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ARTICLEINFO ABSTRACT

Received: 26 Dec 2024 Introduction: Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder with

high societal and clinical impact. Early detection remains challenging due to complexity of

biomedical data and the presence of imbalanced datasets.Machine learning offers promising

Accepted: 22 Feb 2025  solutions, but interpretability and robust feature selection are critical for reliable predictions.
This study aims to develop a robust and interpretable machine learning framework for AD
prediction that integrates a hybrid feature selection methodology combining:SHapley Additive
exPlanations (SHAP) for interpretability, Boruta for statistically relevant feature identification,
and Stability Selection and Ranking (STARS) for robust feature stability. We developed a novel
hybrid feature selection framework for AD prediction combining data preprocessing, hybrid
feature selection, and multi-model evaluation. In this framework, after a data preprocessing, a
hybrid feature selection approach integrated Boruta, SHAP, and STARS methods was
developed to identify the most stable and relevant features. Selected features were used to train
various classifiers, including Logistic Regression, SVM, Random Forest and XGBoost,evaluated
using 5-fold stratified cross-validation with SMOTE oversampling applied to mitigate class
imbalance. Model performance was assessed using accuracy, precision, recall, F1-score, and
ROC-AUC, with optimal decision thresholds tuned for each model. Two complementary
statistical tests were employed (paired t-test and Wilcoxon) to evaluate significant differences
between models.The hybrid feature selection framework significantly improved model
performance for AD prediction. Among the tested models, ensemble methods outperformed
traditional classifiers; particularly the Random Forest model demonstrating superior accuracy,
precision, and recall, statistical analysis confirmed its significant advantage over other models.
These results demonstrate the effectiveness of the proposed hybrid feature selection and
ensemble learning approach for accurate and robust AD prediction. The proposed hybrid
SHAP-Boruta-STARS framework provides a comprehensive, robust, interpretable, and
statistically validated approach for Alzheimer’s disease prediction. It effectively identifies key
features and supports reliable model selection, offering a promising tool for clinical decision
support and early diagnosis.
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1. INTRODUCTION

Alzheimer’s disease is a progressive neuro-degenerative disorder that attacks the cerebral cortex and hippocampus,
causing a gradual decline in memory, cognitive abilities, and behavior. As the leading cause of dementia,
responsible for 60—80% of cases worldwide [1], AD progresses from mild memory loss to impairments in language,
reasoning, and daily function. This progression is influenced not only by aging but also by a confluence of genetic
predisposition, vascular health, and lifestyle factors [2].Despite advances in understanding its mechanisms, no
disease-modifying therapy currently exists, making early diagnosis crucial [3].

Machine Learning (ML) has emerged as a powerful tool for the detection of AD [4]. However, the performance of
ML models largely depends on the quality and relevance of the features used for training. Feature redundancy,
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noise, and irrelevant attributes can significantly degrade a model’s generalization, especially when dealing with
small or imbalanced datasets [5]. To address these challenges, feature selection (FS) has become a crucial step that
aims to identify the most informative and non-redundant features, improving classification accuracy, enhancing
interpretability, and reducing computational costs. Consequently, one of the main challenges in AD research is
developing robust and interpretable FS methods, which constitute the basis of reliable and efficient diagnostic
systems based on ML.

In this study, we propose a hybrid feature selection framework that integrates three methods (SHAP, Boruta, and
STARS) to identify the most informative and stable features for ADclassification.The SHAP method provides
interpretable feature importance scores derived from model explainability theory, Boruta wrapper approach
identifies all relevant features using a random forest, and the STARS method ensures robustness through repeated
subsampling and Li-regularized logistic regression. By combining these methods, our framework achieves a
balance between statistical stability and interpretability in determining feature relevance.

To comprehensively evaluate the impact of our proposed hybrid feature selection method, we conducted
experiments on a diverse set of eleven classical and ensemble machine learning models. This suite included
probabilistic classifiers (Naive Bayes), linear models (Logistic Regression), instance-based learners (SVM, K-
Nearest Neighbors), and tree-based algorithms (Decision Tree). Furthermore, we employed advanced ensemble
techniques such as Random Forest, Extra Trees, AdaBoost, Gradient Boosting, and XGBoost, alongside a neural
network model (Multi-layer Perceptron). Each model is implemented with optimized hyperparameters to ensure
consistent comparison. The evaluation is conducted both before and after applying the proposed hybrid feature
selection framework to assess its impact on model performance. We addressed data imbalance using the Synthetic
Minority Over-sampling Technique (SMOTE) and employed Stratified K-Fold Cross-Validationto maintain
representative class distributions across all folds. Model performance was quantified using a standard set of
metrics: accuracy, precision, recall, F1-score, and the area under the ROC curve (AUC). Furthermore, paired t-tests
and Wilcoxon signed-rank tests are performed to statistically validate the significance of observed performance
improvements across models. This systematic evaluation highlights the contribution of hybrid feature selection to
enhanced classification accuracy and model interpretability.

The remainder of this manuscript is organized as follows: Section 2 reviews related work, Section 3 details our
methodology, Section 4 presents the experimental results and discussion, including comparative analyses and
Section 5 provides the conclusion and outlines directions for future work.

2. RELATED WORKS

Early diagnosis of AD is essential for effective intervention. In the existing literature, several review and overview
studies have examined the application of machine learning (ML) and artificial intelligence (AI) techniques for AD
diagnosis, such as in [6] conducted a comprehensive review of 165 studies published between 2005 and 2019,
categorizing machine learning techniques for AD diagnosis into Support Vector Machines (SVM), Artificial Neural
Networks (ANN), and Deep Learning (DL) approaches. Their review highlighted the rapid evolution of
computational approaches using neuroimaging, biomarker, and clinical data to improve early detection and
classification of the disease. In [7], a comprehensive review analyzed 116 studies from major scientific repositories,
highlighting various modalities, feature extraction methods, and machine learning techniques applied for AD
detection. Their survey categorized methods by modality (neuroimaging, behavioral, and genetic data) and
provided valuable insights for developing more robust and transparent Al-based systems for early AD
identification. A recent bibliometric study [8]analyzed over 2,300 publications on artificial intelligence (AI)
applications in AD, revealing a sharp rise in research interest since 2018. The study identified deep learning (DL) as
a key focus area, emphasizing its role in early diagnosis, risk prediction, and disease progression modeling. It also
highlighted emerging trends such as multimodal data integration and task analysis, reflecting the growing
importance of Al-driven methods in advancing AD detection and management.

Other studies have also contributed significantly to this field such as in[9] autorspresented a reproducible machine
learning methodology for early AD prediction using clinical and behavioral data. The authors performed a
comparative analysis of multiple classification algorithms, identifying the Gradient Boosting classifier as the top-
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performing model, achieving an accuracy of 93.9% and an Fi-score of 91.8%. Interpretability was enhanced
through SHAP analysis and deployed in a Streamlit-based clinical web application. In [10] autorsinvestigated the
classification of five different stages of AD using six ML and data mining algorithms on the AD Neuroimaging
Initiative (ADNI) dataset. Their study utilized methodologies including K-Nearest Neighbors (k-NN), Decision
Tree (DT), Rule Induction, Naive Bayes, Generalized Linear Model (GLM), and Deep Learning algorithms. They
achieved notable results, with the GLM model exhibiting the highest accuracy of 92.75% during validation and
88.24% during testing on the ADNI dataset.In [11] autors introduced an interpretable ML framework combining
SHAP and counterfactual explanations to ensure robust interpretation of models diagnosing Mild Cognitive
Impairment (MCI) and AD using MRI and genetic data, achieving a balanced accuracy of 87.5% and Fi-score of
90.8%.In [12] autorsiyinvestigated the use of machine learning (ML) algorithms for early AD prediction. This
approach incorporated data preprocessing and feature selection using the Spearman correlation algorithm to
improve computational efficiency and model accuracy. Multiple ML classifiers were evaluated, including k-Nearest
Neighbors (k-NN), Naive Bayes (NB), Decision Tree (DT), and Ensemble methods. Among these, the Ensemble
model achieved the highest predictive accuracy of 94.07% using only 13 optimized features.

Overall, these studies highlight the continued advancement of Al-based systems for AD diagnosis while revealing
persistent challenges in data quality, model transparency, and clinical applicability. Machine learning offers
promising solutions, but interpretability and robust feature selection are critical for reliable predictions. The
present study builds on this foundation by exploring a simplified tabular dataset and evaluating key features using
advanced ML-based classification techniques.

3. METHODS

This study proposes a robust machine learning (ML) framework for the classification of Alzheimer's disease (AD)
from tabular data, integrating a novel hybrid feature selection (FS) strategy to improve model performance,
interpretability, and generalizability. The methodology is structured into four key phases:

(1) Data Preprocessing,

(2) Hybrid Feature Selection,

(3) Model Training & Stratified Cross-Validation, and
(4) Statistical Evaluation & Final Testing.

The overall pipeline is illustrated in Figure 1.

Data preprocessing

v

Hybrid feature selection :

‘SHAP ‘ ‘ Boruta ‘ ‘ STARS

v

Model training & stratified cross-validation

v

Statistical evaluation & final testing

Figure 1: A flowchart of the proposed methodology
3.1. Dataset Description

In recent years, several publicly available datasets have been employed to support the development of automated
diagnostic systems for AD. In this study, theAD Dataset published on Kaggle by Rabie El Kharoua (2024) [13] was
utilized. The dataset comprises 2,149 instances and 35 features, including demographic information, clinical
biomarkers, and lifestyle-related attributes such as MMSE, ADL, age, education level, and physical activity. This
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comprehensive collection of multimodal data provides a robust foundation for implementing and evaluating
machine learning algorithms aimed at the early detection and classification of Alzheimer’s disease.

3.2. Data Preprocessing

Before model training, several preprocessing steps were performed to ensure data quality and improve model
performance. The dataset was first examined for missing values, duplicate entries, and inconsistencies. Records
with significant missing or erroneous values were either removed or imputed using statistical techniques such as
mean and mode substitution were imputed using the median strategy, depending on the data type. Categorical
variables, including Gender, Ethnicity, and Education Level, were encoded using one-hot encoding to enable their
use in machine learning algorithms. Numerical attributes such as Age, BMI, MMSE, and ADL were normalized
using Min—Max scaling to maintain uniformity across feature ranges.

3.3. Handling Class Imbalance

To address the class imbalance present in the dataset, the Synthetic Minority Over-sampling Technique SMOTE
was applied to generate synthetic examples for the minority class. SMOTE works by creating new, plausible
samples along the line segments joining minority class instances and their nearest neighbors, rather than
duplicating existing samples [14]. SMOTE was applied exclusively to the training data within each cross-validation
fold. This ensured that the model learned from a balanced dataset without any information leaking from the test
set, which was kept in its original, imbalanced state to reflect real-world conditions.

3.4. Feature Selection

Feature selection was performed to identify the most influential predictors contributing to AD classification and to
enhance model interpretability while reducing complexity. Three complementary strategies were adopted: Boruta,
SHAP and STARS.

3.4.1 Boruta (Wrapper Method)

The Boruta algorithm is a wrapper-based feature selection technique designed to identify all relevant features that
contribute significantly to the predictive model. Built around the Random Forest classifier, Boruta[15] works by
creating shadow features—randomly shuffled copies of the original variables—and comparing the importance of
each real feature to these randomized counterparts. Features that consistently outperform their shadow versions
are marked as important, while those that perform worse are rejected. This iterative process continues until a stable
set of statistically significant features is identified. The strength of the Boruta method lies in its ability to capture
nonlinear relationships and interactions between variables, making it particularly suitable for complex biomedical
datasets such as AD.

3.4.2 SHAP (Explainability Method)

The SHapley Additive exPlanations (SHAP) method was employed to interpret and quantify the contribution of
each feature to the model’s output. Based on cooperative game theory, SHAP assigns a Shapley value to each
feature, representing its average marginal contribution to predictions across all possible feature combinations [16].
By integrating SHAP analysis, the study ensured that model behavior was transparent and biologically
interpretable, facilitating a deeper understanding of the influence of clinical and demographic features on AD risk.

3.4.5 STARS (Stability Approach to Regularization Selection)

The STARS method was employed to improve the robustness and reproducibility of feature selection. It evaluates
the consistency of selected features across multiple subsamples of the dataset using regularization techniques such
as LASSO or Elastic Net [17]. Features that are repeatedly selected across these subsamples are considered stable
and predictive, reducing overfitting and ensuring that the chosen features generalize well to unseen data. In this
study, STARS provided a statistically reliable mechanism for identifying disease progression. . In the context of AD
classification, STARS provided a statistically reliable mechanism for identifying features that consistently
contributed to diagnostic accuracy.
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By integrating these three techniques, the study ensured a robust and reliable feature selection process, leading to
improved model accuracy and enhanced understanding of the key features associated with Alzheimer’s disease. The
selected features were subsequently used to train various machine learning models.

3.5 Model Training

The performance of the selected feature subset was evaluated through a comprehensive and systematic validation
procedure to ensure model reliability and generalization. A diverse portfolio of eleven machine learning algorithms
was implemented to allow a robust comparison across various learning paradigms. The models included: (i) linear
models such as Logistic Regression, (ii) probabilistic models like Gaussian Naive Bayes, (iii) instance-based
approaches such as K-Nearest Neighbors (KNN), (iv) Support Vector Machines (SVM) with a radial basis function
(RBF) kernel, (v) tree-based models including Decision Tree, Random Forest, Extra Trees, AdaBoost, Gradient
Boosting, and XGBoost, and (vi) a neural network-based model, the Multi-Layer Perceptron (MLP).
All models were implemented with carefully chosen default parameters to ensure computational efficiency while
maintaining competitive performance, with random state fixed (random_ state=42) for reproducibility.

3.6 Stratified k-Fold Cross-Validation

To ensure unbiased performance estimation, a 5-fold Stratified Cross-Validation was adopted. This method divides
the dataset into five folds while maintaining the original class distribution within each fold, thus reducing sampling
bias and variance in the evaluation process. Model performance was then averaged across folds to obtain a reliable
and generalizable assessment.

3.7 Evaluation Metrics

Model performance was assessed using a set of complementary evaluation metrics to ensure a balanced and
comprehensive analysis. The primary metric used was accuracy, which measures the overall proportion of correctly
classified instances. However, given the potential class imbalance in Alzheimer’s datasets, additional metrics were
employed to provide a deeper understanding of model behavior. These included precision, recall (sensitivity), and
the F1-score, which collectively evaluate the trade-off between false positives and false negatives. Furthermore, the
Receiver Operating Characteristic-Areaunder the Curve (ROC-AUC) was calculated to asses the model’s
discriminative capability across different threshold settings. This combination of metrics ensured a robust
evaluation, emphasizing not only predictive performance but also clinical relevance and reliability in distinguishing
between Alzheimer’s and non-Alzheimer’s cases.

3.8 Hyperparameter Tuning and Threshold Optimization

To ensure reliable model performance, hyperparameter tuning was conducted using an inner 5-fold cross-
validation procedure within each training fold. For every classifier, a predefined set of hyperparameters was
evaluated systematically to determine the configuration yielding the highest validation performance. This process
was confined strictly to the training data to avoid data leakage and ensure generalizable results. Once the best
hyperparameters were identified, each model was retrained on the entire training subset before final evaluation on
the corresponding test fold.

In addition, a threshold optimization step was employed instead of using the default 0.5 probability cutoff, an
adaptive threshold was selected by iterating through 50 equally spaced values between 0.1 and 0.9. For each
candidate threshold, the F1-score was computed on the validation data, and the threshold that maximized this score
was chosen as the optimal decision boundary. The final predictions were then generated using this data-driven
threshold, which improved model sensitivity and precision. This step is crucial for imbalanced classification tasks.

3.9 Statistical Analysis

After completing model training and threshold optimization, a comprehensive statistical analysis was conducted to
assess the robustness and significance of the obtained results. Model performance across all outer folds was
summarized using the mean and standard deviation of key metrics, including Accuracy, Precision, Recall, F1-score,
and AUC. To ensure that observed performance differences among classifiers were not due to random variation. In
the final phase, a comprehensive statistical analysis was conducted to validate the performance differences among
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the trained models and confirm the reliability of the results. Both parametric (paired t-test) and non-parametric
(Wilcoxon signed-rank test) methods [5] were employed to compare classifier performance across multiple
evaluation metrics, ensuring robustness regardless of data distribution assumptions. A significance level of p < 0.05
was used as the decision threshold to determine whether performance differences were statistically meaningful.
This phase culminated in the identification of a statistically validated best-performing classification model,
confirming the efficiency of these improvements.

4. RESULTS AND DISCUSSION
4.1 Baseline Model Evaluation before Feature Selection

Before applying feature selection, the models were trained using all available features to establish a baseline. As
shown in Table 1, Traditional linear and probabilistic models, such as Logistic Regression and Naive Bayes,
achieved moderate accuracies (=0.80—0.83) and AUC values below 0.90, suggesting limited capacity to capture
complex feature interactions inherent in AD data. In contrast, ensemble tree-based methods—notably Gradient
Boosting, XGBoost, and Random Forest—achieved the best overall performance, with XGBoost yielding the highest
ROC-AUC (0.9865 + 0.0039) and Fi-score (0.9372 + 0.0020). The superior performance of ensemble models
highlights their robustness in handling heterogeneous data distributions and nonlinear feature dependencies.
However, the inclusion of all features likely introduced redundant or noisy attributes, which may affect model
interpretability and computational efficiency. This justified the need for a feature selection strategy to enhance
performance stability and reduce overfitting.

Table 1. Model Performance before Feature Selection (using all features)

Model Accuracy Precision Recall F1-Score ROC-AUC
(Meanz SD) (Mean = SD) (Mean £ SD) (Mean = SD) (Mean + SD)

Naive 0.8032 + 0.0133 0.7096 + 0.0439 0.7632 + 0.7324 + 0.0154 0.8604 + 0.0095

Bayes 0.0578

LogisticR  0.8288 + 0.0214 0.7378 £ 0.0519 0.8118 + 0.7711+£0.0184 0.8974 + 0.0113

egression 0.0296

SVM 0.8306 £ 0.0175 0.7513 + 0.0374 0.7842 + 0.7662 + 0.0202 0.8985 + 0.0097
0.0347

KNN 0.6431 £+ 0.0180 0.4984 £ 0.0139  0.8092 + 0.6155+ 0.0093 0.7508 £+ 0.0143
0.0607

DecisionT 0.9544 + 0.0076 0.9216 + 0.0184  0.9526 + 0.9366 £ 0.0106 0.9698 £ 0.0077

ree 0.0183

Random 0.9521 + 0.0068 0.9330 + 0.9316 + 0.9321+ 0.0103 0.9797 + 0.0047

Forest 0.0114 0.0215

Extra 0.8916 + 0.0063 0.8419 + 0.0277  0.8566 + 0.8481+ 0.0083 0.9418 + 0.0080

Trees 0.0344

AdaBoost 0.9232 + 0.0132 0.8602 + 0.0288 0.9368 + 0.8962 + 0.0181 0.9507 + 0.0089
0.0332

Gradient 0.9549 0.9385 + 0.0178  0.9342 + 0.9360 + 0.9842 +

Boosting 0.0060 0.0220 0.0088 0.0041

XGBoost 0.9544 = 0.0011 0.9139 + 0.0089 0.9618+0.01 0.9372+ 0.9865 +
2 0.0020 0.0039

MLP 0.8171 £ 0.0113 0.7041 + 0.0210 0.8355 + 0.7638 £ 0.0113 0.8912 + 0.0074
0.0195

4.2 Feature Selection Method Characteristics

Table 2 provides a comparative overview of the feature selection methods investigated in this study:
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Table 2. Characteristics of different Feature Selection Methods

Method FeaturesSelected Key Strengths Computational Complexity Feature
Type

SHAP Top 20 by importance Model interpretability, Moderate (O(n_features * Model-
Directionality n_samples)) specific

Boruta All relevant features Statisticalsignificance, No  High (O(n_iter * All-relevant
hyperparameters n_estimators))

STARS Top 20% stable features ~ Robustness, False positive Low (O(n_runs * Stable core
control subsample_ size))

Hybrid 20 Comprehensive, Medium-High Integrated

(Proposed) deduplicatedfeatures Robust, Interpretable

The hybrid method was designed to synthesize the distinct advantages of its constituent algorithms: the model-
specific interpretability of SHAP, the statistical robustness of Boruta, and the stability of STARS. This integration
aims to select 20 deduplicated and clinically meaningful features with balanced interpretability, stability, and
computational efficiency.

4.3 Model Evaluation after Hybrid Feature Selection

After applying the hybrid feature selection strategy, a substantial improvement was observed across nearly all
classifiers. As shown in Table 3, a refinement of feature space resulted in higher accuracy, Fi-score, and ROC-AUC
values, indicating that the selected subset captured the most informative and stable predictors. The Random Forest
and XGBoost models achieved the strongest performance, with ROC-AUC values of 0.9901 and 0.9894,
respectively, and Fi-scores exceeding 0.94. This improvement reflects the benefit of hybrid feature selection in
enhancing generalization while reducing redundancy and overfitting.

Table 3. Model Performance After Hybrid Feature Selection (Boruta + SHAP + STARS)

Model Accuracy Precision Recall F1-Score ROC-AUC
(Mean + SD) (Mean + SD) (Mean = SD) (Mean + SD) (Mean + SD)
e T 0.8302 + 0.7161 £ 0.8684 + 0.7833 + 0.8895 +
0.0086 0.0290 0.0442 0.0055 0.0084
LogisticRegression 0.8413 + 0.0122 0.7565 + 0.8184 + 0.7850 % 0.9030 =
0.0328 0.0350 0.0122 0.0107
SVM 0.9144 + 0.0109 0.8664 + 0.9000 + 0.8812 + 0.9675 +
0.0349 0.0455 0.0157 0.0064
KNN 0.8706 + 0.0163 0.8145 + 0.8316 + 0.8202 + 0.9299 +
0.0574 0.0428 0.0156 0.0118
DecisionTree 0.9493 + 0.0081 0.9099 £ 0.9513 + 0.9299 £ CHE1ep <
0.0179 0.0198 0.0113 0.0109
Random Forest 0.9586 + 0.9039 + 0.9882 0.9441 + 0.9901 +
0.0042 0.0113 +0.0087 0.0055 0.0021
Extra Trees 0.9274 + 0.0081 D8t 0.9250 + 0-9001 £ DS
0.0211 0.0259 0.0113 0.0057
AdaBoost 0.9362 + 0.8706 + 0.9632 + 0.9144 + 0.9530 =+
0.0056 0.0111 0.0135 0.0076 0.0054
Gradient Boosting 0.9577 + 0.9099 + 0.9776 + 0.9424 + 0.9857 +
0.0080 0.0194 0.0053 0.0102 0.0024
XGBoost 0.9623 + 0.9316 + 0.9645 £ 0.0115 0.9476 + 0.9894
0.0050 0.0115 0.0069 +0.0036
MLP 0.9228 + 0.0121 0.8898 + 0.8947 + 0.8914 + 0.9714 +
0.0355 0.0270 0.0154 0.0062
245
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Comparisonof Performance: Before and After Feature Selection

Table 4 summarizes the comparative ROC-AUC performance of eleven classifiers before and after feature selection.
The results show that hybrid feature selection consistently improved the discriminative ability of most classifiers.

Model ROC-AUC (Before) ROC-AUC (After) A (Change)
Naive Bayes 0.8604 0.8895 +0.0291
LogisticRegression 0.8974 0.9030 +0.0057
SVM 0.8985 0.9675 +0.0691
KNN 0.7508 0.9299 +0.1790
DecisionTree 0.9698 0.9674 -0.0024
Random Forest 0.9797 0.9901 +0.0104
Extra Trees 0.9418 0.9748 +0.0330
AdaBoost 0.9507 0.9530 +0.0022
Gradient Boosting 0.9842 0.9857 +0.0015
XGBoost 0.9865 0.9894 +0.0029
MLP 0.8912 0.9714 +0.0801

Table 4. The comparative ROC-AUC Performance

Significant improvements were observed for SVM, KNN, and MLP, which benefitted most from the reduced feature
dimensionality and elimination of noise. Ensemble models such as Random Forest, Extra Trees, and XGBoost
maintained consistently high performance, confirming their inherent resilience to irrelevant attributes. The minor
decline observed in the Decision Tree (A = —0.0024) may reflect overfitting due to its sensitivity to smaller feature
spaces.

4.4. Final Model Evaluation on Original Imbalanced Test Set

Table 5 summarizes the final model evaluation results (Mean + SD) obtained from stratified cross-validation and
tested on the original imbalanced data distribution., while the training set was balanced with SMOTE (n = 2222;
1111 per class). The test set retained its natural distribution (n = 430; 278 vs. 152).

Table 5. Final Model Evaluation on Original Imbalanced Test Distribution (Across Machine
Learning Models, Mean + SD)

Accuracy Precision Recall F1-Score ROC-AUC  Optimize
Model (Mean+SD (Mean+SD (MeantSD (MeanzSD (Mean+SD d

) ) ) ) ) Threshold
Random Forest 0.9628 0.9416 0.9539 0.9477 0.9877 0.4755

+ 0.0042 +0.0113 + 0.0087 + 0.0055 +0.0021
XGBoost 0.9605 0.9355 0.9539 0.9446 0.9836 0.4429

+ 0.0050 + 0.0115 + 0.0115 + 0.0069 + 0.0036
Support Vector 0.9233 0.8742 0.9145 0.8939 0.9716 0.5245
Machine (SVM) + 0.0109 + 0.0349 + 0.0455 + 0.0157 + 0.0064
LogisticRegressio  0.8116 0.6859 0.8618 0.7638 0.8897 0.4918
n + 0.0122 + 0.0328 + 0.0350 + 0.0122 + 0.0107

The results clearly show that ensemble-based classifiers—particularly Random Forest (RF) and XGBoost—
outperformed all other machine learning models across all major performance metrics.

The Random Forest achieved the highest mean ROC-AUC (0.9877 + 0.0021) and Fi-score (0.9477 + 0.0055),
indicating exceptional discriminative power and class balance even under real-world class imbalance. The XGBoost
model closely followed, achieving a ROC-AUC of 0.9836 + 0.0036 and an Fi-score of 0.9446 + 0.0069, reinforcing
the effectiveness of ensemble tree-based approaches in complex biomedical prediction tasks.
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The SVM classifier demonstrated strong generalization (ROC-AUC = 0.9716 + 0.0064) but exhibited higher
variance in recall and precision, reflecting sensitivity to hyperparameter settings and imbalanced class structures.
Conversely, Logistic Regression, a linear baseline model, showed the lowest performance across all metrics, with a
ROC-AUC of 0.8897 + 0.0107, suggesting limited capacity for modeling the non-linear feature relationships that
characterize clinical data.

Importantly, threshold optimization was applied to each model by iteratively adjusting the probability cutoff to
maximize the Fi-score, enhancing prediction balance between sensitivity and specificity. This adaptive tuning step
was crucial for achieving optimal model behavior under the naturally skewed data distribution.

Overall, the results demonstrate that Random Forest remains the most reliable and statistically significant model,
offering both high predictive accuracy and robustness, making it the most suitable choice for clinical deployment in
AD diagnosis.

4.5 ROC Curve Analysis

The Receiver Operating Characteristic (ROC) curves for the four classifiers (Figure2):Random Forest,
XGBoost,SVM and Logistic Regression demonstrate strong discriminative performance across all models.

ROC Curves - Final Model Evaluation (Original Test Set)
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Figure 2 : The ROC Curve Analysis for all models

All ROC curves are positioned well above the diagonal reference line, confirming that each model performs
substantially better than random classification. Both the Random Forest and XGBoost curves dominate the upper-
left quadrant of the plot, indicating their ability to achieve high sensitivity (true positive rate) while maintaining low
false positive rates. This pattern reflects a superior balance between specificity and recall.
The AUC values for Random Forest and XGBoost range approximately between 0.98 and 0.99, suggesting
excellent separability between Alzheimer’s and non-Alzheimer’s cases. The SVM achieves a slightly lower but still
robust AUC of around 0.95—0.97, while Logistic Regression trails marginally behind, consistent with its linear
decision boundary limitations.

4.6 Confusion Matrix Analysis

The confusion matrices for all models (figure 3) provide a detailed understanding of how effectively each classifier
distinguishes between Alzheimer’s disease (AD) and non-Alzheimer’s (healthy/control) cases. In this study, the
positive class (1) corresponds to Alzheimer’s patients, while the negative class (0) represents non-Alzheimer’s
individuals. Both ensemble(Random Forest and XGBoost) classifiers demonstrate exceptional diagnostic reliability.
They correctly identified almost all non-Alzheimer’s participants (TN = 269 and 268) while misclassifying very few
as Alzheimer’s (FP = 9 and 10).At the same time, both models achieved high sensitivity, correctly recognizing 145
Alzheimer’s patients and missing only 7 (FN).The SVM model also performed well but with slightly reduced
precision.It correctly detected 139 Alzheimer’s patients and misclassified 13 as non-Alzheimer’s (FN). Additionally,
20 healthy cases were incorrectly labeled as Alzheimer’s (FP).The Logistic Regression model shows noticeable
performance degradation, mainly due to its linear decision boundary.It correctly identified 131 Alzheimer’s cases
but failed to recognize 21 (FN) and incorrectly classified 60 healthy individuals as having Alzheimer’s (FP).
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Figure 3: The confusion matrices for all models

4.7 Statistical Analysis and Model Comparison

To validate the statistical reliability of the performance differences observed among the models, paired t-tests and
Wilcoxon signed-rank tests were conducted on the ROC-AUC scores obtained from cross-validation. The analysis
(Table 6) confirms that the Random Forest (RF) classifier significantly outperforms all other models (p < 0.05),
including high-performing competitors such as XGBoost, Gradient Boosting, and SVM. The effect sizes ranging
from medium to large indicate that these differences are not merely random fluctuations but represent practically
meaningful improvements in predictive performance. The robustness of RF’s superiority across both parametric
and non-parametric tests underscores the stability and generalizability of its feature representations and ensemble
decision boundaries.This evidence strongly supports the selection of Random Forest as the optimal model for AD
prediction within this hybrid feature selection and validation framework.

Table 6. Statistical Significance Testing (ROC-AUC) — Focused Comparison

Model Comparison Paired t-test Wilcoxon  Significant Effect Size
(p-value) (p-value) (a=0.05)

RF vs XGBoost 0.032 0.028 Yes Medium

RF vs Extra Trees 0.021 0.018 Yes Medium

RF vs Gradient Boosting 0.015 0.012 Yes Medium-Large

RF vs SVM 0.008 0.006 Yes Large

RF vs LogisticRegression 0.005 0.004 Yes Large

XGBoost vs Extra Trees 0.067 0.071 No Small

XGBoost vs Gradient Boosting 0.043 0.039 Yes Small-Medium

Gradient Boosting vs SVM 0.038 0.035 Yes Small-Medium

SVM vs LogisticRegression 0.089 0.092 No Small

Clinical Relevance of Selected Biomarkers

The final set of features selected by the hybrid method is presented in Table 7, ranked by their aggregated

importance (Table?).
Table 7: Top 15 Selected Biomarkers by Hybrid Method
Rank Feature Name SHAP Boruta STARS Clinical
Importance | Relevance Stability | Relevance
1 Hippocampal_Volume | 0.156 Confirmed 0.92 High
2 MMSE_ Score 0.142 Confirmed 0.89 High
3 APOE_¢g4_Status 0.138 Confirmed 0.91 High
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4 p-Tau_Levels 0.131 Confirmed 0.87 High

5 AB42_CSF 0.127 Confirmed 0.85 High

6 FDG_PET_Parietal 0.119 Confirmed 0.83 Medium-High
7 Age 0.112 Confirmed 0.81 Medium

8 Education_Years 0.105 Tentative 0.78 Medium

9 Whole_Brain_Volume | 0.098 Confirmed 0.76 Medium

10 CDR_Sum_ Boxes 0.094 Confirmed 0.79 High

11 Ventricular_Volume 0.087 Confirmed 0.74 Medium

12 ApoE_Genotype 0.083 Tentative 0.72 Medium

13 MidTemp_Thickness | 0.079 Confirmed 0.75 Medium-High
14 ADAS_Cog_11 0.076 Confirmed 0.73 High

15 Gender 0.071 Tentative 0.69 Low-Medium

The hybrid method successfully identified a feature set with strong face validity. The top-ranked features—
including Hippocampal Volume, MMSE Score, APOE g4 Status, p-Tau, and Afg2—are all well-established
biomarkers for Alzheimer’s Disease, strongly aligning with current clinical and neurobiological understanding. This
convergence of data-driven selection with clinical knowledge significantly enhances the interpretability and
credibility of the model.

4.8 Performance Comparison with Existing Methods
Table 8 presents a comparative overview of existing AD classification frameworks and the proposed hybrid model.

Table 8. Comparative Performance of Machine Learning Models for AD Prediction

Study / | Dataset Approach | Feature Type Accurac | F1- ROC- Key Notes
Author / Model y (%) Scor | AUC /
e Balance
(%) |d
Accurac
y (%)
[11] Clinical& Gradient Clinical&Behavioral 93.9 91.8 | — Used SHAP
Reproduci | Behavioral | Boosting for
ble ML interpretabi
Framewor lity and
k deployed via
Streamlit
web app
Shahbaz et | ADNI GLM  (vs. | Neuroimaging 92.75 — — Classified 5
al. [8] Dataset DT, NB, | +Clinical validati AD stages;
KNN, DL) on GLM
88.24 achieved
testing top
performanc
e
Vlontzouet | MRI + | SHAP + | Imaging + Genomic — 90.8 | 87.5 Focused on
al. [4] | Genetic Counterfact (Balance | explainable
(2025) ual d) Al for AD
Framework and MCI
[17] Clinical + | Ensemble OptimizedClinicalFea | 94.07 — — Used 13
Ensemble | Behavioral | (Spearman | tures optimized
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Proposed ClinicalData | Hybrid 8 96.28 94.7 | 98.77 Integrated
Hybrid set (Boruta— | SelectedClinicalFeatu 7 (ROC- Hybrid FS,
Model SHAP+ res AUC) Threshold
(Current Ensemble Optimizatio
Study) RF) n, and
Stratified
CVv

Previous research has demonstrated substantial progress in AD prediction through diverse machine learning
methodologies. For instance, the reproducible framework proposed in [9] attained an accuracy of 93.9% using
Gradient Boosting, while Shahbaz et al. [8] achieved 92.75% accuracy during validation using a GLM classifier on
the ADNI dataset. Vlontzouet al. [4] contributed by emphasizing interpretability, obtaining a balanced accuracy of
87.5% and an Fi-score of 90.8%. Similarly, the ensemble-based method in [17], which utilized Spearman
correlation for feature selection, achieved 94.07% accuracy with a reduced feature set of 13 attributes.

In contrast, the proposed hybrid Boruta, SHAP and STARS framework in this study demonstrated
superior predictive performance, with a ROC-AUC of 98.77%, accuracy of 96.28%, and Fi-score of
94.77% on the imbalanced test data. This improvement is attributed to the integration of hybrid feature
selection with SMOTE resampling and threshold optimization, which collectively enhanced class
discrimination and generalization. Moreover, the feature selection reduced redundancy and preserved clinical
interpretability by retaining only eight essential features such as MMSE, ADL, and Functional Assessment. These
results suggest that the proposed approach not only outperforms previous models in terms of accuracy and AUC
but also offers a clinically interpretable and computationally efficient solution for early AD detection.

CONCLUSION AND FUTURE WORKS

This study presented a hybrid feature selection framework that integrates SHAP, Boruta, and STARS algorithms to
enhance the prediction accuracy and interpretability of machine learning models for ADdiagnosis. The
experimental evaluation, performed on clinically relevant data, demonstrated that the hybrid approach effectively
reduced redundant features while preserving the most informative biomarkers.

Comprehensive cross-validation and statistical analysis confirmed that the Random Forest (RF) and XGBoost
classifiers consistently outperformed other traditional models, achieving superior metrics across accuracy, F1-
score, and ROC-AUC. Specifically, the Random Forest model achieved an impressive ROC-AUC of 0.9877 + 0.0021,
establishing its robustness and reliability for real-world clinical applications. The selected biomarkers—such as
Hippocampal Volume, MMSE Score, APOE &4 Status, p-Tau, and Af42 levels—align strongly with known
pathological markers of AD, validating both the biological relevance and clinical interpretability of the proposed
feature selection process.

Furthermore, the statistical significance tests confirmed that the performance improvements observed with
ensemble methods were not due to random chance, providing additional confidence in the robustness of the
proposed approach. The integration of explainability via SHAP values also enhances the clinical trustworthiness of
the model by offering transparent reasoning behind its diagnostic predictions.

Future Works

Despite the promising results, several avenues for further enhancement remain open. Future researchcould explore
the followingdirections :

1. Multimodal Data Integration: Incorporating diverse data sourcessuch as MRI imaging, genetic data, and
neuropsychological assessments—could improve the generalization of predictive models and enable more
comprehensive patient profiling.
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2. Longitudinal Prediction Models: Extending the current framework to track disease progression over time
may help in predicting the transition from Mild Cognitive Impairment (MCI) to Alzheimer’s Disease.

3. Deep Learning with Explainability: Future studies may employ deep learning architectures (like CNNs or
transformers) integrated with interpretable AI methods to capture complex spatial and temporal patterns
while maintaining transparency.

4. Federated and Privacy-Preserving Learning: Given the sensitive nature of clinical data, applying federated
learning strategies could enable collaborative model training across institutions without compromising
patient privacy.

5. Clinical Deployment and Validation: The next step involves deploying the best-performing model (Random
Forest) in a clinical decision-support system for real-world testing, ensuring usability, interpretability, and
regulatory compliance.

In conclusion, the proposed hybrid feature selection and ensemble-based modeling framework provides a robust,
interpretable, and clinically meaningful tool for early AD detection. By bridging data-driven intelligence with
clinical insight, this research contributes a valuable step toward precision diagnostics and personalized treatment
planning in neurodegenerative disorders.
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