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Improving energy efficiency while minimizing environmental impact has long been a central 

challenge in combustion-based technologies. Swirl (vortex) flow, a key innovation for enhancing 

combustion, remains an active research focus. This study explores the use of artificial intelligence 

to predict swirl flow characteristics in a combustion chamber. Experimental positional and 

descriptive data served as inputs, with horizontal and vertical velocities and kinetic energy as 

outputs. The model accurately reproduced velocity density distributions and vortex center 

locations, closely matching experimental results. It demonstrated strong predictive performance 

on known datasets, effective reconstruction of the vortex flow field, and robust generalization to 

unseen cases. These results confirm AI’s potential for modeling complex combustion flows and 

suggest promising applications for predictive control and optimization in energy systems. 

Keywords: Swirling  flow, neural network, recirculation zone, training, validation, test and 
prediction. 

 

INTRODUCTION 
Swirling flows, characterized by the rotational motion of fluid particles around a central axis, manifest in a multitude of 
engineering and natural systems, exerting a profound influence on their performance and behavior(Syred, 2006). From 
the efficient mixing in industrial processes to the optimization of combustion in propulsion systems, and from the 
dynamics of oceanic currents to the dispersion of pollutants in the atmosphere, understanding the intricate behavior and 
characteristics of swirling flows is paramount for a diverse array of applications(Sheen et al., 1996). However, traditional 
methods of analyzing swirling flows have often been constrained by their reliance on empirical correlations derived from 
limited experimental observations. 

The advent of artificial intelligence (AI) heralds a new era in the study of swirling flow phenomena, offering unprecedented 
opportunities to enhance our understanding and predictive capabilities(Schmittel et al., 2000). By harnessing AI 
techniques, particularly machine learning algorithms, researchers can unlock hidden patterns and relationships 
embedded within vast datasets of swirling flow simulations and experimental measurements(O'Doherty&Lucca-Negro, 
2001).  

This approach transcends the limitations of traditional methods, empowering scientists and engineers to develop 
predictive models that capture the dynamics of swirling flows with unparalleled accuracy. 

This interdisciplinary fusion of fluid dynamics principles with AI methodologies holds immense promise for advancing 
the characterization of swirling flows. Through the deployment of advanced machine learning algorithms such as neural 
networks, genetic algorithms, and reinforcement learning, this study endeavors to delve deep into the complexities of 
swirling flow dynamics. By analyzing intricate flow structures, turbulence characteristics, and vortex dynamics, 
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researchers aim to unravel the underlying mechanisms governing swirling flows across diverse spatial and temporal 
scales(Mathur&NR, 1967). 

The outcomes of this research transcend disciplinary boundaries, with profound implications for fields ranging from 
aerospace engineering to energy production and environmental science. By gaining deeper insights into swirling flow 
phenomena through the lens of artificial intelligence, engineers and scientists can revolutionize the design of more 
efficient and sustainable technologies, optimize fluidic processes, and mitigate environmental impacts(Leuckel&Fricker, 
1976).  

Moreover, the knowledge derived from this study contributes to the advancement of fundamental fluid dynamics 
principles, laying the groundwork for future innovations in flow control, turbulence modeling, and renewable energy 
systems(Guedot, 2015). 

In summary, the integration of artificial intelligence into the characterization of swirling flows marks a transformative 
paradigm shift in fluid dynamics research. By harnessing the computational power and analytical prowess of AI-driven 
methodologies, researchers stand poised to unlock unprecedented insights into the complexities of fluid motion, driving 
innovation and progress across a myriad of engineering and scientific domains. 

This study aims to utilize one of the artificial intelligence models to predict the characteristics of swirling flow. The 
research focuses on integrating state and spatial parameters to estimate the axial and radial components of velocity, as 
well as turbulent kinetic energy. The reliability of the model is assessed using statistical parameters such as the error 
between predicted and measured values, MSE (Mean Squared Error), and RMSE (Root Mean Squared Error). 
 

Material and method 

Many industrial processes use vortex flows to improve combustion because the vortex flow field generated by the head 
vortex directly affects the uniformity of fuel and air mixing, and thus the quality of the temperature distribution at the 
combustion outlet, the formation of the internal recirculation zone allows high volumetric heat release rates in conjunction 
with Excellent flame stability(Escudier&Keller, 1985). 

Introducing swirling air through two or more concentric rings provides additional degrees of freedom to control the radial 
distribution of flow and vortex to achieve significantly different combustion characteristics, such as flow and mixing 
patterns, turbulence levels, and different flame stability limits. Therefore, for combustion design, it is very important to 
obtain a clear picture of the characteristics of the vortex flow field. 

 To research the fields of vortex flow and study its characteristics, use one of the artificial neural network models, which 
focuses on integrating state parameters and spatial parameters to estimate the axial and radial components of the velocity, 
in addition to turbulent kinetic energy, and compare the expected and measured values by measuring the error rate (R, 
R2, MSE) to evaluate the reliability of the model(Elattar et al., 2020). 

 

Generic Model Combustor 

The experiments were carried out using an atmospheric air blast atomizer in a cylindrical combustion chamber (Merkle 
et al., 2003). The atomizer consists of a modular arrangement of two radial swirl generators, an atomizer lip that separates 
the two airstreams from each other within the nozzle, and an air diffuser with a throat diameter of D0=2R0=25 mm. 

 For both airflows, a constant air preheat temperature of T0= 50 °C has been selected. The mass flow rate of air is adjusted 
to 64 kg/h (Mi/M0=0.37). Theoretical swirl numbers S0, the of the inner as well as the outer airflow are Si=0.46 and 
S0=1, resulting in a global swirl number of 0.81. The Reynolds number is calculated as the product of the axial average air 
velocity at the nozzle exit (39.9 m/s) and the throat diameter of the diffuser divided by the kinematic viscosity of the air 
and yields approximately 60,000. 
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Figure 1: Generic Model Combustor 
 

 Measurements of the position and state parameters of the vortex flow field inside the combustion chamber were made 
using a sensor. Record the experimental values in a table. 

Include data: 

• Column 1: Height h. 

• Column 2: Radius R. 

• Column 3: Axial velocity u. 

• Column 4: Radial velocity v. 

• Column 5: Tangential velocity w.  

• Column 6: Kinetic energy k. 

Proposed feed-forward back propagation network (ffbpn) approach 

Several factors can be considered for model development that have a greater impact on the vortex flow state (recirculation 
zones). The proposed methodology began by collecting a dataset from a general model of combustion. Six parameters were 
determined, and these samples were taken as input to the FEBN model to extract vortex flow field characteristics(Zabihi 
et al., 2019). The FFBPN technique was used to train the performance model from two-way iterations. The first method 
involves calculating the forward step of the input weights and the second method is calculating the reverse step to update 
the weights and calculate the errors. Seventy percent of the collected data was used to train the model, while 30% of the 
data was divided equally for testing and 15% for validation. The overall methodology is presented in Figure.III.2: 

Secondly, the model was trained based on Equation (III.1) to generate more accurate output values: 

𝑦(𝑘) = 𝐹(∑ 𝑤ᵢ. xᵢ + b)𝑚
𝑖=1                                                                                                 (1) 

 
former Where 𝑦(𝑘)  e variable, xᵢ is the initial value of the variable and is the value of the connection weight of the neuron, 
and b is biased. The activation function between the input and the hidden layer was “SIGMOID”, as shown in Equation 
(2). 

                                                                         F(x) =
1

e−μx                                                                                                                    (2) 
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Figure 2: FFBPN approach workflow 
      

MATLAB was used to develop the FFBPN model. During the initial training phase, the FFBPN-based model is trained 
using the available data. If the model fails to meet expectations, it allows the weight and bias updating process to be 
continuously redeployed and improved until it reaches the best requirements using the Levenberg-Marquardt (LM) 
backpropagation algorithm(Moayedi et al., 2020). After completing the model training, 15% of the data was used to 
validate the trained model in the validation phase. The model was also allowed to go through the testing phase and tested 
with the remaining 15% of the data sets, and the results were accurate when the R² value approached 1. This network 
consists of three layers, i.e. the input layer, the hidden layers, and the output layer. 

 -Input layer: The input layer consists of a group of neurons whose number is equal to the number of inputs that we will 
rely on and we will take as inputs the axial velocity u, radial velocity v, tangential velocity w, radius R, length h and kinetic 
energy k. If the goal is to predict the axial velocity u, the input is (R.h.v.w.k), but if the goal is to predict the radial velocity 
v, the input is (R.h.u.w.k). As for the kinetic energy K, the input (R.h.u.v.w). The neural network learns the characteristics 
of the input data for later use in the prediction process, so the number of neurons in the input layer will be 5. 

-Hidden layer: The hidden layer consists of a group of hidden layers, and their number is determined according to the 
type of study and the number of inputs, their number is often small, so in this model, we will rely on ten (10) hidden layers, 
but as for the number of hidden neurons, it is variable. 

-Output layer: Since the goal of the study is to predict the axial velocity u, radial velocity v, or kinetic energy k in the 
vortex flow, the output layer consists of a single neuron.  

       Thus, the structure of the neural network used will be as shown in Fig3: 

 

Figure 3: The structure of the neural network 
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RESULTS AND DISCUSSIONS 

FFBPNN Model Training, validation, and testing 

To determine the FFBPNN framework for eddy flow field prediction in this study, it is necessary to compare and analyze 
the prediction accuracy, goodness of fit, and training cost of models with different hidden neurons and thus determine the 
optimal number of hidden neurons(Shaik et al., 2020). 

An FFBPN neural network is developed to predict well the axial velocity u, radial velocity v, and kinetic energy k of vortex 
flow. Due to the availability of limited data, specific factors were considered as inputs to develop the model. The model 
developed was trained based on equation and Levenberg-Marquardt backpropagation algorithm; the model was 
subsequently validated and tested by providing all possible datasets. The MSE is used to characterize the error between 
the FFBPN-predicted value and the experimental value. The goodness of fit between the FFBPN-predicted value and the 
experimental value is quantitatively evaluated by the coefficient of determination R2, the greater the value of R2 within the 
range [0, 1], the better the goodness of fit. R2 and MSE are given by the following expression: 

                                              𝑅² = 1 −
∑ (n

i=1  yinp−yotp)²

∑ (n
i=1  yinp−ȳinp)²

                                                                                                               (3) 

                                                 𝑀𝑆𝐸 = 1

𝑛
∑ (𝑛

𝑖=1  𝑦𝑖𝑛𝑝 − 𝑦𝑜𝑡𝑝)                                                                                                         (4) 

The overall R2 and MSE values changed mostly as the number of hidden neurons varied, ranging from a minimum of 14 
to a maximum of 28, as shown in Table 1.  

    Table 1. Overall R2 and MSE values versus several hidden neurons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

It has been found that the accuracy of the developed model is very sensitive to the number of Hidden neurons. From Table 
1 The best network structure was found to be [5× 23× 1] for the network predicts the axial velocity u, but for the network 
predicts v or k, the best structure is [5 × 26× 1]. R2 and MSE values along typical ANN phases with variation in hidden 
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neurons are depicted in Fig.4,5, and 6). The error must be continuously evaluated in each state of the neural network to 
choose the optimal network architecture. 

Defining an error function - conventionally referred to as a loss function - is essential for this purpose. It can be used to 

calculate the model loss, allowing the weights to be updated to minimize the loss of the next evaluation. 

It is worth noting that all stages have R2 values close to 1.0 and MSE values close to 0, with 23 and 26 hidden neurons 

shown in Figure 4 and 5,6 respectively by the dotted line. 

 

 

 

 

 

 

 

 

Figure 4: Variations in MSE and R2 values with the number of neurons, for axial velocity u 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Variations in MSE and R2 values with the number of neurons for radial velocity v 
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Figure 6: Variations in MSE and R2 values with number of neurons for Kinetic energy k 

FFBPN Model prediction 

Model training is carried out based on the ANN framework constructed above, and then a DNN model with high accuracy 
is obtained to predict the flow field distribution.  

Fig. (7,8 and 9) represents a comparison between the ANN predicted values and experimental data for axial velocity u, 
radial velocity v, and kinetic energy k for the training set (70 %), the validation set (15%), and the test set (15%) of the 
datasets. That is, it represents a summary of the R2 plots at the training, testing, and validation stages during the training 
process. An overall R2 value of 0.9998 was obtained for the axial velocity u, 0.99785 for the radial velocity, and 0.99617 
for the kinetic energy k. This indicates that the results are satisfactory because the overall R2 score is close to 1. 

It can be seen that the R2 for the training, testing, and validation phase has high values in the range (0.992 - 0.999). That 
is, the data points are distributed around the line y = x, with some values deviating from the straight line, that is, the data 
points are distributed around the line y = x, with some values deviating from the straight line despite the existence of a 
relationship between experimental and expected, while maintaining a certain degree of linear  

correlation and the ability of the model to reflect the main properties of the vortex flow field, i.e. goodness of fit. The 

expected and experimental values of u, v, and k are high. 

 

   

 

 

 

 

 

 

                  Training set          validation set                             Testing set 

Figure 7: Regression. Axial velocity u in training, validation, and testing 

http://www.jisem-journal.com/


2025,  

e-ISSN: 

Journal of Information Systems Engineering and Management 

2025, 10(4) 

e-ISSN: 2468-4376 

 

https://www.jisem-journal.com/ Research Article 

 
  
 

 2738 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

Training set                              Validation set                               Testing set  

Figure 8: Regression. Radial velocity v in training, validation and testing 

 

                                                Training set                            Validation set                                   Testing set       

Figure 9: Regression. Kinetic energy kin training, validation and testing 

 

Axial velocity                            Radial velocity                            kinetic energy  

Figure 10: Regression of all u, v and k  

 

The neural network passes the data several times during the training process and stops when the lowest value is reached 
for mean square errors MSE. Fig. 11,12, and 13 show the evolution of the mean square errors during the training phase for 
axial velocity u, radial velocity v, and kinetic energy k, respectively. 
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Figure 11: The evolution of the mean square errors during the training phase of axial velocity 

We note from Fig.11 that the best value of the mean square error was in stage 46 of training, which was estimated at  

3.6383*10. 

 

 Figure 12: The evolution of the mean square errors during the training phase of radial velocity. 

It can be seen from Fig.12 that The best validation performance was obtained at epoch 20, with the validation plot reaching 
its minimum MSE value of 0.00016252. 

We note from Fig.13 that the best validation performance was obtained at epoch 21, with the validation plot reaching its 
minimum MSE value of 0.000037041. 

Analysis of the results 

Fig.14,15, and 16 show the fit and agreement between the experimental and predicted values for axial velocity, radial 
velocity, and kinetic energy. With the real and expected values agreeing, the relative R error approaches zero, representing 
the difference between them. 

The introduction of rotor air through two concentric stages provides additional degrees of freedom for controlling the 
radial distribution of flow and vortex to achieve significantly different combustion characteristics, including flow and 
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mixing patterns, turbulence levels, and different flame stability limits. 

In Fig.14, negative axial velocity values in the vortex flow indicate the existence of reverse flow, or a recirculation zone, 
along the flow axis. The axial velocity is negative in this region because the axial direction of movement is opposite to the 
main flow direction. These regions also experience a decrease in flow velocity and an increase in airflow turbulence, which 
helps mix the reactants. This turbulence is used strategically to improve performance and increase efficiency. Fig.16 shows 
an increase in turbulent kinetic energy in these areas. As we move along the path of the combustion chamber (as shown 
in Fig.16), the turbulent kinetic energy gradually decreases until it reaches low or negligible levels, because the flame 
becomes stable at the end of the chamber. 

At the vortex core level, the axial velocity is nearly zero. Thus, zero axial velocity at the vortex core is evidence of proper 
vortex flow formation. Execution III.4.2 describes the Feed feed-forward backpropagation Neural Network (FFBPN) 
prediction model. The model is trained based on the constructed Artificial Neural Network (ANN) framework to obtain a 
Deep Neural Network (DNN) model with high accuracy for predicting the flow field distribution. The comparison between 
the ANN predicted values and the experimental data for axial velocity (u), radial velocity (v), and kinetic energy (k) is 
represented in Fig.7, 8, and 9. These figures summarize the R-squared (R2) plots at different stages of the training process, 
including the training set (70%), validation set (15%), and test set (15%) of the datasets. The overall R2 value obtained for 
the axial velocity (u) is 0.9998, while the values for radial velocity (v) and kinetic energy (k) are 0.99785 and 0.99617 
respectively. These high R2 values indicate a strong relationship between the experimental and predicted values, reflecting 
the model's ability to accurately represent the main properties of the vortex flow field. Furthermore, the mean square 
errors (MSE) during the training phase are illustrated in Fig.11,12, and 13, showing the evolution of MSE for axial velocity, 
radial velocity, and kinetic energy. 

 
Based on the results, it is evident that the FFBPN model demonstrates high accuracy and validity, supported by the R2 

values and low MSE. The presence of reverse flow or recirculation zones along the flow axis is indicated by negative axial 
velocity values in the vortex flow, contributing to improved performance and efficiency through strategic use of airflow 
turbulence. Additionally, the analysis of the radial velocity and kinetic energy provides insights into the flow 
characteristics at different locations within the combustion chamber. The predicted values show good agreement with the 
experimental data, with negligible relative errors. 

In conclusion, this chapter emphasizes the significance of predicting swirling flow characteristics using the FFBPN model 

and highlights the accuracy and validity of the model based on the obtained results. It is noted that the accuracy of the 

predicted output is influenced by the number of neurons in the model. Al velocity transitions from negative to positive 

values in the vortex flow when moving from the recirculation zones to areas farther from the vortex core. On the other 

hand, high positive values indicate a large velocity gradient and high turbulence intensity, which can lead to strong mass 

and energy exchange. As for the radial velocity, it is practically zero at the recirculation zo 

 

 

  Figure 13: The evolution of the mean square errors during the training phase. Of kinetic energy 
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Figure 14: Comparison of axial velocity u from prediction and experiment at different locations. 

 
Figure 15: Comparison of radial velocity v from prediction and experiment at different locations 

 
 
 

 

 

 

 

 

 

 

 

 

Figure16: Compare kinetic energy k from prediction and experiment at different locations 

CONCLUSION 

   

This study developed an artificial neural network model to predict the characteristics of swirling flow and evaluate its 
effectiveness. Swirl (vortex) flow plays a key role in industrial combustion systems by enhancing fuel–air mixing, ensuring 
uniform temperature distribution, and recirculating unburned gases to the flame. Within the recirculation zone, flow 
velocity decreases while turbulence intensity increases, leading to negative radial and axial velocity components. 

The proposed Feedforward Backpropagation Neural Network (FFBPNN) demonstrated high accuracy in predicting eddy 
flow characteristics, achieving low mean squared error values. Prediction accuracy was found to be strongly influenced by 
the number of neurons in the hidden layer. The model not only reproduced vortex flow fields from known datasets but 
also extrapolated them under previously unseen inlet conditions. Its computational efficiency, versatility, and rapid 
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response make it well-suited for three-dimensional, multipara meter, and multi-objective flow field prediction. 

This work focused on non-reacting swirling flows; future extensions will incorporate fuel–air ratio and temperature as 
inputs to predict turbulent reacting flow characteristics, thereby reducing reliance on costly experimental methods. 
Further research will also investigate coupled prediction between combustion species concentration fields and swirling 
flow structures. 
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