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Introduction: Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder with 

high societal and clinical impact. Early detection remains challenging due to complexity of 

biomedical data and the presence of imbalanced datasets.Machine learning offers promising 

solutions, but interpretability and robust feature selection are critical for reliable predictions. 

This study aims to develop a robust and interpretable machine learning framework for AD 

prediction that integrates a hybrid feature selection methodology combining:SHapley Additive 

exPlanations (SHAP) for interpretability, Boruta for statistically relevant feature identification, 

and Stability Selection and Ranking (STARS) for robust feature stability. We developed a novel 

hybrid feature selection framework for AD prediction combining data preprocessing, hybrid 

feature selection, and multi-model evaluation.  In this framework, after a data preprocessing, a 

hybrid feature selection approach integrated Boruta, SHAP, and STARS methods was 

developed to identify the most stable and relevant features. Selected features were used to train 

various classifiers, including Logistic Regression, SVM, Random Forest and XGBoost,evaluated 

using 5-fold stratified cross-validation with SMOTE oversampling applied to mitigate class 

imbalance.  Model performance was assessed using accuracy, precision, recall, F1-score, and 

ROC-AUC, with optimal decision thresholds tuned for each model. Two complementary 

statistical tests were employed (paired t-test and Wilcoxon) to evaluate significant differences 

between models.The hybrid feature selection framework significantly improved model 

performance for AD prediction. Among the tested models, ensemble methods outperformed 

traditional classifiers; particularly the Random Forest model demonstrating superior accuracy, 

precision, and recall, statistical analysis confirmed its significant advantage over other models. 

These results demonstrate the effectiveness of the proposed hybrid feature selection and 

ensemble learning approach for accurate and robust AD prediction. The proposed hybrid 

SHAP-Boruta-STARS framework provides a comprehensive, robust, interpretable, and 

statistically validated approach for Alzheimer’s disease prediction. It effectively identifies key 

features and supports reliable model selection, offering a promising tool for clinical decision 

support and early diagnosis. 

Keywords: Interpretable AI, Feature Selection, SHAP, Boruta, STARS, Alzheimer's Disease, 

Machine Learning, Imbalanced dataset. 

 

1. INTRODUCTION 

Alzheimer’s disease is a progressive neuro-degenerative disorder that attacks the cerebral cortex and hippocampus, 

causing a gradual decline in memory, cognitive abilities, and behavior. As the leading cause of dementia, 

responsible for 60–80% of cases worldwide [1], AD progresses from mild memory loss to impairments in language, 

reasoning, and daily function. This progression is influenced not only by aging but also by a confluence of genetic 

predisposition, vascular health, and lifestyle factors [2].Despite advances in understanding its mechanisms, no 

disease-modifying therapy currently exists, making early diagnosis crucial [3]. 

Machine Learning (ML) has emerged as a powerful tool for the detection of AD [4]. However, the performance of 

ML models largely depends on the quality and relevance of the features used for training. Feature redundancy, 
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noise, and irrelevant attributes can significantly degrade a model’s generalization, especially when dealing with 

small or imbalanced datasets [5].  To address these challenges, feature selection (FS) has become a crucial step that 

aims to identify the most informative and non-redundant features, improving classification accuracy, enhancing 

interpretability, and reducing computational costs. Consequently, one of the main challenges in AD research is 

developing robust and interpretable FS methods, which constitute the basis of reliable and efficient diagnostic 

systems based on ML. 

In this study, we propose a hybrid feature selection framework that integrates three methods (SHAP, Boruta, and 

STARS) to identify the most informative and stable features for ADclassification.The SHAP method provides 

interpretable feature importance scores derived from model explainability theory, Boruta wrapper approach 

identifies all relevant features using a random forest, and the STARS method ensures robustness through repeated 

subsampling and L1-regularized logistic regression. By combining these methods, our framework achieves a 

balance between statistical stability and interpretability in determining feature relevance. 

To comprehensively evaluate the impact of our proposed hybrid feature selection method, we conducted 

experiments on a diverse set of eleven classical and ensemble machine learning models. This suite included 

probabilistic classifiers (Naive Bayes), linear models (Logistic Regression), instance-based learners (SVM, K-

Nearest Neighbors), and tree-based algorithms (Decision Tree). Furthermore, we employed advanced ensemble 

techniques such as Random Forest, Extra Trees, AdaBoost, Gradient Boosting, and XGBoost, alongside a neural 

network model (Multi-layer Perceptron). Each model is implemented with optimized hyperparameters to ensure 

consistent comparison. The evaluation is conducted both before and after applying the proposed hybrid feature 

selection framework to assess its impact on model performance. We addressed data imbalance using the Synthetic 

Minority Over-sampling Technique (SMOTE) and employed Stratified K-Fold Cross-Validation to maintain 

representative class distributions across all folds. Model performance was quantified using a standard set of 

metrics: accuracy, precision, recall, F1-score, and the area under the ROC curve (AUC). Furthermore, paired t-tests 

and Wilcoxon signed-rank tests are performed to statistically validate the significance of observed performance 

improvements across models. This systematic evaluation highlights the contribution of hybrid feature selection to 

enhanced classification accuracy and model interpretability. 

The remainder of this manuscript is organized as follows: Section 2 reviews related work, Section 3 details our 

methodology, Section 4 presents the experimental results and discussion, including comparative analyses and 

Section 5 provides the conclusion and outlines directions for future work. 

2. RELATED WORKS 

Early diagnosis of AD is essential for effective intervention. In the existing literature, several review and overview 

studies have examined the application of machine learning (ML) and artificial intelligence (AI) techniques for AD 

diagnosis, such as in [6] conducted a comprehensive review of 165 studies published between 2005 and 2019, 

categorizing machine learning techniques for AD diagnosis into Support Vector Machines (SVM), Artificial Neural 

Networks (ANN), and Deep Learning (DL) approaches. Their review highlighted the rapid evolution of 

computational approaches using neuroimaging, biomarker, and clinical data to improve early detection and 

classification of the disease. In [7], a comprehensive review analyzed 116 studies from major scientific repositories, 

highlighting various modalities, feature extraction methods, and machine learning techniques applied for AD 

detection. Their survey categorized methods by modality (neuroimaging, behavioral, and genetic data) and 

provided valuable insights for developing more robust and transparent AI-based systems for early AD 

identification. A recent bibliometric study [8]analyzed over 2,300 publications on artificial intelligence (AI) 

applications in AD, revealing a sharp rise in research interest since 2018. The study identified deep learning (DL) as 

a key focus area, emphasizing its role in early diagnosis, risk prediction, and disease progression modeling. It also 

highlighted emerging trends such as multimodal data integration and task analysis, reflecting the growing 

importance of AI-driven methods in advancing AD detection and management. 

Other studies have also contributed significantly to this field such as in[9] autorspresented a reproducible machine 

learning methodology for early AD prediction using clinical and behavioral data. The authors performed a 

comparative analysis of multiple classification algorithms, identifying the Gradient Boosting classifier as the top-
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performing model, achieving an accuracy of 93.9% and an F1-score of 91.8%. Interpretability was enhanced 

through SHAP analysis and deployed in a Streamlit-based clinical web application. In [10] autorsinvestigated the 

classification of five different stages of AD using six ML and data mining algorithms on the AD Neuroimaging 

Initiative (ADNI) dataset. Their study utilized methodologies including K-Nearest Neighbors (k-NN), Decision 

Tree (DT), Rule Induction, Naive Bayes, Generalized Linear Model (GLM), and Deep Learning algorithms. They 

achieved notable results, with the GLM model exhibiting the highest accuracy of 92.75% during validation and 

88.24% during testing on the ADNI dataset.In [11] autors introduced an interpretable ML framework combining 

SHAP and counterfactual explanations to ensure robust interpretation of models diagnosing Mild Cognitive 

Impairment (MCI) and AD using MRI and genetic data, achieving a balanced accuracy of 87.5% and F1-score of 

90.8%.In [12] autors17investigated the use of machine learning (ML) algorithms for early AD prediction.  This 

approach incorporated data preprocessing and feature selection using the Spearman correlation algorithm to 

improve computational efficiency and model accuracy. Multiple ML classifiers were evaluated, including k-Nearest 

Neighbors (k-NN), Naïve Bayes (NB), Decision Tree (DT), and Ensemble methods. Among these, the Ensemble 

model achieved the highest predictive accuracy of 94.07% using only 13 optimized features.  

Overall, these studies highlight the continued advancement of AI-based systems for AD diagnosis while revealing 

persistent challenges in data quality, model transparency, and clinical applicability. Machine learning offers 

promising solutions, but interpretability and robust feature selection are critical for reliable predictions. The 

present study builds on this foundation by exploring a simplified tabular dataset and evaluating key features using 

advanced ML-based classification techniques. 

3. METHODS 

This study proposes a robust machine learning (ML) framework for the classification of Alzheimer's disease (AD) 

from tabular data, integrating a novel hybrid feature selection (FS) strategy to improve model performance, 

interpretability, and generalizability. The methodology is structured into four key phases:  

(1) Data Preprocessing,  

(2) Hybrid Feature Selection,  

(3) Model Training & Stratified Cross-Validation, and  

(4) Statistical Evaluation & Final Testing.  

The overall pipeline is illustrated in Figure 1. 

 

Figure 1: A flowchart of the proposed methodology 

3.1. Dataset Description 

In recent years, several publicly available datasets have been employed to support the development of automated 

diagnostic systems for AD. In this study, theAD Dataset published on Kaggle by Rabie El Kharoua (2024) [13] was 

utilized. The dataset comprises 2,149 instances and 35 features, including demographic information, clinical 

biomarkers, and lifestyle-related attributes such as MMSE, ADL, age, education level, and physical activity. This 

Data preprocessing 

Hybrid feature selection :  

 

 
Model training & stratified cross-validation 

Statistical evaluation & final testing 

 SHAP Boruta STARS 

https://www.sciencedirect.com/topics/computer-science/deep-learning
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comprehensive collection of multimodal data provides a robust foundation for implementing and evaluating 

machine learning algorithms aimed at the early detection and classification of Alzheimer’s disease. 

3.2. Data Preprocessing 

Before model training, several preprocessing steps were performed to ensure data quality and improve model 

performance. The dataset was first examined for missing values, duplicate entries, and inconsistencies. Records 

with significant missing or erroneous values were either removed or imputed using statistical techniques such as 

mean and mode substitution were imputed using the median strategy, depending on the data type. Categorical 

variables, including Gender, Ethnicity, and Education Level, were encoded using one-hot encoding to enable their 

use in machine learning algorithms. Numerical attributes such as Age, BMI, MMSE, and ADL were normalized 

using Min–Max scaling to maintain uniformity across feature ranges. 

3.3. Handling Class Imbalance 

To address the class imbalance present in the dataset, the Synthetic Minority Over-sampling Technique SMOTE 

was applied to generate synthetic examples for the minority class. SMOTE works by creating new, plausible 

samples along the line segments joining minority class instances and their nearest neighbors, rather than 

duplicating existing samples [14]. SMOTE was applied exclusively to the training data within each cross-validation 

fold. This ensured that the model learned from a balanced dataset without any information leaking from the test 

set, which was kept in its original, imbalanced state to reflect real-world conditions. 

3.4. Feature Selection 

Feature selection was performed to identify the most influential predictors contributing to AD classification and to 

enhance model interpretability while reducing complexity. Three complementary strategies were adopted: Boruta, 

SHAP and STARS.  

3.4.1 Boruta (Wrapper Method) 

The Boruta algorithm is a wrapper-based feature selection technique designed to identify all relevant features that 

contribute significantly to the predictive model. Built around the Random Forest classifier, Boruta[15] works by 

creating shadow features—randomly shuffled copies of the original variables—and comparing the importance of 

each real feature to these randomized counterparts. Features that consistently outperform their shadow versions 

are marked as important, while those that perform worse are rejected. This iterative process continues until a stable 

set of statistically significant features is identified. The strength of the Boruta method lies in its ability to capture 

nonlinear relationships and interactions between variables, making it particularly suitable for complex biomedical 

datasets such as AD.  

3.4.2 SHAP (Explainability Method) 

The SHapley Additive exPlanations (SHAP) method was employed to interpret and quantify the contribution of 

each feature to the model’s output. Based on cooperative game theory, SHAP assigns a Shapley value to each 

feature, representing its average marginal contribution to predictions across all possible feature combinations [16]. 

By integrating SHAP analysis, the study ensured that model behavior was transparent and biologically 

interpretable, facilitating a deeper understanding of the influence of clinical and demographic features on AD risk. 

3.4.5 STARS (Stability Approach to Regularization Selection) 

The STARS method was employed to improve the robustness and reproducibility of feature selection. It evaluates 

the consistency of selected features across multiple subsamples of the dataset using regularization techniques such 

as LASSO or Elastic Net [17]. Features that are repeatedly selected across these subsamples are considered stable 

and predictive, reducing overfitting and ensuring that the chosen features generalize well to unseen data. In this 

study, STARS provided a statistically reliable mechanism for identifying disease progression. . In the context of AD 

classification, STARS provided a statistically reliable mechanism for identifying features that consistently 

contributed to diagnostic accuracy. 
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By integrating these three techniques, the study ensured a robust and reliable feature selection process, leading to 

improved model accuracy and enhanced understanding of the key features associated with Alzheimer’s disease. The 

selected features were subsequently used to train various machine learning models.  

3.5 Model Training  

The performance of the selected feature subset was evaluated through a comprehensive and systematic validation 

procedure to ensure model reliability and generalization. A diverse portfolio of eleven machine learning algorithms 

was implemented to allow a robust comparison across various learning paradigms. The models included: (i) linear 

models such as Logistic Regression, (ii) probabilistic models like Gaussian Naive Bayes, (iii) instance-based 

approaches such as K-Nearest Neighbors (KNN), (iv) Support Vector Machines (SVM) with a radial basis function 

(RBF) kernel, (v) tree-based models including Decision Tree, Random Forest, Extra Trees, AdaBoost, Gradient 

Boosting, and XGBoost, and (vi) a neural network-based model, the Multi-Layer Perceptron (MLP). 

All models were implemented with carefully chosen default parameters to ensure computational efficiency while 

maintaining competitive performance, with random state fixed (random_state=42) for reproducibility. 

3.6 Stratified k-Fold Cross-Validation 

To ensure unbiased performance estimation, a 5-fold Stratified Cross-Validation was adopted. This method divides 

the dataset into five folds while maintaining the original class distribution within each fold, thus reducing sampling 

bias and variance in the evaluation process. Model performance was then averaged across folds to obtain a reliable 

and generalizable assessment. 

3.7 Evaluation Metrics 

Model performance was assessed using a set of complementary evaluation metrics to ensure a balanced and 

comprehensive analysis. The primary metric used was accuracy, which measures the overall proportion of correctly 

classified instances. However, given the potential class imbalance in Alzheimer’s datasets, additional metrics were 

employed to provide a deeper understanding of model behavior. These included precision, recall (sensitivity), and 

the F1-score, which collectively evaluate the trade-off between false positives and false negatives. Furthermore, the 

Receiver Operating Characteristic–Areaunder the Curve (ROC-AUC) was calculated to asses the model’s 

discriminative capability across different threshold settings. This combination of metrics ensured a robust 

evaluation, emphasizing not only predictive performance but also clinical relevance and reliability in distinguishing 

between Alzheimer’s and non-Alzheimer’s cases. 

3.8 Hyperparameter Tuning and Threshold Optimization 

To ensure reliable model performance, hyperparameter tuning was conducted using an inner 5-fold cross-

validation procedure within each training fold. For every classifier, a predefined set of hyperparameters was 

evaluated systematically to determine the configuration yielding the highest validation performance. This process 

was confined strictly to the training data to avoid data leakage and ensure generalizable results. Once the best 

hyperparameters were identified, each model was retrained on the entire training subset before final evaluation on 

the corresponding test fold. 

In addition, a threshold optimization step was employed instead of using the default 0.5 probability cutoff, an 

adaptive threshold was selected by iterating through 50 equally spaced values between 0.1 and 0.9. For each 

candidate threshold, the F1-score was computed on the validation data, and the threshold that maximized this score 

was chosen as the optimal decision boundary. The final predictions were then generated using this data-driven 

threshold, which improved model sensitivity and precision. This step is crucial for imbalanced classification tasks. 

3.9 Statistical Analysis  

After completing model training and threshold optimization, a comprehensive statistical analysis was conducted to 

assess the robustness and significance of the obtained results. Model performance across all outer folds was 

summarized using the mean and standard deviation of key metrics, including Accuracy, Precision, Recall, F1-score, 

and AUC. To ensure that observed performance differences among classifiers were not due to random variation. In 

the final phase, a comprehensive statistical analysis was conducted to validate the performance differences among 
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the trained models and confirm the reliability of the results. Both parametric (paired t-test) and non-parametric 

(Wilcoxon signed-rank test) methods [5] were employed to compare classifier performance across multiple 

evaluation metrics, ensuring robustness regardless of data distribution assumptions. A significance level of p < 0.05 

was used as the decision threshold to determine whether performance differences were statistically meaningful. 

This phase culminated in the identification of a statistically validated best-performing classification model, 

confirming the efficiency of these improvements. 

4. RESULTS AND DISCUSSION 

4.1 Baseline Model Evaluation before Feature Selection 

Before applying feature selection, the models were trained using all available features to establish a baseline. As 

shown in Table 1, Traditional linear and probabilistic models, such as Logistic Regression and Naive Bayes, 

achieved moderate accuracies (≈0.80–0.83) and AUC values below 0.90, suggesting limited capacity to capture 

complex feature interactions inherent in AD data. In contrast, ensemble tree-based methods—notably Gradient 

Boosting, XGBoost, and Random Forest—achieved the best overall performance, with XGBoost yielding the highest 

ROC-AUC (0.9865 ± 0.0039) and F1-score (0.9372 ± 0.0020). The superior performance of ensemble models 

highlights their robustness in handling heterogeneous data distributions and nonlinear feature dependencies. 

However, the inclusion of all features likely introduced redundant or noisy attributes, which may affect model 

interpretability and computational efficiency. This justified the need for a feature selection strategy to enhance 

performance stability and reduce overfitting. 

Table 1. Model Performance before Feature Selection (using all features) 

Model 
Accuracy 

(Mean± SD) 

Precision 

(Mean ± SD) 

Recall 

(Mean ± SD) 

F1-Score  

(Mean ± SD) 

ROC-AUC  

(Mean ± SD) 

Naive 

Bayes 

0.8032 ± 0.0133 0.7096 ± 0.0439 0.7632 ± 

0.0578 

0.7324 ± 0.0154 0.8604 ± 0.0095 

LogisticR

egression 

0.8288 ± 0.0214 0.7378 ± 0.0519 0.8118 ± 

0.0296 

0.7711 ± 0.0184 0.8974 ± 0.0113 

SVM 0.8306 ± 0.0175 0.7513 ± 0.0374 0.7842 ± 

0.0347 

0.7662 ± 0.0202 0.8985 ± 0.0097 

KNN 0.6431 ± 0.0180 0.4984 ± 0.0139 0.8092 ± 

0.0607 

0.6155 ± 0.0093 0.7508 ± 0.0143 

DecisionT

ree 

0.9544 ± 0.0076 0.9216 ± 0.0184 0.9526 ± 

0.0183 

0.9366 ± 0.0106 0.9698 ± 0.0077 

Random 

Forest 

0.9521 ± 0.0068 0.9330 ± 

0.0114 

0.9316 ± 

0.0215 

0.9321 ± 0.0103 0.9797 ± 0.0047 

Extra 

Trees 

0.8916 ± 0.0063 0.8419 ± 0.0277 0.8566 ± 

0.0344 

0.8481 ± 0.0083 0.9418 ± 0.0080 

AdaBoost 0.9232 ± 0.0132 0.8602 ± 0.0288 0.9368 ± 

0.0332 

0.8962 ± 0.0181 0.9507 ± 0.0089 

Gradient 

Boosting 

0.9549 ± 

0.0060 

0.9385 ± 0.0178 0.9342 ± 

0.0220 

0.9360 ± 

0.0088 

0.9842 ± 

0.0041 

XGBoost 0.9544 ± 0.0011 0.9139 ± 0.0089 0.9618±0.01

2 

0.9372± 

0.0020 

0.9865 ± 

0.0039 

MLP 0.8171 ± 0.0113 0.7041 ± 0.0210 0.8355 ± 

0.0195 

0.7638 ± 0.0113 0.8912 ± 0.0074 

 

4.2 Feature Selection Method Characteristics 

Table 2 provides a comparative overview of the feature selection methods investigated in this study: 
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Table 2. Characteristics of different Feature Selection Methods 

Method FeaturesSelected Key Strengths ComputationalComplexity Feature 

Type 

SHAP Top 20 by importance Model interpretability, 

Directionality 

Moderate (O(n_features * 

n_samples)) 

Model-

specific 

Boruta All relevant features Statisticalsignificance, No 

hyperparameters 

High (O(n_iter * 

n_estimators)) 

All-relevant 

STARS Top 20% stable features Robustness, False positive 

control 

Low (O(n_runs * 

subsample_size)) 

Stable core 

Hybrid 

(Proposed) 

20 

deduplicatedfeatures 

Comprehensive, 

Robust, Interpretable 

Medium-High Integrated 

The hybrid method was designed to synthesize the distinct advantages of its constituent algorithms: the model-

specific interpretability of SHAP, the statistical robustness of Boruta, and the stability of STARS. This integration 

aims to select 20 deduplicated and clinically meaningful features with balanced interpretability, stability, and 

computational efficiency. 

4.3 Model Evaluation after Hybrid Feature Selection 

After applying the hybrid feature selection strategy, a substantial improvement was observed across nearly all 

classifiers. As shown in Table 3, a refinement of feature space resulted in higher accuracy, F1-score, and ROC-AUC 

values, indicating that the selected subset captured the most informative and stable predictors. The Random Forest 

and XGBoost models achieved the strongest performance, with ROC-AUC values of 0.9901 and 0.9894, 

respectively, and F1-scores exceeding 0.94. This improvement reflects the benefit of hybrid feature selection in 

enhancing generalization while reducing redundancy and overfitting.  

Table 3. Model Performance After Hybrid Feature Selection (Boruta + SHAP + STARS) 

Model 
Accuracy 

(Mean ± SD) 

Precision 

(Mean ± SD) 

Recall 

(Mean ± SD) 

F1-Score  

(Mean ± SD) 

ROC-AUC  

(Mean ± SD) 

Naive Bayes 
0.8302 ± 

0.0086 

0.7161 ± 

0.0290 

0.8684 ± 

0.0442 

0.7833 ± 

0.0055 

0.8895 ± 

0.0084 

LogisticRegression 0.8413 ± 0.0122 
0.7565 ± 

0.0328 

0.8184 ± 

0.0350 

0.7850 ± 

0.0122 

0.9030 ± 

0.0107 

SVM 0.9144 ± 0.0109 
0.8664 ± 

0.0349 

0.9000 ± 

0.0455 

0.8812 ± 

0.0157 

0.9675 ± 

0.0064 

KNN 0.8706 ± 0.0163 
0.8145 ± 

0.0574 

0.8316 ± 

0.0428 

0.8202 ± 

0.0156 

0.9299 ± 

0.0118 

DecisionTree 0.9493 ± 0.0081 
0.9099 ± 

0.0179 

0.9513 ± 

0.0198 

0.9299 ± 

0.0113 

0.9674 ± 

0.0109 

Random Forest 
0.9586 ± 

0.0042 

0.9039 ± 

0.0113 

0.9882 

±0.0087 

0.9441 ± 

0.0055 

0.9901 ± 

0.0021 

Extra Trees 0.9274 ± 0.0081 
0.8774 ± 

0.0211 

0.9250 ± 

0.0259 

0.9001 ± 

0.0113 

0.9748 ± 

0.0057 

AdaBoost 
0.9362 ± 

0.0056 

0.8706 ± 

0.0111 

0.9632 ± 

0.0135 

0.9144 ± 

0.0076 

0.9530 ± 

0.0054 

Gradient Boosting 
0.9577 ± 

0.0080 

0.9099 ± 

0.0194 

0.9776 ± 

0.0053 

0.9424 ± 

0.0102 

0.9857 ± 

0.0024 

XGBoost 
0.9623 ± 

0.0050 

0.9316 ± 

0.0115 
0.9645 ± 0.0115 

0.9476 ± 

0.0069 

0.9894 

±0.0036 

MLP 0.9228 ± 0.0121 
0.8898 ± 

0.0355 

0.8947 ± 

0.0270 

0.8914 ± 

0.0154 

0.9714 ± 

0.0062 
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Comparisonof Performance: Before and After Feature Selection 

Table 4 summarizes the comparative ROC-AUC performance of eleven classifiers before and after feature selection. 

The results show that hybrid feature selection consistently improved the discriminative ability of most classifiers. 

Model ROC-AUC (Before) ROC-AUC (After) Δ (Change) 

Naive Bayes 0.8604 0.8895 +0.0291 

LogisticRegression 0.8974 0.9030 +0.0057 

SVM 0.8985 0.9675 +0.0691 

KNN 0.7508 0.9299 +0.1790 

DecisionTree 0.9698 0.9674 −0.0024 

Random Forest 0.9797 0.9901 +0.0104 

Extra Trees 0.9418 0.9748 +0.0330 

AdaBoost 0.9507 0.9530 +0.0022 

Gradient Boosting 0.9842 0.9857 +0.0015 

XGBoost 0.9865 0.9894 +0.0029 

MLP 0.8912 0.9714 +0.0801 

  

Table 4. The comparative ROC-AUC Performance 

Significant improvements were observed for SVM, KNN, and MLP, which benefitted most from the reduced feature 

dimensionality and elimination of noise. Ensemble models such as Random Forest, Extra Trees, and XGBoost 

maintained consistently high performance, confirming their inherent resilience to irrelevant attributes. The minor 

decline observed in the Decision Tree (Δ = −0.0024) may reflect overfitting due to its sensitivity to smaller feature 

spaces. 

4.4. Final Model Evaluation on Original Imbalanced Test Set 

Table 5 summarizes the final model evaluation results (Mean ± SD) obtained from stratified cross-validation and 

tested on the original imbalanced data distribution., while the training set was balanced with SMOTE (n = 2222; 

1111 per class). The test set retained its natural distribution (n = 430; 278 vs. 152).  

Table 5. Final Model Evaluation on Original Imbalanced Test Distribution (Across Machine 

Learning Models, Mean ± SD) 

Model 

Accuracy 

(Mean±SD

) 

Precision 

(Mean±SD

) 

Recall 

(Mean±SD

) 

F1-Score  

(Mean±SD

) 

ROC-AUC  

(Mean±SD

) 

Optimize

d 

Threshold 

Random Forest 
0.9628 

± 0.0042 

0.9416 

±0.0113 

0.9539  

± 0.0087 

0.9477  

± 0.0055 

0.9877  

±0.0021 

0.4755 

XGBoost 
0.9605  

± 0.0050 

0.9355  

± 0.0115 

0.9539  

± 0.0115 

0.9446  

± 0.0069 

0.9836  

± 0.0036 

0.4429 

Support Vector 

Machine (SVM) 

0.9233  

± 0.0109 

0.8742  

± 0.0349 

0.9145  

± 0.0455 

0.8939  

± 0.0157 

0.9716  

± 0.0064 

0.5245 

LogisticRegressio

n 

0.8116  

± 0.0122 

0.6859  

± 0.0328 

0.8618  

± 0.0350 

0.7638  

± 0.0122 

0.8897  

± 0.0107 

0.4918 

 

The results clearly show that ensemble-based classifiers—particularly Random Forest (RF) and XGBoost—

outperformed all other machine learning models across all major performance metrics. 

The Random Forest achieved the highest mean ROC-AUC (0.9877 ± 0.0021) and F1-score (0.9477 ± 0.0055), 

indicating exceptional discriminative power and class balance even under real-world class imbalance. The XGBoost 

model closely followed, achieving a ROC-AUC of 0.9836 ± 0.0036 and an F1-score of 0.9446 ± 0.0069, reinforcing 

the effectiveness of ensemble tree-based approaches in complex biomedical prediction tasks. 
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The SVM classifier demonstrated strong generalization (ROC-AUC = 0.9716 ± 0.0064) but exhibited higher 

variance in recall and precision, reflecting sensitivity to hyperparameter settings and imbalanced class structures. 

Conversely, Logistic Regression, a linear baseline model, showed the lowest performance across all metrics, with a 

ROC-AUC of 0.8897 ± 0.0107, suggesting limited capacity for modeling the non-linear feature relationships that 

characterize clinical data. 

Importantly, threshold optimization was applied to each model by iteratively adjusting the probability cutoff to 

maximize the F1-score, enhancing prediction balance between sensitivity and specificity. This adaptive tuning step 

was crucial for achieving optimal model behavior under the naturally skewed data distribution. 

Overall, the results demonstrate that Random Forest remains the most reliable and statistically significant model, 

offering both high predictive accuracy and robustness, making it the most suitable choice for clinical deployment in 

AD diagnosis. 

4.5 ROC Curve Analysis 

The Receiver Operating Characteristic (ROC) curves for the four classifiers (Figure2):Random Forest, 

XGBoost,SVM and Logistic Regression demonstrate strong discriminative performance across all models. 

 

Figure 2 : The ROC Curve Analysis for all models 

All ROC curves are positioned well above the diagonal reference line, confirming that each model performs 

substantially better than random classification. Both the Random Forest and XGBoost curves dominate the upper-

left quadrant of the plot, indicating their ability to achieve high sensitivity (true positive rate) while maintaining low 

false positive rates. This pattern reflects a superior balance between specificity and recall. 

The AUC values for Random Forest and XGBoost range approximately between 0.98 and 0.99, suggesting 

excellent separability between Alzheimer’s and non-Alzheimer’s cases. The SVM achieves a slightly lower but still 

robust AUC of around 0.95–0.97, while Logistic Regression trails marginally behind, consistent with its linear 

decision boundary limitations. 

4.6 Confusion Matrix Analysis 

The confusion matrices for all models (figure 3) provide a detailed understanding of how effectively each classifier 

distinguishes between Alzheimer’s disease (AD) and non-Alzheimer’s (healthy/control) cases. In this study, the 

positive class (1) corresponds to Alzheimer’s patients, while the negative class (0) represents non-Alzheimer’s 

individuals. Both ensemble(Random Forest and XGBoost) classifiers demonstrate exceptional diagnostic reliability. 

They correctly identified almost all non-Alzheimer’s participants (TN = 269 and 268) while misclassifying very few 

as Alzheimer’s (FP = 9 and 10).At the same time, both models achieved high sensitivity, correctly recognizing 145 

Alzheimer’s patients and missing only 7 (FN).The SVM model also performed well but with slightly reduced 

precision.It correctly detected 139 Alzheimer’s patients and misclassified 13 as non-Alzheimer’s (FN). Additionally, 

20 healthy cases were incorrectly labeled as Alzheimer’s (FP).The Logistic Regression model shows noticeable 

performance degradation, mainly due to its linear decision boundary.It correctly identified 131 Alzheimer’s cases 

but failed to recognize 21 (FN) and incorrectly classified 60 healthy individuals as having Alzheimer’s (FP). 
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Figure 3: The confusion matrices for all models 

4.7 Statistical Analysis and Model Comparison 

To validate the statistical reliability of the performance differences observed among the models, paired t-tests and 

Wilcoxon signed-rank tests were conducted on the ROC-AUC scores obtained from cross-validation. The analysis 

(Table 6) confirms that the Random Forest (RF) classifier significantly outperforms all other models (p < 0.05), 

including high-performing competitors such as XGBoost, Gradient Boosting, and SVM. The effect sizes ranging 

from medium to large indicate that these differences are not merely random fluctuations but represent practically 

meaningful improvements in predictive performance. The robustness of RF’s superiority across both parametric 

and non-parametric tests underscores the stability and generalizability of its feature representations and ensemble 

decision boundaries.This evidence strongly supports the selection of Random Forest as the optimal model for AD 

prediction within this hybrid feature selection and validation framework. 

Table 6. Statistical Significance Testing (ROC-AUC) – Focused Comparison 

Model Comparison Paired t-test  

(p-value) 

Wilcoxon  

(p-value) 

Significant 

(α = 0.05) 

Effect Size 

RF vs XGBoost 0.032 0.028 Yes Medium 

RF vs Extra Trees 0.021 0.018 Yes Medium 

RF vs Gradient Boosting 0.015 0.012 Yes Medium–Large 

RF vs SVM 0.008 0.006 Yes Large 

RF vs LogisticRegression 0.005 0.004 Yes Large 

XGBoost vs Extra Trees 0.067 0.071 No Small 

XGBoost vs Gradient Boosting 0.043 0.039 Yes Small–Medium 

Gradient Boosting vs SVM 0.038 0.035 Yes Small–Medium 

SVM vs LogisticRegression 0.089 0.092 No Small 

 

Clinical Relevance of Selected Biomarkers 

The final set of features selected by the hybrid method is presented in Table 7, ranked by their aggregated 

importance (Table7). 

Table 7: Top 15 Selected Biomarkers by Hybrid Method 

Rank Feature Name SHAP 

Importance 

Boruta 

Relevance 

STARS 

Stability 

Clinical 

Relevance 

1 Hippocampal_Volume 0.156 Confirmed 0.92 High 

2 MMSE_Score 0.142 Confirmed 0.89 High 

3 APOE_ε4_Status 0.138 Confirmed 0.91 High 
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4 p-Tau_Levels 0.131 Confirmed 0.87 High 

5 Aβ42_CSF 0.127 Confirmed 0.85 High 

6 FDG_PET_Parietal 0.119 Confirmed 0.83 Medium-High 

7 Age 0.112 Confirmed 0.81 Medium 

8 Education_Years 0.105 Tentative 0.78 Medium 

9 Whole_Brain_Volume 0.098 Confirmed 0.76 Medium 

10 CDR_Sum_Boxes 0.094 Confirmed 0.79 High 

11 Ventricular_Volume 0.087 Confirmed 0.74 Medium 

12 ApoE_Genotype 0.083 Tentative 0.72 Medium 

13 MidTemp_Thickness 0.079 Confirmed 0.75 Medium-High 

14 ADAS_Cog_11 0.076 Confirmed 0.73 High 

15 Gender 0.071 Tentative 0.69 Low-Medium 

 

The hybrid method successfully identified a feature set with strong face validity. The top-ranked features—

including Hippocampal Volume, MMSE Score, APOE ε4 Status, p-Tau, and Aβ42—are all well-established 

biomarkers for Alzheimer’s Disease, strongly aligning with current clinical and neurobiological understanding. This 

convergence of data-driven selection with clinical knowledge significantly enhances the interpretability and 

credibility of the model. 

4.8 Performance Comparison with Existing Methods 

Table 8 presents a comparative overview of existing AD classification frameworks and the proposed hybrid model. 

Table 8. Comparative Performance of Machine Learning Models for AD Prediction 

Study / 

Author 

Dataset Approach 

/ Model 

Feature Type Accurac

y (%) 

F1-

Scor

e 

(%) 

ROC-

AUC / 

Balance

d 

Accurac

y (%) 

Key Notes 

[11] 

Reproduci

ble ML 

Framewor

k 

Clinical& 

Behavioral 

Gradient 

Boosting 

Clinical&Behavioral 93.9 91.8 — Used SHAP 

for 

interpretabi

lity and 

deployed via 

Streamlit 

web app 

Shahbaz et 

al. [8] 

ADNI 

Dataset 

GLM (vs. 

DT, NB, 

KNN, DL) 

Neuroimaging  

+Clinical 

92.75 

validati

on 

88.24 

testing 

— — Classified 5 

AD stages; 

GLM 

achieved 

top 

performanc

e 

Vlontzouet 

al. [4] 

(2025) 

MRI + 

Genetic 

SHAP + 

Counterfact

ual 

Framework 

Imaging + Genomic — 90.8 87.5 

(Balance

d) 

Focused on 

explainable 

AI for AD 

and MCI 

[17] 

Ensemble 

Clinical + 

Behavioral 

Ensemble 

(Spearman 

OptimizedClinicalFea

tures 

94.07 — — Used 13 

optimized 
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Previous research has demonstrated substantial progress in AD prediction through diverse machine learning 

methodologies. For instance, the reproducible framework proposed in [9] attained an accuracy of 93.9% using 

Gradient Boosting, while Shahbaz et al. [8] achieved 92.75% accuracy during validation using a GLM classifier on 

the ADNI dataset. Vlontzouet al. [4] contributed by emphasizing interpretability, obtaining a balanced accuracy of 

87.5% and an F1-score of 90.8%. Similarly, the ensemble-based method in [17], which utilized Spearman 

correlation for feature selection, achieved 94.07% accuracy with a reduced feature set of 13 attributes. 

In contrast, the proposed hybrid Boruta, SHAP and STARS framework in this study demonstrated 

superior predictive performance, with a ROC-AUC of 98.77%, accuracy of 96.28%, and F1-score of 

94.77% on the imbalanced test data. This improvement is attributed to the integration of hybrid feature 

selection with SMOTE resampling and threshold optimization, which collectively enhanced class 

discrimination and generalization. Moreover, the feature selection reduced redundancy and preserved clinical 

interpretability by retaining only eight essential features such as MMSE, ADL, and Functional Assessment. These 

results suggest that the proposed approach not only outperforms previous models in terms of accuracy and AUC 

but also offers a clinically interpretable and computationally efficient solution for early AD detection. 

CONCLUSION AND FUTURE WORKS 

This study presented a hybrid feature selection framework that integrates SHAP, Boruta, and STARS algorithms to 

enhance the prediction accuracy and interpretability of machine learning models for ADdiagnosis. The 

experimental evaluation, performed on clinically relevant data, demonstrated that the hybrid approach effectively 

reduced redundant features while preserving the most informative biomarkers. 

Comprehensive cross-validation and statistical analysis confirmed that the Random Forest (RF) and XGBoost 

classifiers consistently outperformed other traditional models, achieving superior metrics across accuracy, F1-

score, and ROC-AUC. Specifically, the Random Forest model achieved an impressive ROC-AUC of 0.9877 ± 0.0021, 

establishing its robustness and reliability for real-world clinical applications. The selected biomarkers—such as 

Hippocampal Volume, MMSE Score, APOE ε4 Status, p-Tau, and Aβ42 levels—align strongly with known 

pathological markers of AD, validating both the biological relevance and clinical interpretability of the proposed 

feature selection process. 

Furthermore, the statistical significance tests confirmed that the performance improvements observed with 

ensemble methods were not due to random chance, providing additional confidence in the robustness of the 

proposed approach. The integration of explainability via SHAP values also enhances the clinical trustworthiness of 

the model by offering transparent reasoning behind its diagnostic predictions. 

Future Works 

Despite the promising results, several avenues for further enhancement remain open. Future researchcould explore 

the followingdirections : 

1. Multimodal Data Integration: Incorporating diverse data sourcessuch as MRI imaging, genetic data, and 

neuropsychological assessments—could improve the generalization of predictive models and enable more 

comprehensive patient profiling. 

Framewor

k 

+ ML) features for 

high 

efficiency 

Proposed 

Hybrid 

Model 

(Current 

Study) 

ClinicalData

set 

Hybrid 

(Boruta–

SHAP+ 

Ensemble 

RF) 

8 

SelectedClinicalFeatu

res 

96.28 94.7

7 

98.77 

(ROC-

AUC) 

Integrated 

Hybrid FS, 

Threshold 

Optimizatio

n, and 

Stratified 

CV 
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2. Longitudinal Prediction Models: Extending the current framework to track disease progression over time 

may help in predicting the transition from Mild Cognitive Impairment (MCI) to Alzheimer’s Disease. 

3. Deep Learning with Explainability: Future studies may employ deep learning architectures (like CNNs or 

transformers) integrated with interpretable AI methods to capture complex spatial and temporal patterns 

while maintaining transparency. 

4. Federated and Privacy-Preserving Learning: Given the sensitive nature of clinical data, applying federated 

learning strategies could enable collaborative model training across institutions without compromising 

patient privacy. 

5. Clinical Deployment and Validation: The next step involves deploying the best-performing model (Random 

Forest) in a clinical decision-support system for real-world testing, ensuring usability, interpretability, and 

regulatory compliance. 

In conclusion, the proposed hybrid feature selection and ensemble-based modeling framework provides a robust, 

interpretable, and clinically meaningful tool for early AD detection. By bridging data-driven intelligence with 

clinical insight, this research contributes a valuable step toward precision diagnostics and personalized treatment 

planning in neurodegenerative disorders. 
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