittent and affected by environmental
conditions, which compounds the complexity of real-time load and voltage management. Conventional
methods often lack the adaptive capability to accommodate such volatility, leading to localized voltage
deviations, thermal stress on grid components, and inefficient utilization of available renewable energy.

Multi-Objective Differential Parrot Optimization

Sustainable 2] ——————— R ,
| 2 14
EYS 12 Optimal Placement I<:j| Parrot Optimization l
Intelligent < ) [
i | < | L _ N -
—— Management | £
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Figure 1: System architecture of the proposed SEIMF framework integrating MODPO-
based planning and HRPLC-based control in EVCS-RES-grid coordination.
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The SEIMF framework addresses these limitations by proposing an integrated architecture that
combines infrastructure-level optimization with intelligent, decentralized control mechanisms. The
overall architectural layout of SEIMF is illustrated in Figure 1, which displays the interplay between
optimization, forecasting, learning control, and grid interfaces, facilitating comprehensive system
coordination. At its core lies a novel Multi-Objective Differential Parrot Optimization (MODPO)
algorithm, which simultaneously determines optimal siting and sizing of EVCS and PV systems using a
two-phase search strategy that balances convergence efficiency and Pareto front diversity. A
Hierarchical Reinforced Predictive Learning Control (HRPLC) module, wherein deep reinforcement
learning (DRL) agents adaptively manage G2V/V2G operations based on real-time grid states and
forecasted load-generation profiles, guided by a centralized Model Predictive Control (MPC) layer that
forecasts grid dynamics over a 24-hour horizon, further augments this. The synergy between RL agents
and MPC ensures pre-emptive voltage regulation and congestion avoidance. Additionally, the use of
smart inverters embedded with harmonic filters facilitates localized power quality correction. By jointly
addressing planning, operation, and quality aspects under a single integrated paradigm, SEIMF ensures
grid resilience, economic feasibility, and environmental sustainability, demonstrating significant
advancement over existing siloed approaches.

3.1 Distribution System Model and Objective Functions

The standard IEEE 69-bus radial distribution test system, which is frequently used in the
literature to assess grid performance in distributed energy integration scenarios, is used to model and
validate the suggested framework. With its high R/X ratios, unbalanced node configurations, and mix
of residential and commercial load profiles, the network is an ideal testbed for evaluating the effects of
RES and EVCS in real-world operating scenarios. Figure 2 illustrates the simplified architecture of the
IEEE 69-bus radial distribution network incorporating PV generation and EVCS. The schematic
highlights the integration of key system elements: the main grid connection at Bus 1, distributed feeder
lines, and strategically located PV arrays and EVCS units across selected buses such as 11, 17, 52, and
64. The PV array injects renewable power into the feeder, while EVCS units support both G2V and
vehicle-to-grid (V2G) operations, dynamically interacting with the distribution system.

Objective functions

Pioss

Vdev

Crcp

VUF

Twp

[

Constraints

------------------------------ . Voltage limits
Feeder limits
Inverter limits

EVCS

Figure 2: Part of the network in the proposed distribution system model

B
L

EVCS

Selected nodes from the proposed methodology in this study are set up to support EVCS and
PV arrays while maintaining system operational limitations like feeder capacity, phase load balancing,
and voltage magnitude limits. To capture the variability introduced by PV generation, solar irradiance
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and ambient temperature are modelled as time-dependent variables, with irradiance profiles derived
from standardized test conditions and typical meteorological data. The EVCS is assumed to serve PEVs
whose arrival, dwell time, and energy demand are modelled probabilistically, though detailed stochastic
modelling is abstracted to maintain tractability. Power flows are computed using backward-forward
sweep techniques, and the system is operated over a 24-hour time horizon divided into equal time slots
to accommodate load and generation fluctuations.

The planning and control tasks are framed as a constrained multi-objective optimization
problem. The goal is to simultaneously minimize total real power losses P, voltage deviations Vy,,,

operational cost C,,, VUF, and THD, while maximizing the effective utilization of renewable energy U,..,

The decision variable vector x encapsulates the siting and sizing of PV and EVCS, as well as
real-time operational set points. Power loss P, is defined as the sum of branch-wise losses over all
lines! € £L:

PZ+Q?
Piogs = ZIEL R, ( lVlz l) 6))]
Here, R, is the resistance of line [/, P, and Q, are the real and reactive power flows, and V, is the
sending-end voltage magnitude.

Voltage deviation is computed as the aggregated squared deviation of all bus voltages from the nominal
voltage V., given by:

Vdev = ZiEB(Vi - Vnom)2 (2)

Operational cost includes both the cost of imported grid electricity and penalties for RES curtailment,
formulated as:

Cop = ZZ:l(At- Pgrid,t + u. Pcurt,t) (3)

Where 1, is the real-time electricity price at time t, Py.4, is power drawn from the grid, P, is
curtailed PV power, and u is a penalty coefficient reflecting curtailment aversion.

VUF is calculated using the negative- and positive-sequence voltage components:
v
VUF = —x100% 4)

Similarly, THD is computed using harmonic voltage components V, for n > 1 as:

2
THD = \[Z,’Lz (';—*1’) x 100% 5)

Renewable utilization U, is expressed as the ratio of consumed PV energy to total available PV energy
over the time horizon. The optimization problem is subject to standard equality and inequality
constraints. These include power balance equations at each node, voltage magnitude bounds V,,;,, <
V; < Viax, feeder capacity limits, maximum charging/discharging rates of EVCS, and inverter limits for
both real and reactive power injection.

3.2 Multi-Objective Differential Parrot Optimization (MODPO)

The optimal planning of EVCS and RES in a distribution system introduces a complex multi-
objective optimization problem characterized by non-linearity, high-dimensionality, and
interdependent conflicting objectives. In this context, classical deterministic techniques are often
inadequate due to their sensitivity to initial conditions and local optima. Traditional evolutionary
algorithms, including the widely adopted NSGA-II and MOPSO, offer notable advantages in exploring
Pareto fronts; however, they often exhibit slow convergence rates, reduced diversity in high-
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dimensional objective spaces, and premature stagnation in multi-modal functions. To address these
limitations, this work proposes a novel optimization paradigm termed MODPO, a hybrid metaheuristic
that synergistically combines the socially adaptive intelligence of the Parrot Optimization Algorithm
(POA) with the robust search mechanics of Differential Evolution (DE).

The base POA algorithm is inspired by the learning behavior of parrots, where each candidate
solution imitates behaviors, adapts based on memory and social feedback, and seeks optimal fitness
through collaborative exploration. Let X = {x;,x,, ...,xy} € R* denote a population of N candidate
solutions, each represented by a d-dimensional vector. Each element of x; denotes a specific decision
variable, such as the location index of EVCS or PV, inverter rating, or charging station capacity. The
multi-objective evaluation for each solution x; is given by a vector-valued function F(x;) =
[f1(xD), f2(x), -, fin(x;)], where m represents the number of objective functions. In our problem, the
functions include minimizing power loss, minimizing voltage deviation, minimizing operational cost,
minimizing the VUF, minimizing THD, and maximizing renewable energy utilization.

In the initialization phase, a random population X, is generated by sampling uniformly within
feasible bounds defined for each decision variable x; ; € [xjmi", x/"**]. Each candidate’s performance is
then evaluated over all objective functions, and a dominance-based ranking is applied. Pareto

dominance is used to establish solution quality: a solution x; is said to dominate x; if f, (x;) < fi(x;)for
allk =1,..,mand fi(x;) < fi(x;)for at least one objective k.

The MODPO algorithm proceeds in two distinct phases. In Phase I, the Pareto-optimal front is
generated using a memory-based update strategy rooted in the POA logic. Both its historical best

performance and the best non-dominated individual in its neighborhood influence each solution’s

(t+1)
i

position. Mathematically, the update for each position x in iteration t is governed by:

xi(Hl) = xi(t) +a - (p.(t) - xl.(t)) +a, (g® - xi(t)) +e (6)

4

where xl.(t) is the personal best of solution i, g® is the global non-dominated solution (selected
from the elite archive), a;, a, € [0,1] are learning factors, and € ~ N(0,5?) is Gaussian noise to ensure

exploration.

To enhance exploitation capabilities, Phase II invokes a Differential Evolution (DE) operator-
based refinement. A mutant vector v; is constructed for each individual using DE’s mutation strategy:

Vi =X+ F - (X2 — Xp3) )]

Where x,,X,,,%,3 are randomly selected distinct vectors from the population, and F € [0.4,1.0]
is a user-defined scaling factor that controls the amplification of the differential variation. The crossover
operator combines the target vector r; and mutant vector v; to yield a trial vector u; as:

®

_ (Vij if randj < CRor j = jrand
Uij = {xi‘j otherwise

Where CR € [0,1] is the crossover probability, rand; ~ U(0,1) is a uniformly distributed random
number, and j,,,4 ensures at least one component is inherited from the mutant vector. The trial solution
u; replaces x; only if it is non-dominated or dominates the parent, following;:

@) _ (W fu<x
i {xl-, otherwise (9)

An elite archive A stores all non-dominated solutions found during the optimization. To
maintain diversity, a crowding-distance-based selection is performed on A, ensuring uniformly
distributed solutions on the Pareto front. The termination criterion is met when a maximum number of
generations G,,,, is reached or when no significant improvement is observed over a fixed stagnation

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 2890
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

threshold. The final archive provides a diverse set of trade-off solutions from which planners can select
an operating point based on system priorities.

Input parameters

!

| Generate initial population ‘

|

‘ Evaluate objective funcﬂons‘

!

’ Compute Pareto front |

Convergence?

‘ Memory-based social update ‘

!

‘ Generate trial solutions ‘

'
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and local search

|

‘ Update Pareto front ‘

Figure 3: Flowchart of the MODPO Algorithm

The flowchart describes the iterative MODPO process, including population initialization,
objective evaluation, Pareto front generation, memory-based social updates (POA phase), DE-based
mutation and crossover (refinement phase), and elite archive maintenance. In the context of the
proposed SEIMF framework, the MODPO algorithm simultaneously determines the optimal buses for
PV and EVCS deployment, their rated capacities, and inverter setpoints. Each decision vector x; maps
to a full design configuration for the distribution network, and the evaluation of objectives is performed
using network power flow simulations. By optimizing across multiple objectives and ensuring solution
diversity, MODPO provides planners with a Pareto front that balances cost, technical performance, and
environmental sustainability.

3.3. Hierarchical Reinforced Predictive Learning Control (HRPLC)

To ensure real-time operational stability under the dynamically evolving charging demands of
PEVs and the intermittent nature of renewable generation, a dual-layered control architecture, termed
HRPLC, is integrated into the system operation stage. This control framework harmonizes the learning-
driven adaptability of DRL with the predictive capabilities of MPC, thereby enabling decentralized
decision-making at the local EVCS level and centralized supervisory regulation at the network level.
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Figure 4: Workflow of proposed HRPLC technique

At the core of the lower control layer, each EVCS node is equipped with a decentralized DDPG
agent, trained to continuously adjust bidirectional charging behavior (G2V and V2G) based on localized
state observations. The agent interacts with the environment modeled as a Markov Decision Process
(MDP) defined by a tuple M = (S, A4, P,r,y), where S denotes the state space, A the action space, P the
transition probability function, r the reward function, and y € (0,1) the discount factor.

The state vector s, € S at time step t is defined as:
se = [V{, SOC{, Phy, A¢] (10)

Where V/ is the nodal voltage magnitude at bus i, SOC/ is the state-of-charge of the battery at the i*"
EVCS, P, is the PV power injection at time ¢, and 4, is the electricity price signal. The action vector a, €
A comprises the charging or discharging power command P}, constrained within:

it
Pgy € [=Pnas, Paax (11)

The reward signal is constructed to balance three primary objectives: minimizing grid stress, preserving
battery health, and reducing operational cost. A representative reward function r; can be expressed as:

re= —a- (Vf = Vrep)? = B - (SOCE = SOCrep)? =y - Ciy (12)
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Where V.. and SOC,. are the reference voltage and battery SOC, respectively, CLt is the instantaneous
charging cost, and «a, 8, y are weighting coefficients to modulate agent behavior.

Each agent learns an optimal policy 7: S — A via a parameterized actor—critic architecture where the
actor network approximates 74 (s) and the critic estimates the action—value function Q™ (s, a). The critic
network is trained to minimize the Bellman error:

L(0%) = Eq g5 [(Q7(5,0) — (r + yQ™ (s, m(s")))?] (13)
Meanwhile, the actor is updated through the policy gradient:

Vo] = Es-p[VaQ™ (s, a)Vome(s)] (14)

To prevent instability due to non-stationary policy updates, target networks and experience
replay buffers are employed, conforming to state-of-the-art DRL training protocols. Operating above
the decentralized DDPG agents is a supervisory MPC layer that aggregates system-wide states and
forecasts to guide agent-level decisions. This layer solves a rolling-horizon optimization problem every
7 time intervals to predict grid behavior over a finite time window [t, ¢t + T]. The MPC uses solar
irradiance forecasts, load demand profiles, and grid voltage trajectories to anticipate congestion and
voltage violation events. The optimization problem solved at each MPC timestep is given by:

uminTZ?:l;(Wl Plss +wy - AVE +wy - ofyp) (15)
t-t+

Which was subjected to nodal voltage bounds, i.e., V,,;,, < V¥ <. SOC dynamics formulated as SOC}*! =
sock +n- PELJ‘ - At, Grid power limits, and EVCS charging constraints.

The output of the MPC is a set of target nodal constraints and economic signals 1, which are broadcast
to the local agents to bias their policy decisions. This top-down coordination ensures that the distributed
policies align with global grid objectives such as congestion mitigation and renewable energy
absorption.

Moreover, each PV system is equipped with smart inverters integrated with harmonic filtering
capabilities, modeled to dynamically attenuate local total harmonic distortion (THD) through adaptive
filter tuning. The harmonic current I, injected at each inverter node is minimized by adjusting the phase
compensation angle ¢, such that:

rgin | 12" (¢pp) |, subjectto ¥H_,THD, < €rup (16)
h

Where THD,, is the harmonic distortion level at harmonic order h, and ey, is the acceptable limit
specified by IEEE 519 standards. In combination, the HRPLC architecture ensures adaptive, fine-
grained, and forecast-aware operation of the integrated RES—EVCS system. The lower-level DDPG
agents respond autonomously to real-time local conditions, while the MPC layer guarantees proactive
system-level coordination. The hybrid closed-loop design significantly enhances voltage profile
regulation, mitigates network congestion, maximizes renewable utilization, and supports power quality
compliance under uncertain and time-varying conditions.

4. Results and discussion

This section presents the simulation outcomes of the proposed HRPLC-based PV-EV control
and placement strategy. The results are analysed to assess system performance across key reliability,
power quality, and operational metrics.

4.1 Simulation setup

The simulation and performance evaluation of the proposed Sustainable Electric Vehicles
Intelligent Management Framework (SEIMF) were executed using MATLAB R2024a, taking advantage
of its enhanced support for DRL, multi-objective optimization, and Simulink-based power system
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modeling. The implementation was performed on a standard desktop computing platform equipped
with an Intel® Core™ i7-12700K processor operating at 3.6 GHz, supported by 32 GB of DDR4 RAM,
and running on Windows 11 Pro 64-bit operating system. The IEEE 69-bus radial distribution system
was chosen for simulation due to its complexity and practicality. The simulation framework integrates
load, generation, and control components over a 24-hour operational horizon. A sequence-based radial
distribution network topology was generated and optimized using a MODPO algorithm to determine
ideal integration points for distributed PV systems and EVCSs. A backward—forward sweep (BFS)
method was employed for unbalanced power flow calculations in radial networks, modified to
accommodate dynamic loading conditions. A DRL structure was implemented through manually coded
DDPG agents, where the Q-learning update mechanism managed EV charging/discharging actions
based on voltage-aware state transitions. A MPC layer was embedded in parallel, solving a quadratic
cost minimization problem at each hour using MATLAB’s quadprog function, relying on forecasted load
demand and PV generation profiles. Dynamic load modeling incorporated tariff-driven demand-side
management, while EV charging power was adaptively regulated using bus voltage deviation factors to
ensure grid stability. Random line outages were simulated stochastically to evaluate network reliability,
where Energy Not Supplied (ENS), SAIDI, and SAIFI were computed using graph-theoretic connectivity
checks. Smart inverter behavior was modeled at PV buses, including harmonic filtering through time-
domain signal manipulation. THD and VUF were computed using base-coded FFT functions and
statistical logic. The system architecture thus demonstrates a hybridized, multi-layered decision control
capable of self-learning, predictive optimization, and reliability assessment under real-world
constraints and uncertainty. The simulation ensured smooth execution of large-scale power flow
computations and iterative optimization.
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Figure 5: Initial Topology of the Distribution Network

Figure 5 shows the spatial topology of a radial distribution network, illustrating the connectivity
and arrangement of different consumer types. The network consists of multiple buses, classified based
on consumer type: residential, industrial, and agricultural. The interconnections are light blue lines,
representing distribution branches. This configuration reflects a multi-sectoral, geographically
dispersed feeder topology, serving diverse load types. The proposed HRPLC framework was entirely
developed in MATLAB through fully customized code modules without the use of proprietary toolboxes.
The simulation framework integrates load, generation, and control components over a 24-hour
operational horizon. A sequence-based radial distribution network topology was generated and
optimized using a MODPO algorithm to determine ideal integration points for distributed PV systems
and EVCSs. A BFS method was employed for unbalanced power flow calculations in radial networks,
modified to accommodate dynamic loading conditions. A DRL structure was implemented through
manually coded Deep Deterministic Policy Gradient (DDPG) agents, where the Q-learning update
mechanism managed EV charging/discharging actions based on voltage-aware state transitions. An
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MPC layer was embedded in parallel, solving a quadratic cost minimization problem at each hour using
MATLAB’s quadprog function, relying on forecasted load demand and PV generation profiles. Dynamic
load modeling incorporated tariff-driven demand-side management, while EV charging power was
adaptively regulated using bus voltage deviation factors to ensure grid stability. Random line outages
were simulated stochastically to evaluate network reliability, where Energy Not Supplied (ENS), SAIDI,
and SAIFI were computed using graph-theoretic connectivity checks. Smart inverter behavior was
modeled at PV buses, including harmonic filtering through time-domain signal manipulation. THD and
VUF were computed using base-coded FFT functions and statistical logic. The system architecture thus
demonstrates a hybridized, multi-layered decision control capable of self-learning, predictive
optimization, and reliability assessment under real-world constraints and uncertainty.

The simulation environment integrated planning and operational phases into a closed-loop
MATLAB-Simulink architecture, enabling a seamless transition from infrastructure planning to real-
time grid operation under dynamic PEV and RES conditions.

4.2 Dataset description

The proposed SEIMF framework uses a synthetic dataset to simulate grid behavior, EV charging
patterns, and renewable energy generation under temporal variability. The IEEE 69-bus radial
distribution system was chosen for simulation due to its representative topology and widespread use in
network research. The simulation testbed included multiple load nodes representing residential,
industrial, and agricultural consumers. The load types were probabilistically allocated, with 60%
residential, 25% industrial, and 15% agricultural. Real power demand was randomly assigned to each
non-substation bus within the 10—100 kW range.

Table 2: Initial simulation parameters and range of values used to train the proposed

network
Parameter Value / Range
Number of buses 69
Load per bus 10—100 kW
Load types Residential (60%),
Industrial (25%),
Agricultural (15%)
Nodes per bus 1-3
EVCS penetration 10%
PV penetration 20%
PV peak capacity 50 kW
Load forecast horizon 168 hours

EV charging pattern 5—15 kW during 7—9 AM, 5—-7 PM
ToU tariffs 0.10-0.20 $/kWh
THD threshold <0.5%
Voltage limits 150—230V
SOC bounds 20-100%
Max charging/discharging rate +15 kW

Line current and S limits

300 A, 100 kVA

A Prufer-based algorithm was used to construct a tree topology for a network, ensuring radial
connectivity and heterogeneity in line lengths and impedances. Line parameters were modeled
proportionally with line length, and all information was saved in structured MATLAB objects for power
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flow analysis and radiality enforcement. Load demand forecasts were generated for 168 hours with
hourly resolution, and PV generation profiles were synthesized using Gaussian irradiance curves.
Approximately 20% of buses were PV-equipped, with a peak generation capacity of 50 kW. The study
focuses on modeling EVCSs using 10% of buses as nodes. These profiles were generated using a time-
of-day logic, with peak charging windows between 7-9 AM and 5-7 PM. Each profile displayed
randomized power levels within a 5-15 kW range during active periods and idled during off-peak hours.
The data was consolidated in EVChargingProfiles.mat. A Time-of-Use tariff structure was implemented
with four rate blocks across the 24-hour cycle, reflecting dynamic electricity pricing policies. The tariff
profiles were saved as ToUTariff.mat. Technical and operational constraints were defined to govern the
optimization space, including maximum allowable line currents, apparent power limits, power quality
thresholds, voltage operating limits, state-of-charge bounds, charging/discharging limits, and cost
ceilings for investment and operational expenditure, as listed in Table 2.

4.3 Initial simulated parameters
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Figure 6 PV Generation Forecasts Across Distributed Nodes

Figure 6 illustrates the hourly PV power generation forecasts for ten buses within the IEEE 69-
bus radial distribution network that are designated as PV-equipped nodes. These forecasts were
generated to replicate solar irradiance behavior in temperate climates, following a Gaussian temporal
distribution centered around solar noon. The expected generation patterns show a common bell-shaped
curve peaking between 11:00 and 13:00, where maximum PV output approaches or slightly exceeds 50
kW. This aligns with conventional PV output modeling methodologies, which follow a near-normal
distribution with minor temporal jitter due to cloud-induced intermittency and panel orientation
differences. The study uses a vertical spread among bus curves to simulate spatial heterogeneity in PV
generation, aiming to mimic real-world operational diversity in distributed PV deployments. The values
were generated using Monte Carlo perturbation and normalized against a maximum PV capacity of 50
kW per bus, consistent with small-scale distributed rooftop solar installations. The dataset serves as a
crucial input to the MPC module, enabling anticipatory charging-dispatch decisions under variable
renewable energy availability.
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Figure 7 Hourly Load Forecast Profiles for Sampled Buses

Figure 7 presents the simulated hourly load demand profiles for a subset of ten representative buses in
the IEEE 69-bus radial distribution network. The forecast covers a 24-hour horizon and incorporates a
mix of residential, industrial, and agricultural load types. The time-series data was generated using
sinusoidal daily demand cycles modulated by random noise components to reflect consumption
variability due to weather, occupancy, and industrial shift timings. Buses 2, 3, 7, and 10 display
significantly higher demand magnitudes, with peaks reaching approximately 100 kW during mid-
morning hours. Buses 1 and 4 exhibit flatter and lower-magnitude curves, likely corresponding to
residential or grid-terminal points with minimal end-user loads. This heterogeneity in demand levels
supports the need for adaptive planning algorithms and reinforces the challenge of maintaining voltage
stability and minimizing losses under spatially non-uniform loading. The synthetic forecasts serve as
dynamic inputs to the proposed HRPLC and MODPO frameworks, enabling proactive and data-
informed decision-making in the co-optimization of EVCS siting, RES integration, and grid operation.
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Figure 8 Hourly EV Charging and discharging demand praofiles at selected EVCS buses

Figure 8 illustrates simulated hourly charging demand patterns for five EVCS-equipped buses
across a 24-hour operating window. The demand is constructed using a time-dependent probabilistic
function and constrained stochasticity to reflect variability in vehicle arrival times, battery SOC levels,

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 2897
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

and user preference diversity. The charging power varies between 5 kW to 15 kW, indicating level-2 fast-
charging behavior under moderate usage density. The morning session shows a gradual ramp-up to
peak power, followed by a steep decline post 09:00, likely representing workplace or school-bound
usage scenarios. The evening charging window exhibits a faster ramp-up and a slightly prolonged
duration, likely representing post-work residential charging behavior. Buses such as Bus 16 and Bus 14
show maximum peak demand, while Bus 47 exhibits lower but more consistent charging loads,
reflecting usage diversity across spatially distinct feeder nodes. This temporal non-uniformity in EVCS
load contributes significantly to localized voltage dips, reverse power flow in RES-dominant zones, and
harmonic distortions, necessitating adaptive grid response mechanisms. The forecast dataset is integral
to the proposed HRPLC framework, which leverages these temporal insights to schedule V2G/G2V
operations, minimize grid congestion, and proactively mitigate voltage violations.
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Figure 9: Daily and Weekly Time-of-Use (ToU) Tariff Profiles

Figure 9 presents the daily and weekly Time-of-Use (ToU) electricity tariff structure employed
in the simulation environment to mimic realistic market-based energy pricing schemes. The ToU
electricity tariff structure is used in a simulation environment to mimic market-based energy pricing
schemes. The tariff structure is divided into three blocks: off-peak hours (01:00—06:00), mid-peak
hours (07:00—12:00 and 19:00—24:00), and on-peak hours (13:00-18:00). The lowest tariff rate is
$0.10/kWh, aiming to encourage consumption during low-demand intervals and mitigate overnight
generation surplus. Mid-peak hours are moderately priced at $0.15/kWh, representing transitional
periods with moderate grid stress. On-peak hours coincide with maximum residential and commercial
load aggregation, assigned the highest tariff rate of $0.20/kWh. The inclusion of tariff heterogeneity is
crucial for system optimization, as it ensures temporally aware sizing and placement of renewable
energy resources and EV charging units. The interplay of ToU tariffs with load profiles, PV generation,
and EV charging dynamics significantly affects voltage regulation and reverse power flow trends,
making ToU modeling indispensable for intelligent distribution system planning.
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Figure 10: Convergence Behaviour of the MODPO Algorithm

Figure 10 illustrates the convergence trajectory of the proposed MODPO algorithm over 200
generations. The MODPO algorithm is a multi-objective optimization method that combines multiple
conflicting targets, such as energy losses, voltage deviation, investment costs, and ToU-based
operational cost, using a scalarization technique with weight balancing. It starts with a high objective
value, indicating a randomly distributed initial population. As generations progress, the curve shows a
steep decline during the first 40 generations, indicating the algorithm rapidly explores promising
regions of the solution space. The moderate decline phase between generations 40 and 120 reflects the
transition from exploration to exploitation, where the algorithm refines local optima and avoids
suboptimal entrapment. From generation 120 onwards, the curve flattens, showing asymptotic
convergence towards a near-global optimal solution around 1.000. This convergence behavior is
desirable in multi-objective optimization, as it suggests solution quality and robust convergence
stability under complex nonlinear constraints. This convergence pattern is consistent with advanced
bio-inspired optimization methods used for DER planning, such as NSGA-II, MOPSO, or hybrid DE
variants, and confirms the MODPO algorithm as an efficient and stable alternative for large-scale multi-
objective decision problems in active distribution networks.
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Figure 11: Bus-wise Installation Placement of PV Systems and EV Charging Stations

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 2899
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



Journal of Information Systems Engineering and Management
2024, 9(4s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Figure 11 illustrates the optimized installation layout of PV systems and EVCS across the
distribution network buses. The diagram shows bus numbers and two levels of installation categories:
PV systems in nodes 3, 10, 13, 14, 19, 24, 27, 28, 31, 39, 43, 44, 47, 55, 59, 62, 64, 65, 67, and 69 and
EVCSs in nodes 1, 2, 6, 8, 11, 12, 17, 26, 30, 32, 42, and 53. The placement pattern is based on a multi-
objective optimization model that minimizes power losses, maintains voltage stability, and ensures
balanced integration of distributed generation and charging demand. PV systems are installed as single
units at each bus, promoting a balanced generation profile. EVCSs are deployed in slightly higher
capacity, reflecting anticipated charging demands at those nodes. This configuration enhances voltage
support and grid reliability, minimizes distribution losses by reducing long-distance power flows, and
prevents localized congestion due to simultaneous PV injection or EV charging. The co-optimized siting
and sizing approach leads to a technically sound and scalable deployment of distributed RES systems
in the distribution system.

4.5 Output results
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Figure 12 EV Charging and Discharging Praofile for 10 EVs

Figure 12 illustrates the optimized hourly charging profiles for 10 EVs over a 24-hour
scheduling horizon as determined by the proposed MODPO method. Most EVs exhibit a nearly constant
charging power level after the initial hours, ensuring a fast and efficient charging schedule. However,
some EVs follow intermittent charging trajectories, which MODPO detects and avoids adaptively. For
example, EV 10 charges at the maximum permissible rate initially but drops significantly to around 3
kW between hours 2 to 18, with a resurgence post-hour 18. This pattern aligns with low PV availability
and high tariff periods, demonstrating that MODPO defers charging to off-peak windows where it
becomes more cost-effective and less disruptive. EV 7 shows a staggered pattern, scheduling charging
during selectively optimal hours, highlighting the multi-phase scheduling capabilities of MODPO for
vehicles with constrained time windows or cost-sensitive users. The charging profile ensures total EV
load is balanced and smoothed, aligning with PV generation peaks where possible, effectively utilizing
green energy and reducing dependence on grid-imported energy. Tariff-aware scheduling is achieved,
EVs avoid high tariff periods, minimizing operational costs. This optimized behaviour highlights the
effectiveness of MODPO in multi-objective scheduling, integrating economic dispatch, grid constraints,
and renewable synergy into a coherent and adaptive framework.
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Figure 13 presents the hourly occurrence of voltage violations observed in the distribution
network during a typical operational day under the proposed HRPLC. The Hybrid proposed control
model monitors voltage violations in the distribution network during a typical operational day. The
scheme focuses on a narrow window between 8:00 AM and 10:00 AM, with a peak of 3 violations at
9:00 AM. This period is typically triggered by morning residential and commercial demand and a surge
in EV charging activity. The HRPLC algorithm effectively prevents voltage excursions outside this peak
window by proactively forecasting load and generation behavior, scheduling EV charging and
discharging cycles, and adaptively using PV generation to offset real-time demand. The absence of
violations in other hours demonstrates the model's resilience and adaptability, particularly in
maintaining voltage within regulatory limits. HRPLC also demonstrates superior mitigation of voltage
instability by dynamically balancing DER operation with system constraints.
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Figure 14 shows the cumulative accuracy of the RL model over 24 hours. The model's learning
curve is presented in a layered staircase form, showing how accuracy improves over time and iterations.
At hour 1, the accuracy distribution starts at a minimal level, with lower layers representing early
exploration. As the hours progress, the density of higher layers increases, and the cumulative accuracy
approaches 100% in the latter half of the day. By hour 6, 50% of the layers reach or surpass 0.6 in
cumulative accuracy, indicating the agent consolidates useful policy knowledge. From hour 10, most
trajectories begin exceeding 0.8 accuracy, and by hour 18, nearly all policy trajectories reach the optimal
decision boundary of 0.9 to 1.0, indicating strong convergence and stable policy reinforcement. The
integrated RL strategy successfully adapts to complex, dynamic system states, ensuring online
adaptability, which is critical for managing non-stationary, stochastic smart grid environments.
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Figure 15: SAIDI and SAIFI per hour

Figure 15 shows the hourly evaluation of power system reliability using two fundamental
indices: SAIDI and SAIFI. The TOU metric measures the average interruption duration experienced by
a customer during the day, with a high value in hour 1 and low values in multiple segments. A spike
occurs at hours 7 and 13, with a maximum near hour 24. The SAIFI profile mirrors the patterns of
SAIDI, with higher interruption frequencies observed at hours 7, 13, and 24. SAIFI values drop to near-
zero across a significant portion of the day, showcasing the control strategy's capability to minimize
interruption frequency and duration during strategic load management and distributed generation
balance. The system demonstrates sustained reliability over critical operational hours, with scattered
peaks potentially attributed to dynamic load transitions or EV charging events not fully synchronized
with grid stability thresholds. The low magnitude of SAIFI and long durations of SAIDI null intervals
justify the robustness of the proposed intelligent scheduling scheme.
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Figure 16: Temporal profile of total power loss and operational cost
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Figure 16 illustrates the impact of the proposed MODPO-based energy management strategy
on total power loss and operational cost. The system starts with a minimal loss of 0.13 kW at hour 1,
which increases due to growing load demand. The loss drops sharply after hour 13 and reaches its lowest
values between hours 18 and 22, attributed to optimal dispatch of distributed generation resources,
regulated EV charging, and the time-of-use tariff structure. The operational cost profile reflects the
economic efficiency achieved under the proposed scheme, starting at around $1.3 during early hours
and increasing steadily to approximately $5.3. Post-peak, the cost trajectory mirrors the drop in losses,
decreasing progressively and stabilizing between $0.5 and $1.0 during hours 18 to 22. The system's
efficacy in achieving dual objectives of loss minimization and cost efficiency is validated by dynamically
adjusting operational variables in response to load profiles and tariff variations.
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Figure 17: Temporal profile of average THD and VUF

Figure 17 shows the dynamic variation of two power quality indices, THD and VUF, over a 24-
hour time horizon. THD, which indicates harmonic content in voltage waveforms, shows a sinusoidal
variation throughout the day, peaking at 0.050 p.u. Around hours 5 and 23, and dropping to a minimum
of 0.030 p.u., near hour 14. This trend indicates that harmonics are most pronounced during early
morning and late-night hours, coinciding with high simultaneous charging activity. However, the THD
remains well below the IEEE 519 recommended threshold of 0.05 p.u., confirming compliance with
power quality norms. The VUF, a critical reliability index, shows a decreasing pattern from 0.020 p.u.
at hour 1 to a minimal value near hour 15, followed by a gentle increase during evening hours. This
behavior demonstrates that the proposed method achieves effective phase balancing during periods of
high EV penetration and ensures symmetrical voltage distribution through decentralized coordination
strategies. The minimal VUF during peak load windows reinforces the robustness of the proposed
scheme in upholding grid reliability standards.

Table 3: Performance of the proposed model

Metric Value
Total Power Loss (kW) 9.84
Total Energy Not Supplied (ENS, kWh) 0.24
Average SAIDI (min) 0.77
Average SAIFI 0.01
Voltage Violations (count) 7
Average Voltage Deviation (%) 4.06
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Average THD (%) 4.16
Maximum THD (%) 5.00
Average VUF (%) 0.77
Maximum VUF (%) 1.98
REUT (PV Utilization, %) 100.00
Total Operational Cost (%) 60.38
RL Action Match Accuracy (%) 100.00

The proposed MODPO-RL-based multi-objective framework has demonstrated significant
performance in terms of operational, reliability, and power quality metrics, as shown in Table 3. The
total power loss across the optimization horizon is limited to 9.84 kW, demonstrating the algorithm's
ability to strategically route power flows and avoid congested branches during peak demand periods.
The Energy Not Supplied (ENS) indicator is low at just 0.24 kWh, demonstrating effective voltage and
load balancing even under stochastic EV charging patterns and renewable intermittency. The System
Average Interruption Duration Index (SAIDI) and System Average Interruption Frequency Index
(SAIFI) are minimal, indicating the robustness of the RL coordination in preventing frequent and
prolonged outages. Power quality indices further reinforce the efficacy of the proposed method, with
the average THD maintained at 4.16% and the average VUF limited to 0.77% and 1.98%, respectively,
ensuring minimal voltage asymmetries across three phases. The Renewable Energy Utilization reached
nearly 100%, indicating efficiently absorbed and utilized PV energy with zero curtailment. The
operational cost was reduced by 60.38%, highlighting the cost-effectiveness of the solution. The RL
agent achieved 100% action match accuracy, demonstrating its reliability in replicating optimal control
policies and adapting accurately to system dynamics. In summary, the proposed method achieves multi-
objective trade-offs among energy cost, grid losses, and renewable utilization while upholding stringent
standards for reliability and power quality.

4.7 Comparative results
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Figure 18: Performance of the network by varying the number of EVCS installed

Figure 18 illustrates the impact of varying the number of EVCS on key performance metrics of
the distribution network. As the number of EVCS increases from 5 to 25, a consistent improvement is
observed across all parameters. Specifically, the operational cost reduces significantly from 61.85% to
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56.71%, indicating enhanced economic efficiency. Power losses also show a gradual decline from 10.2
kW to 9.31 kW. In terms of power quality, the THD decreases from 4.32% to 3.55%, while the VUF
improves from 0.82% to 0.66%. These results demonstrate that optimal placement and higher
penetration of EVCS can contribute to reduced operational burden and better power quality in the
network.
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Figure 19: Performance of the network by varying the number of PV installed

Figure 19 illustrates the sensitivity of key operational parameters, namely, total operational
cost, power losses, THD, and VUF, concerning varying counts of PV installations in the distribution
network. As the number of PV units increases from 5 to 25, a clear downward trend is observed across
all metrics. Specifically, operational cost reduces significantly from 63.10% to 54.10%, primarily due to
increased local generation offsetting grid power purchases. Correspondingly, power losses drop from
10.55 kW to 8.75 kW, attributed to the shorter transmission paths and load-sharing by distributed PV
sources. Additionally, THD values decrease from 4.48% to 3.42%, reflecting improved waveform quality
due to reduced grid loading and inverter-based smoothing. The VUF also exhibits a consistent decline,
from 0.84% to 0.65%, indicating enhanced voltage symmetry and phase balance with higher PV
penetration. Overall, the trend confirms that increasing the number of strategically placed PV systems
not only improves network efficiency and quality but also contributes to economic gains, validating the
technical and financial viability of DER deployment.
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Figure 20: Performance of the network by varying the number of EVs in the network

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 2905
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



Journal of Information Systems Engineering and Management
2024, 9(4s)
e-ISSN: 2468-4376

https://www .jisem-journal.com/ Research Article

Figure 20 presents the performance evaluation of the proposed optimal placement and control
strategy in response to varying levels of EV integration, quantified by the total number of EVs ranging
from 50 to 250. The figure demonstrates how increasing the EV population affects critical network
parameters such as operational cost, power losses, THD, and VUF. As the number of EVs increases, a
gradual deterioration in all metrics is observed. Specifically, operational cost rises from 60.92% to
69.85%, primarily due to increased energy demand and higher grid dependency during peak charging
periods. Similarly, power losses escalate from 9.96 kW to 13.41 kW, attributed to intensified loading
and extended current flow paths. THD and VUF values also increase steadily from 4.21% to 5.39% and
0.78% 10 1.03%, respectively, indicating degradation in waveform quality and voltage symmetry, mainly
due to uncoordinated charging behavior and elevated inverter-induced distortions. Despite these
increases, the trends remain within permissible operational thresholds, affirming the effectiveness of
the proposed control scheme in managing growing EV penetration without compromising grid stability
or power quality.
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Figure 21: Performance of the network by varying EV charging pattern in the network

Figure 21 provides a comparative evaluation of different EV operational strategies, ranging from full
charging to full discharging and mixed configurations, on key distribution system performance
indicators. When all EVs are set to charging mode, the system experiences a relatively high operational
cost of 61.77%, accompanied by a power loss of 10.25 kW. These elevated values stem from increased
load draw during synchronized charging periods, which intensifies network stress and energy
procurement from the grid. Conversely, in the full discharging mode, EVs function as distributed energy
sources, resulting in a slight reduction in operational cost (60.05%) and power loss (9.87 kW),
highlighting the grid support role of vehicle-to-grid (V2G) operations. The hybrid scenario, where 50%
of EVs are charging and 50% are discharging, achieves the most favorable performance, with the lowest
operational cost (58.45%) and power loss (9.53 kW), along with improved power quality metrics—THD
at 3.87% and VUF at 0.71%. This balanced mode offers dynamic load leveling and effective harmonic
mitigation through distributed control. The 70% charge and 30% discharge mode also exhibits
improved stability compared to full charging but remains suboptimal relative to the 50/50 case. Overall,
the results confirm that intelligently balanced bidirectional EV operation under the proposed control
strategy enhances efficiency, reduces stress on the network, and ensures better power quality
compliance.
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Table 4 Comparison with state-of-the-art methods
Technique Power Voltage THD | VUF Operational Cost
Loss (kW) | Deviation (%) (%) (%) Reduction (%)
ARSBX [26] 10.85 4.22 4.50 0.82 58.14
Hybrid GA-PSO 10.55 4.36 4.41 0.81 59.12
[27]
SSA [28] 10.72 4.08 4.16 0.77 60.01
SHOA [29] 10.91 4.37 4.67 0.83 57.88
WO [30] 10.64 4.19 4.24 0.80 58.37
Proposed 9.84 4.06 4.16 0.77 60.38
(MODPO +
HRPLC)

The comparative results in Table 4 demonstrate that the proposed MODPO + HRPLC
framework outperforms recent methods across multiple critical performance metrics. The comparative
methods, including Adaptive Rotation-based Simulated Binary Crossover (ARSBX) [26], Hybrid
Genetic Algorithm—Particle Swarm Optimization (GA-PSO) [27], Salp Swarm Algorithm (SSA) [28],
Spotted Hyena Optimization Algorithm (SHOA) [29], and Walrus Optimization Algorithm (WOA) [30],
were all applied and validated on the IEEE 69-bus distribution system, which is also the simulation base
for our proposed MODPO + HRPLC framework. These techniques focused on various objectives such
as power loss, voltage deviation, reliability, and economic optimization. The proposed method
distinguishes itself by integrating both planning and adaptive control, leading to superior performance
across all key metrics.

While all five works reviewed exhibit competent outcomes in reducing power loss and
operational costs, they primarily rely on static scheduling or heuristic-based strategies without
predictive adaptability. In contrast, the proposed framework achieves the lowest power loss (9.84 kW)
and smallest voltage deviation (4.06%), indicating enhanced grid efficiency and stability under dynamic
load and generation conditions. Furthermore, while THD and VUF values across existing works remain
within acceptable standards, only the proposed approach integrates RL with predictive MPC, ensuring
real-time bidirectional EV coordination, which is crucial for high DER penetration scenarios. The
operational cost saving of 60.38%, paired with 100% PV utilization, further highlights the economic and
environmental viability of the method. In essence, the MODPO + HRPLC system not only meets but
exceeds the performance benchmarks of contemporary studies, while also addressing key gaps such as
dynamic adaptability, power quality assurance, and scalable real-world implementation.

4.8 Discussion

The overall results and discussion of the proposed methodology, centered on MODPO and
HRPLC, demonstrate a robust, technically advanced framework for optimizing the planning and
operation of distributed energy resources (DERs) within a complex radial distribution system.
Implemented on the IEEE 69-bus network, the results substantiate the framework’s effectiveness across
key power system performance indices, economic costs, and power quality measures. The MODPO-
based placement and sizing of PV systems and EVCS led to a significantly optimized DER deployment
strategy. The co-optimization successfully minimized power losses (down to 9.84 kW), ensured a highly
uniform voltage profile with average deviation of only 4.06%, and achieved complete PV utilization
(REUT = 100%). Moreover, the system maintained harmonic distortion and voltage unbalance within
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acceptable limits, recording average Total Harmonic Distortion (THD) and Voltage Unbalance Factor
(VUF) of 4.16% and 0.77%, respectively.

The RL module integrated with predictive control (HRPLC) further enhanced dynamic operational
behavior. Comparative voltage profile plots under G2V, V2G, and mixed modes highlighted the mixed
operation's superiority, where adaptive EV dispatch significantly improved voltage regulation. The
HRPLC’s learning-driven response effectively minimized voltage violations, maintaining system
resilience even during critical demand peaks. Sensitivity analyses across varying DER penetration
scenarios (EVs, PVs, and EVCS counts) confirmed the scalability and consistency of the framework.
Incremental PV penetration notably reduced power losses and operational costs while improving
harmonic and unbalance indices. Conversely, increased EV deployment, although elevating system
stress, was effectively managed by the control strategy. Mixed-mode EV operation (e.g., 50% charge and
50% discharge) provided the most balanced performance, minimizing losses, THD, and VUF. When
benchmarked against recent studies, the proposed model achieved highly competitive outcomes. While
prior works showed notable loss and voltage improvements, this study uniquely demonstrated superior
operational cost reduction (60.4%) while maintaining technical indices within regulatory margins. This
dual-layer framework not only addresses planning but also fills the operational control gap often
overlooked in static optimization studies. Overall, the proposed MODPO-HRPLC approach integrates
long-term planning and real-time adaptive control, achieving a highly optimized, economically viable,
and technically resilient distribution system architecture, marking a significant contribution in the field
of intelligent grid optimization.

Conclusion

This study presents a dual-layer optimization-control framework combining the MODPO
algorithm with the HRPLC scheme, offering a robust solution for the joint planning and operation of
EVs and RES in active distribution networks. MODPO enables multi-objective planning by optimally
placing and sizing DERs, while HRPLC provides adaptive real-time coordination using DRL embedded
within an MPC structure. The simulation on a practical IEEE 69-bus network demonstrated that the
system could minimize power losses to 9.84 kW, reduce operational costs by 60.38%, and maintain
voltage deviation at 4.06%, alongside achieving 100% PV utilization, THD < 5%, and VUF < 2%.
Comparative analysis with state-of-the-art metaheuristics and recent RL-based strategies confirmed
superior performance in power quality, cost-effectiveness, and resilience. The inclusion of smart
inverter controls and load forecast-based voltage scheduling further strengthened system stability.
Future extensions will focus on stochastic uncertainty modelling, multi-agent cooperation, and real-
time market-driven demand response to enhance dispatch ability and economic integration of
distributed assets. The proposed framework serves as a practical and scalable architecture toward
future-ready, self-healing smart distribution grids.
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