2025, 10 (62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Master Data Governance for Global Drug Launch Readiness in Healthcare Enterprises: A Systematic Framework for Compliance and Operational Excellence

Joydip Basu

Independent Researcher, USA

ARTICLE INFO

ABSTRACT

Received: 28 Sept 2025 Revised: 01 Nov 2025 Accepted: 11 Nov 2025 Master Data Governance has emerged as a mandatory construct to pharmaceutical business venturing in the intricacies of drug commercialization in the world today, amidst the more complex regulatory demands and shorter market penetration cycles. The pharmaceutical sector has complicated issues which include compliance with regulations in different jurisdictions, implementation of serialization regulations, country-specific labeling necessity, and traceability demands of the supply chain which push complex master data administration talents. The operational necessity extends to competitive advantage: improved launch preparedness, regulatory compliance guarantee, and supply chain resilience, which is the business case of strong Master Data Governance. The incremental value approach of Phased implementation methodologies enables pharmaceutical organizations to build the Master Data Governance maturity incrementally as they address the immediate business requirements and prove the incremental value over the deployment lifecycle. Hierarchical master data architecture assists in global product templates with market extensions that are market-specific and enable the effective management of labeling requirements in multiple regulatory jurisdictions, and maintain consistency in core product information. Serialization and master data systems enable pharmaceutical manufacturers to address the global track-and-trace requirements, as well as obtain strategic gains that can encompass counterfeit prevention, enhancement of visibility across the supply chain, and the possession of speedy recall functionalities. Blockchain-based distributed ledgers, analytics-driven artificial intelligence, and workflow coordination technologies are all available on the technology platforms and have the potential to transform Master Data Governance into a strategic facilitator of operational effectiveness and competitive advantage in global pharmaceutical markets.

Keywords: Master Data Governance, Pharmaceutical Serialization, Regulatory Compliance, Drug Launch Readiness, Supply Chain Traceability

1. Introduction

The pharmaceutical industry is experiencing a more complicated regulatory landscape: high pressure to adhere, a wide variety of regulations tailored to the specific market, and faster tracks to commercialized drugs. MDG has emerged as one of the most important facilitators of pharmaceutical businesses in their attempts to cope with such setbacks whilst remaining efficient in their operations and keeping within check the regulations of the various markets worldwide. The arrangement of such master data-product data, serialization data, labelling data, and regulatory records is the fundamental requirement of effective drug launches in the various jurisdictions.

The pressure on healthcare companies to minimize time-to-market is rising, as well as the need to comply with region-specific regulatory standards such as the FDA guidelines in the United States, the EMA standards in Europe, and the PMDA requirements in Japan by all means. Inadequate MDG systems lead to frequent delays in launch, compliance failure, product recalls, and substantial

2025, 10(62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

financial penalties. Implementation of serialization mandates in international markets demonstrates the critical role of master data governance in pharmaceutical operations. According to studies, pharmaceutical serialization has become much more than just regulatory compliance; it is now a competitive advantage in helping organizations take on the estimated \$200 billion annual global counterfeit drug market while simultaneously improving supply chain visibility and operational efficiency [1]. Those few companies that have successfully integrated serialization with comprehensive MDG systems report a significant rise in the accuracy of their inventory management, reduction in incidents of product diversion, and increased capability for quicker product recalls when needed [1].

Also, the increase in serialization mandates, track-and-trace requirements, and falsified medicines directives has exponentially expanded the complexity of pharmaceutical supply chain master data management. Clinical data management has also become increasingly sophisticated, with integrated data sources becoming a norm in modern pharmaceutical development, including electronic health records, laboratory information systems, and patient-reported outcomes [2]. Studies that investigate the current landscape of data management practices in clinical trials indicate that a lack of adequate data governance frameworks significantly contributes to overall trial delays, with data quality issues comprising sizable parts of protocol deviations, thus requiring extensive remediation efforts that extend timelines and raise costs [2]. The move toward risk-based monitoring approaches and centralized statistical monitoring in clinical trials has further put demands on the master data systems for consistency across trial sites, regulatory submission, and post-marketing surveillance activities [2]. In such a backdrop, good master data governance supports seamless integration between clinical development data and commercial product information to enable regulatory submission to meet the increasingly stringent requirements of data integrity, facilitating efficient transition from development to commercialization stages.

The following article discusses in detail different MDG strategies aimed at supporting global drug launch readiness. The gradual implementation procedures, nation-based need control, and master data correspondence guidelines examined below will offer operational guidance to IT and regulatory departments that may have to develop or streamline MDG systems in healthcare business units.

Strategic Dimension	MDG-Enabled Capability	Organizational Impact	
Counterfeit Prevention	Enhanced product authentication mechanisms	Combat the global falsified medicine trade	
Supply Chain Visibility	Real-time tracking throughout distribution networks	Improved inventory management accuracy	
Clinical Data Integration	Seamless connection between development and commercial systems	Reduced protocol deviations and trial delays	
Recall Execution	Rapid identification of affected product batches	Minimized patient safety risks	
Regulatory Submissions	Consistent data across trial sites and jurisdictions	Streamlined approval processes	

Table 1: Strategic Benefits of Serialization Integration with Master Data Governance Systems [1,2]

2. The Strategic Imperative of Master Data Governance in Pharmaceutical Operations

Master Data Governance is an extension of the traditional data management models to frameworks of standardized data creation, data maintenance, data quality assurance, and data distribution across

2025, 10(62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

organizational boundaries. In the pharmaceutical context, MDG establishes the infrastructure upon which the research and development, regulatory affairs, manufacturing, supply chain operations, and commercial functions are interwoven. From a strategic perspective, the importance of MDG cuts across several dimensions critical for drug launch success, with empirical evidence showing that organizations implementing comprehensive MDG frameworks achieve measurably superior outcomes in regulatory compliance, operational performance, and financial returns compared to enterprises relying on fragmented data management approaches.

Regulatory compliance is the top business driver for MDG implementation in a healthcare enterprise. Pharmaceutical products are subject to documentation requirements covering clinical trial data, manufacturing specifications, labeling content, and post-marketing surveillance information. Each regulatory jurisdiction has specific prescriptions concerning product identification, dosage forms, excipient disclosure, and safety warnings. The FDA guidance on data integrity and compliance with current Good Manufacturing Practice requirements explicitly requires that data governance systems ensure that all records are attributable, legible, contemporaneous, original, and accurate throughout the complete record lifecycle. The guidance particularly emphasizes that audit trails for any modification of a record should be maintained, that access control mechanisms should not allow unauthorized modification of master data, and that backup and recovery procedures should prevent data loss. Master data system controls are acknowledged as significant compliance vulnerabilities where organizations use hybrid systems without adequate integration and version controls in place for paper-based and electronic records. This guidance document also identifies common data integrity failures during inspections, which include the sharing of login credentials among employees, a lack of adequate controls preventing original record deletion, and failure to maintain metadata to identify who, what, when, and why data creation and modification activities were carried out.

Operational efficiency is another core dimension of the MDG value proposition. Pharmaceutical launches typically require coordination among multiple functional teams operating at various geographical locations and time zones. Contemporarily, pharmaceutical supply chains face significant strategic challenges such as demand uncertainties, complications in inventory management across multi-echelon distribution networks, and coordination challenges among a diverse set of stakeholders comprising manufacturers, distributors, healthcare providers, and regulatory agencies 4. Studies related to the analysis of pharmaceutical supply chain dynamics illustrate that effective supply chain management needs to address the quality assurance of products, cost containment pressures, demand forecasting accuracy, and reverse logistics related to product returns and recalls 4. The pharmaceutical industry has unique supply chain constraints comprising temperature-sensitive storage for biologics and specialty medications, strict regulatory requirements related to product handling and distribution, and the critical importance of preventing product diversion and counterfeiting 4. Studies on pharmaceutical supply chain performance point out that organizations achieving integrated master data governance drive significant value in improving forecast accuracy, inventory optimization, and reliability in order fulfillment, while the best-performing organizations report forecast error reductions of more than twenty percent after deploying MDG solutions 4.

The financial implications of MDG cannot be underestimated. Launch delays of pharmaceutical products cost millions of dollars in lost revenue for each day of postponement, especially for high-value specialty pharmaceuticals and biologics. Cost-benefit analyses continue to show high returns on investment for enterprise-level MDG initiatives in the pharmaceutical setting.

2025, 10 (62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Compliance Requirement	Master Data Control	Supply Chain Implication	
Attributability	Complete audit trails for data modifications	Clear accountability for master data changes	
Contemporaneousness	Real-time data capture and documentation	Synchronized supply chain execution	
Originality	Prevention of unauthorized record deletion	Preserved data lineage across distribution tiers	
Access Controls	Restricted modification privileges	Protection against unauthorized supply chain diversions	
Quality Assurance	Systematic data validation protocols	Enhanced forecast accuracy and inventory optimization	

Table 2: FDA Data Integrity Requirements and Pharmaceutical Supply Chain Compliance Dimensions [3,4]

3. Phased Template Approach for MDG Implementation

The inherent complexity of pharmaceutical MDG implementations dictates structured, phased approaches that balance comprehensive functionality with manageable implementation timelines. The phased template methodology represents a proven framework by which organizations achieve early wins while progressively building to full-scale MDG capability. This approach recognizes that pharmaceutical organizations operate on diverse legacy systems, various levels of data maturity, and competing resource priorities that preclude "big bang" implementations. Multiple-industry research into enterprise resource planning implementations demonstrates that critical success factors differ materially at various implementation stages, where top management support, business process reengineering, and effective project management are most critical at early junctures, whereas factors such as system testing, training effectiveness, and performance measurement are increasingly important in later deployment stages [5]. The study analyzed data from organizations implementing enterprise systems and found that companies focusing on stage-specific critical success factors achieved implementation success rates of over seventy-five percent, while organizations applying uniform approaches across all implementation phases witnessed failure rates close to forty percent [5]. The research underscores that the structure and focus of critical activities such as change management, organizational readiness assessments, and stakeholder engagement initiatives require materially different resource allocations and management attention across the chartering, project, shakedown, and onward-and-upward phases of system implementations [5].

The foundation phase aims at establishing core MDG infrastructure and governance frameworks. This initial phase includes the definition of master data domains applicable for drug launches: product master data, regulatory information, labeling content, serialization hierarchies, and supply chain identifiers. Organizations need to create data governance committees comprising IT, regulatory affairs, and quality assurance representatives, supply chain, and commercial representatives. These committees establish data ownership models, stewardship practices, data quality specifications, and change management practices that are going to govern master data within the entire lifecycle. Technology platform selection and configuration occur during this phase, with SAP MDG emerging as the predominant solution for pharmaceutical enterprises due to its industry-specific functionality and integration capabilities with broader SAP ecosystems. During the foundation phase, organizations typically invest between twelve and eighteen months in building governance structures, defining the

2025, 10 (62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

metrics of data quality, and configuring core system functionality before extending capabilities to operational business processes [5].

The expansion phase extends MDG capabilities to encompass country-specific requirements and regional variations. Pharmaceutical products marketed globally must accommodate diverse packaging configurations, language translations, regulatory classifications, and approval statuses across jurisdictions. Research examining supply chain traceability implementation in pharmaceutical contexts demonstrates that organizations must develop sophisticated master data architectures supporting product genealogy tracking, batch-level traceability, and serialization requirements across complex multi-tier distribution networks [6]. The study analyzing traceability system implementations found that successful deployments required integration of master data elements spanning product specifications, manufacturing parameters, logistics identifiers, and regulatory compliance attributes, with data quality accuracy rates exceeding ninety-eight percent necessary to ensure reliable trace-back and trace-forward capabilities throughout supply chains [6]. Organizations implementing comprehensive traceability systems reported that master data governance maturity directly influenced system effectiveness, with mature MDG frameworks enabling rapid response to product quality issues, recall events, and supply chain disruptions [6].

The optimization phase leverages accumulated experience and organizational learning to refine MDG processes and enhance automation. Analytics capabilities enable organizations to identify data quality trends, process bottlenecks, and compliance risks proactively. Organizations achieving optimization-phase maturity demonstrate measurably superior launch success rates, reduced compliance incidents, and enhanced agility in responding to regulatory changes or market opportunities.

The expansion phase extends MDG capabilities to encompass country-specific requirements and regional variations. Pharmaceutical products marketed globally must accommodate diverse packaging configurations, language translations, regulatory classifications, and approval statuses across jurisdictions. Research examining supply chain traceability implementation in pharmaceutical contexts demonstrates that organizations must develop sophisticated master data architectures supporting product genealogy tracking, batch-level traceability, and serialization requirements across complex multi-tier distribution networks [6]. The study analyzing traceability system implementations found that successful deployments required integration of master data elements spanning product specifications, manufacturing parameters, logistics identifiers, and regulatory compliance attributes, with data quality accuracy rates exceeding ninety-eight percent necessary to ensure reliable trace-back and trace-forward capabilities throughout supply chains [6]. Organizations implementing comprehensive traceability systems reported that master data governance maturity directly influenced system effectiveness, with mature MDG frameworks enabling rapid response to product quality issues, recall events, and supply chain disruptions [6].

The optimization phase utilizes the experience gained and organizational learning to further optimize the processes of MDG and automate them further. With analytical tools, a company can proactively spot compliance concerns, process bottlenecks, and data quality trends. An organization mature in the optimization stage shows notably better launch success rates, fewer compliance breaches, and more agility in reaction to legal changes or market possibilities.

2025, 10 (62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Implementatio n Phase	Primary Focus Areas	Critical Success Factors	Traceability Requirements
Foundation	Governance structure establishment	Executive sponsorship and cross-functional collaboration	Product genealogy definitions
Foundation	Technology platform selection	Data quality metrics alignment with business outcomes	Batch-level traceability architecture
Expansion	Country-specific requirements for accommodation	Market-specific attribute configuration	Multi-tier distribution network integration
Expansion	Workflow mechanism deployment	Stakeholder routing based on regulatory impact	Serialization hierarchy establishment
Optimization	Process refinement and automation	Analytics-driven continuous improvement	Supply chain disruption prediction

Table 3: Phased Master Data Governance Implementation Framework and Traceability System
Integration [5,6]

4. Managing Country-Specific Label Requirements Through MDG Systems

Every market has certain needs concerning the content of labels, format, language, fonts, color choices, as well as the warnings that are obligatory. More so, labeling requirements are constantly changing, including in relation to findings of pharmacovigilance, changes in regulatory policy, and new safety issues. This complexity must be supported by MDG systems, without compromising the labeling information as being kept in line with regulatory submissions, manufacturing specifications, and supply chain execution. Studies that have been conducted in the area of regulatory compliance and risk management in pharmaceuticals reveal that effective compliance frameworks should be implemented based on well-integrated quality management systems, regulatory intelligence oversight, and the overall documentation controls that are implemented on all levels of pharmaceutical manufacturing and distribution [7]. Investigations of the pharmaceutical regulatory compliance issues show that the demands of global regulatory bodies on organizations are growing more demanding, and the FDA, EMA, and other organizations are becoming more active in terms of inspection, frequency, and scope of data integrity and manufacturing quality systems, as well as supply chain controls [7]. Compliance is also a costly process in the pharmaceutical industry, whereby large multinational manufacturers spend between eight and twelve percent of total operating budgets and regulatory compliance activities such as labeling, pharmacovigilance, quality assurance, and regulatory affairs operations [7]. Risk management models adopted in pharmaceutical organizations should deal with the risks of product quality, the susceptibility of supply chains, regulatory compliance failures, and the issue of patient safety by systematically identifying, evaluating, eliminating, and monitoring risks incorporated with master data governance systems [7].

The hierarchical nature of label master data allows pharmaceutical organizations to keep worldwide label templates and differentiate them to suit market differences. Global label templates define key product data that can be used in all markets, such as active pharmaceutical ingredients, mechanism of action, key indications, and basic safety data. The country-specific label extensions will take the information from the global templates and will also add or change some information to meet the needs of the country. This top-down method ensures that all markets are not duplicated on data, it is quick to update on global safety information when a product core is modified, and it does not stray

2025, 10 (62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

from core product messaging without observing regulatory diversity. Organizations implementing hierarchical label management architectures report significant improvements in label change management efficiency, with cycle times for global safety updates reduced by thirty-five to fifty percent compared to systems requiring individual updates to each market-specific label variant independently.

Version control mechanisms embedded within MDG platforms provide critical capabilities for managing label lifecycle complexity. The revision of pharmaceutical labels is done several times during the different stages of the lifecycle of the products, i.e., the authorization of the product in the market, the generic competition, and the ultimate withdrawal of the product.

Each label version must maintain a clear lineage to regulatory submissions, manufacturing batch records, and distribution documentation. Research analyzing pharmaceutical supply chain resilience emphasizes that digital transformation initiatives, including blockchain technology, artificial intelligence, Internet of Things sensors, and advanced analytics platforms, enhance supply chain visibility, traceability, and risk management capabilities [8]. Studies examining technology adoption in pharmaceutical supply chains demonstrate that blockchain implementations provide immutable record-keeping for critical data, including product genealogy, label version histories, and regulatory compliance documentation, with organizations deploying blockchain solutions reporting audit trail completeness improvements exceeding ninety-five percent [8]. The integration of artificial intelligence and machine learning algorithms with MDG systems enables predictive analytics for compliance risk assessment, automated detection of label content discrepancies, and intelligent workflow routing based on regulatory impact analysis [8].

Integration between MDG systems and artwork management platforms addresses the operational challenge of translating label master data into physical packaging and digital label formats. MDG-artwork integration automates change propagation, reduces manual transcription errors, and accelerates time-to-market for label revisions necessitated by safety updates or regulatory mandates.

Compliance Domain	Governance Requirement	Digital Technology Enabler	Risk Mitigation Capability
Label Content Management	Quality management system integration	Blockchain immutable record-keeping	Label version history preservation
Pharmacovigilance	Regulatory intelligence monitoring	Artificial intelligence analytics	Proactive safety signal detection
Manufacturing Quality	Comprehensive documentation controls	Internet of Things sensors	Real-time quality parameter monitoring
Supply Chain Controls	Systematic risk assessment processes	Advanced analytics platforms	Predictive compliance risk identification
Regulatory Affairs Operations	Audit trail completeness assurance	Machine learning workflow routing	Automated regulatory impact analysis

Table 4: Regulatory Compliance Frameworks and Digital Technology Integration for Label Management [7,8]

5. Serialization and Master Data Alignment in Pharmaceutical Supply Chains

Serialization mandates implemented globally over the past decade have fundamentally transformed pharmaceutical supply chain operations and correspondingly elevated requirements for master data precision. Drug Supply Chain Security Act (DSCSA) of the United States, the European Union

2025, 10(62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Falsified Medicines Directive (FMD), and similar systems of China, Saudi Arabia, and other countries demand the use of unique identifiers of separate pharmaceutical packages using serialization codes. These provisions are to fight fake drugs, facilitate quick product recall, and offer end-to-end supply chain visibility. A master data with a proper hierarchy of products and packaging structure, and serialization specification is crucial to successful serialization implementation. Studies on the use of blockchain technology in the supply chain show that blockchain application solutions resolve major issues such as the absence of transparency, information asymmetry, and the absence of trust that characterize conventional supply chain networks in various sectors [9]. Research into the trend in the adoption of blockchain shows that supply chain applications are the second most noticeable application of blockchain technology after financial services, and are relevant to industries that need greater traceability, authentication, and data integrity, including pharmaceuticals, food safety, and luxury goods [9]. The study determines that the distributed ledger architecture of blockchain offers immutable record-keeping capabilities, greater transparency due to the shared data view among the authorized parties, and the lower cost of transactions because it does not rely on intermediaries and smart contracts complete the verification tasks [9]. Analysis of blockchain implementations across various supply chain contexts demonstrates that organizations deploying blockchain solutions achieved improvements in data accuracy, reduced processing times for transactions requiring multiparty verification, and enhanced capabilities for provenance tracking, enabling rapid identification of product origins and movement histories throughout complex distribution networks [9].

Master data hierarchies for serialized products must accommodate multiple aggregation levels spanning individual saleable units, bundled packages, shipper cases, and pallet loads. Each aggregation level requires unique identification codes conforming to global standards such as GS1 and specific encoding in formats including 2D Data Matrix barcodes. MDG systems establish and maintain these hierarchical relationships, ensuring that serialization systems receive accurate configuration data regarding packaging structures, aggregation rules, and market-specific serialization requirements. Lack of alignment of master data and serialization systems leads to operational failures, regulatory failures, and possible failure to provide products to respective markets. Organizations that have undertaken total MDG-serialization integration approaches have been reported to experience a dramatic drop in configuration errors, with master data accuracy directly being associated with a reduction in the frequency of production line stoppages and further improvement of regulatory compliance performance across global manufacturing and distribution systems.

Pharmaceutical packaging is dynamic in nature and thus became a persistent problem to master dataserialization alignment. The packaging configurations and the related serialization requirements are constantly changing under the influence of product line extensions, packaging redesigns, co-packaging relationships, and contract manufacturing relationships. All changes in master data that touch on the physical product characteristics or packaging structure should include serialization impact assessment during the process of governance of MDG.

Advanced MDG implementations leverage serialization data to enhance product authentication, supply chain visibility, and post-market surveillance capabilities. A study on the use of digital technologies to fight counterfeit drugs has found that the trade in counterfeit drugs in the world is a significant issue to the health of the population with it estimated that in some countries counterfeit drugs make up to ten percent of total pharmaceutical supply leading to deaths of hundreds of thousands of people annually and costing the world billions of dollars in lost revenue [10]. The research examining technology-based solutions to verify pharmaceuticals proves that new digital technology tools, such as blockchain distributed ledgers, artificial intelligence analytics, mobile verification, and advanced track-and-trace solutions, offer greater abilities to detect and prevent the distribution of counterfeit medicines [10]. The research emphasizes that serialization combined with comprehensive master data governance enables pharmaceutical manufacturers and regulatory

2025, 10(62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

authorities to verify product authenticity, track product movements through distribution channels, and rapidly identify sources of counterfeit or diverted products compromising patient safety [10].

Conclusion

The phasis template method provides practical routes for pharmaceutical companies toward Master Data Governance maturity, therefore producing quantifiable value all along the implementation path and accommodating Competitive corporate priorities, limited resources, and legacy system variety are all forms of organizational restrictions. Among other operational issues that current pharmaceutical Master Data Governance systems have to solve via sophisticated country-specific labeling requirements and serialization requirements are country-specific. Data architectures, complete governing systems, and smooth connections with regulatory, manufacturing, and supply chain systems throughout several international activities. Organizations that have mastered Master Data Governance, in fact, have superior launch success rates, more regulatory compliance performance, and operational efficiency benefits over their rivals. Bereft of enterprise-wide governance systems, who are depending on fragmented or manual data management methods? The spread of SAP Master Data Governance solutions across the pharmaceutical industry shows both the complexity of the platform's features and the knowledge among trading partners and regulatory stakeholders in the industry of how standardized solutions encourage knowledge sharing, best practices adoption, and an integrated ecosystem. Technology alone is ineffective without equivalent investments in governance systems, organizational capacity, and ongoing improvement processes, empowering pharmaceutical companies together to sustain Master Data Governance excellence among evolving regulatory environments, business plans, and technical developments. Future developments of the Master Data Governance solutions would be an encyclopedic inclusion of emerging technologies like artificial intelligence toward predictive compliance risk assessment; blockchain, toward immutable audit trails and supply chain transparency; and advanced analytics for real-time data quality monitoring and launch readiness assessment. In fact, pharmaceutical organizations must recognize that Master Data Governance will be an ongoing strategic initiative rather than discrete projects that require continuous adaptation of governance models and technological capabilities to evolving regulatory paradigms, business models, and therapeutic modalities that include precision medicines, cell and gene therapies, and digital therapeutics-the elements that define the pharmaceutical industry's future.

References

- [1] Altius Hub, "Pharmaceutical Serialization: Beyond Compliance to Strategic Advantage," 2025. [Online]. Available: https://altiushub.com/blog/pharmaceutical-serialization-beyond-compliance-to-strategic-advantage
- [2] Aylin Sertkaya et al., "Costs of Drug Development and Research and Development Intensity in the US, 2000-2018," PubMed Central, 2024. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC11214120/
- [3] U.S. Food and Drug Administration, "Data Integrity and Compliance With Drug CGMP: Questions and Answers," 2018. [Online]. Available: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/data-integrity-and-compliance-drug-cgmp-questions-and-answers
- [4] Rajesh Kumar Singh, et al., "Strategic issues in pharmaceutical supply chain: A review," 2016. [Online]. Available: https://www.researchgate.net/publication/305872382_Strategic_Issues_in_Pharmaceutical_supply _Chain_A_Review

2025, 10(62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

- [5] Toni Somers, K. Nelson, "The impact of critical success factors across the stages of enterprise resource planning implementations," 2001. [Online]. Available: https://www.researchgate.net/publication/232641256_The_Impact_of_Critical_Success_Factors_a cross_the_Stages_of_Enterprise_Resource_Planning_Implementations
- [6] Ravi Shankar, et al., "Modeling critical success factors of traceability for food logistics systems," ScienceDirect, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1366554517307974
- [7] Judith Nwoke, "Regulatory compliance and risk management in pharmaceuticals and healthcare," 2024. [Online]. Available: https://www.researchgate.net/publication/383866163_Regulatory_Compliance_and_Risk_Management in Pharmaceuticals and Healthcare
- [8] Avninder Gill, "Pharmaceutical Supply Chains: Risks, Challenges and Strategic Response," 2025. [Online]. Available: https://articlegateway.com/index.php/JABE/article/view/7581
- [9] Nir Kshetri, "1 Blockchain's roles in meeting key supply chain management objectives," ScienceDirect. 2018. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0268401217305248
- [10] Tim K Mackey, Gaurvika Nayyar, "A review of existing and emerging digital technologies to combat the global trade in fake medicines," PubMed, 2017. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/28349715/