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Introduction: Floods are major natural disasters resulting from multiple environmental and 

anthropogenic factors. They cause considerable damage, affecting not only soil and agricultural 

production, but also infrastructure, material goods and, above all, the safety of local populations. 

South eastern Algeria, specifically the town of Sedrata, which encompasses the Foum Elkhanga 

watershed, is among the areas most vulnerable to this recurring phenomenon. 

Objectives: The objective of this study is to produce a map of the potential flood risk in oued 

foum elkhanga watershed, using the MCDA-AHP model, as well as to validate the reliability of 

the results obtained. 

Methods: Flood susceptibility mapping can be carried out using several approaches. However, 

one of the most effective methods is based on multi-criteria analysis (MCDA) combined with the 

analytical hierarchy process (AHP). In this context, the AHP method was used to assign a relative 

weight to each conditioning factor. These factors were then combined using an overlay weighting 

technique in geographical information systems (GIS). 

Results: The results show that flood susceptibility can be classified into four levels Low risk, 

Moderate risk, High risk, and very High risk. In general, the majority of areas classified as high 

risk are located in the city of Sedrata, close to the Fum Elkhanga dam, while areas classified as 

low, moderate and very high risk are mainly located in mountainous areas. Validation of the 

model, carried out by comparing the map produced with flood events recorded between 2002 

and 2024, reveals an area under the ROC curve average of 78.3%, indicating a high level of 

accuracy and confirming the validity of the susceptibility map obtained. 

Conclusions: The analysis also highlights the relevance of the conditioning factors used. Nine 

variables proved to be decisive in the modelling: TWI, Elevation, Slope, Rainfall, LULC, NDVI, 
Distance from River, drainage density, and Soil type. 
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INTRODUCTION 

Natural disasters can be triggered either by strictly environmental processes or by human activities [1]. Natural 

hazards generally manifest themselves according to the dynamics specific to physical and ecological systems, and can 

be anticipated when their characteristics are well identified [2,3]. Conversely, man-made disasters often occur 

suddenly, resulting from inadequate resource management or low environmental awareness [4]. In addition, certain 

human activities can intensify or accelerate natural phenomena, leading to extreme events outside their usual periods 

[5]. 
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Among these hazards, floods are among the most destructive. They cause human casualties, considerable material 

damage and lasting disruption to economic, social and urban dynamics [6,7]. Their sometimes-unpredictable nature 

they can even occur during the dry season poses a major challenge for scientific research and environmental 

management [8]. Globally, floods remain a major concern due to their serious impacts, including loss of life [9]. 

In urban contexts, several factors increase the risk of flooding, including: inadequate or failing drainage systems [10], 

rapid population growth, increasing surface impermeability due to urbanisation, inefficient waste management 

leading to the obstruction of drainage channels [11,12]. Indonesia is particularly vulnerable to flooding, as illustrated 

by the major events inSintang in 2021 and Manado in 2014, which caused significant human and material damage 

[13,14]. In the Bandung Raya region, flooding is a recurring phenomenon, particularly in the districts of Baleendah 

and Dayeuhkolot, where significant flooding was recorded in 2020 [15]. 

Bandung Raya's vulnerability can be explained by several factors: high urban density, low vegetation cover, and 

sloping topography that encourages water to flow towards built-up areas [16]. The region comprising the city of 

Bandung, Cimahi, Bandung District, and West Bandung District is crossed by numerous watercourses converging 

towards the south, thereby increasing its exposure to flooding [17]. 

Flood risk mapping is based on the integration of multiple factors specific to the geographical context and spatial 

scale under study. Commonly used parameters include NDVI, land use, TWI, precipitation, slope, altitude, and 

distances to roads and watercourses [18,19,20]. The respective influence of these variables may vary depending on 

regional specificities and the quality of available data [21,22]. 

In this context, the use of GIS combined with multi-criteria approaches offers a robust method for spatial modelling 

and the production of susceptibility maps [23,24]. Among these methods, Multi-Criteria Decision Analysis (MCDA) 

based on the Analytic Hierarchy Process (AHP) is widely used to establish the weighting of criteria through pairwise 

comparisons [25,26]. AHP is notable for its flexibility and adaptability to various contexts, although some critics 

point to its subjective nature [27]. 

In this study, nine factors were selected to develop the Fum Elkhanga watershed flood susceptibility map: TWI, altitude, 

slope, precipitation, land use (LULC), NDVI, distance to rivers, and distance to roads. The MCDA-AHP model was 

applied and validated using flood events recorded between 2002 and 2022. This approach makes it possible to 

identify the most vulnerable areas in the Fum Elkhanga watershed, in order to produce a reliable susceptibility map 

based on weighted linear combination. 

MATERIALS AND METHODS 

STUDY AREA 

The Oued Cherf/Sedrata watershed, identified by hydrological code (14.01) according to the National Agency for 

Hydrographic Basins, is located in north-eastern Algeria, upstream from the Foum El Khanga dam. It forms a border 

area between three wilayas: Souk Ahras, Guelma and Oum El Bouaghi, and comprises seven administrative districts. 

This basin, which belongs to the Seybouse hydrographic system, is triangular in shape and covers an area of 

approximately 1,767 km². It is bounded to the north by Djebel Tiffech, the Ras El Alia massif and Djebel Zouabi; to 

the south by Djebel Ezzorg, Koudiat Edabdaba and Djebel Lahmar; to the east by the Djebel Kebarit, Djebel 

Teraguelet and Djebel Ain Zitouna massifs; and to the west by Djebel Sidi Réghiss and Chebkat Sellaoua (Figure 1).  
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Figure 1: Geographical location of the study area 

The south-eastern sector is continuous with the high plains of the Haute-Seybouse and the upper Medjerda valley, 

where the watersheds between the Seybouse, Cherf and Medjerda basins are located, near Ras El Alia, the birthplace 

of the Krab and Tiffech wadis, both tributaries of the Cherf. To the south, the high plains of the Cherf connect with 

those of the salt flats of Guéllif, Tarf and Ank Djemel, forming a gently undulating landscape punctuated by small 

isolated massifs such as Djebel Sidi Réghiss (1,623 m), whose northern slope extends into the Seybouse hydrographic 

domain (Figure 2). 

 

Figure 2: Hydrographic situation of the study area 

 The relief, with its variations in altitude and morphology, strongly influences the hydrological processes of the basin, 

particularly the distribution of precipitation, surface runoff and runoff velocity, making topography a determining 

factor in regional hydrological dynamics. 

The streams located in the south-east of the catchment area converge in the Sedrata region to form the El Hamimine 

wadi. Next comes the Aïn Snob wadi, which rises in Chott El Magène and Djebel Teraguelet, at the furthest points 

from the large Seybouse basin, and then forms the Trouch wadi. The streams located to the south-west converge to 

form the Settara wadi, composed of the Aïn Babouche wadi and the El Mebdoua wadi. These tributaries are fed by 
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small streams descending from Djebel Sidi Reghiss, north of Oum El Bouaghi, as well as from the eastern flank of the 

Chebkat Sellaoua mountain range. 

The junction of the two wadis, the Trouch and the Settara, gives rise to the Cherf, which flows at the foot of Djebel 

Zouabi before emptying into the Foum El Khangua dam basin. 

DATA AND METHODOLOGICAL APPROACHES 

The data used in this research requires a variety of data collected from different credible and valid sources, which are 

then processed in a GIS. Based on the description of the literature review presented in the introduction, the data used 

for flood vulnerability processing can be found in Table 1. 

Eight types of data are used as flood vulnerability factors, and these data were also selected to avoid excessive 

complexity in processing data at the regional level, covering four major cities. The eight data sets are: (1) TWI; (2) 

Elevation; (3) Slopes; (4) Rainfall (Precipitation); (5) LULC; (6) NDVI; (7) Distance from rivers; (8) drainage density; 

and (9) Soil type (figure 3). The ninth data set is used to validate the flood susceptibility map, based on flood data 

from 2001 to 2024. 

 

Figure 3: Characteristic distributions of risk factors. 

In this study, GIS was used to collect and analyse all flood vulnerability factors in the local GIS database. All 

operations involving the conditioning and reclassification of factor maps, weighted linear combinations (WLC), and 
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validation of the flood susceptibility map for the Fumelkhanga watershed were performed using GIS. All functions 

used in the GIS analysis are considered solely in their spatial form. 

Table 1: Sources of data used in this study 

No Data type 
GIS data type Scale or 

resolution 
Source of data 

Spatial database Derived map 

1 TWI GRID Slope Gradient (°) 30 m Digital Elevation Model (DEM) 

2 Elevation GRID Elevation (m) Digital Elevation Model (DEM) 

3 Slope GRID Topographic wetness index Digital Elevation Model (DEM) 

4 Rainfall GRID -   National Agency for Water Resources 

5 LULC ARC/INFO GRID Land use 10 m ESRI Land Cover (2024) 

6 NDVI ARC/INFO GRID NDVI 30 m Landsat 8 OLI/TIRS+ Images 

7 Distance from 
River 

GRID Distance from River 30 m Digital Elevation Model (DEM) 

8 Distance from 
Road 

GRID Distance from Road 30 m Digital Elevation Model (DEM) 

9 Soil type GRID Soil type  National Institute of Cartography 
10 Flood Inventory Point and 

Polygon 
- - Disaster Information Data of algeria 

 

Figure 4 shows the methodology adopted in this study. 

 

Figure 4: The methodology framework 

MODEL VALIDATION 

The validation or expert in this research uses the AHP method, performed using Microsoft Excel software by carrying 

out quantitative planning, in which the preference scale is used to make decisions from a series of available 

alternatives [28]. The pairwise comparison matrix (PCM) is used in AHP to establish a ranking of the available 

parameters, where this PCM allows a weighting factor to be constructed for each criterion given by each individual, 

applying the ranking scale [29]. 

The weighting scale for conditioning factors can be chosen on a scale of 1 to 9, where scale 1 indicates that the 

importance of the two conditioning factors is equal, and scale 9 indicates a very high importance for one of the 

selected conditioning factors. The random average values of the consistency index (CI) generated by the PCM (RI) 

will vary depending on the number of conditioning factors used, with different sequences of matrices presented. The 

consistency ratio (CR) shows the data validation results that will be used later in a quantitative manner, according to 

a mathematical equation presented in Eqs. 1 and 2. 
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𝐶𝑅 =
𝐶𝐼

𝑅𝐼
                                                                                                             1 

𝐶𝐼 =
(𝛾𝑚𝑎𝑥−𝑛)

𝑛 − 1
                                                                                                  2 

The RI data were obtained from the results of the randomly selected PCM, which was constructed from the pairwise 

comparison table in a random and inconsistent manner (Swain et al., 2020). To validate the weights of the 

conditioning factors used, the CR value must be <0.1; if the CR value is >0.1, then the weighting matrix established 

by the experts must be recalculated. Any form of weighting aimed at normalising the PCM value is carried out using 

different techniques or approaches, depending on the experts' opinions [30]. 

Then, after obtaining the weights from the expert assessment, the aggregation method is used to multiply each 

conditioning factor in the form of a map in GIS, based on the acquisition of the weights of the factors according to 

Eq. 3. 

𝐹𝑆 = ∑ 𝑤𝑖 𝑥𝑖                                                                                                     3   

Were, 

FS: Flood susceptibility; wi: Weight of factor; i and x: Classes of flood susceptibility dor each factor i 

The spatial map is created from data obtained from the sources presented in Table 1. Next, all data are harmonised 

at the unit level if they differ, in order to avoid any imbalance in the data. All spatial data are classified into five 

categories according to their unit. 

After classification, the data is weighted using an appropriate weighting, where the values of the conditioning factors 

are adjusted according to the results obtained with the AHP method during the expert judgement stage. The 

cartographic results obtained are then validated. It should be noted that if the data are not valid, they are repeated 

and verified again from the beginning, then validated using the Receiver Operating Characteristic (ROC) method, 

which calculates an Area Under Curve (AUC) value. The AUC value is then multiplied by 100% to obtain a percentage. 

This AUC value is then categorised according to the interpretation level, with a value greater than 0.7 being 

considered valid [31]. 

RESULTS AND DISCUSSION  

RESULTS 

This study presents nine types of data from a map of conditioning factors that may influence flood vulnerability; the 

data used are presented in Table 1. Some images need to be converted because they have different data units than 

those desired by the researcher [31].  

Once the data has been correctly obtained and its quality and resolution are sufficiently usable or suited to the needs, 

the researcher then reclassifies it according to predefined values. The purpose of this reclassification is to specify the 

classes that will appear later, but the final classes depend on the availability and weight of the data. The results of the 

reclassification based on the class or value of each map are presented in Table 2. 

Once the weightings have been carried out by five validations, only one condition must be ensured: that the CR value 

by expert judgement does not exceed 0.1. The weighting results of each expert are then calculated. With the 

application of the AHP method to determine the weighting criteria, the values are normalised from the principal 

eigenvector, obtained by comparing the values of each row to obtain the total weight of all flood susceptibility criteria 

for Foum Elkhanga. Show in figure 5 and figure 7 the Matrix of Classes between conditioning factors, and estimated 

ratings. The result is a sigma max value of 8081 and a CR value of 0.8, which shows that the weighting data validation 

is correct, as CR (14.4) < 20. The validity of the results predictions was tested using the receiver operating 

characteristic (ROC) model and its area under the curve (AUC) (figure 6). 
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Figure 5: Matrix of Classes between conditioning factors, and estimated ratings % 

 

Figure 6: Model validation results by Random Forest 

Finally, the weighting results for each conditioning factor are applied in GIS using a weighted overlay to create a flood 

susceptibility map for Foum Elkhanga, with the results of the flood susceptibility map for the region. 

Table 2: Classes of conditioning factors, and estimated ratings for reclassify 

Flood causative criterion unit class 
Susceptibility class 
ranges and ratings 

Susceptibility 
class ratings 

Weight (%) 

    -0,12-0,04  Very Low 1   

    -0,04-0,02 Low  2   

NDVI ND -0,02-0,015 Moderate 3 10,6 

    -0,015-0,003 high 4   

    -0,003-0,08 very high  5   

    0-0,0008  Very Low 1   

    0,0008-0,003 Low  2   

Distance from river m 0,003-0,005 Moderate 3 14,4 

    0,005-0,006 high 4   

    0,006-0,01 very high  5   

    0-90  Very Low 1   

    90-174 Low  2   

Draiage density m/km 174-268 Moderate 3 8,43 

    268-390 high 4   

    390-767 very high  5   
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    Triassic clay  Very Low 1   

    Quaternary marl Low  2   

Soil type Level Black marl – marl-limestone Moderate 3 7,82 

    Oligocene sandstone and clay high 4   

    Sandy sandstone – Miocene marl very high  5   

    749-836  Very Low 1   

    836-987 Low  2   

Elevation m 902-987 Moderate 3 12,92 

    987-1138 high 4   

    1138-1622 very high  5   

    0-3  Very Low 1   

    3-6 Low  2   

Slope % 6-12 Moderate 3 8 ,95 

    12-20 high 4   

    20-50 very high  5   

    -8,4-4,8  Very Low 1   

    -4,8--3,04 Low  2   

TWI Level -3,04-0,57 Moderate 3 6,21 

    -0,57-2,93 high 4   

    2,94-13,4 very high  5   

    Water  Very Low 1   

    Agriculture Low  2   

LULC Level land 2 Building 3 Moderate 3 8,45 

    Bare land 4 high 4   

    Vegetation very high  5   

    239,9-317  Very Low 1   

    317-399 Low  2   

Rainfall Level 399-495 Moderate 3 10,6 

    495-588 high 4   

    588-729,8 very high  5   
      

 

 

Figure 7: Classes of conditioning factors, and estimated ratings % 

DISCUSSION 

The spatial distribution of flood risk at the basin scale results from combining the various thematic layers of the 

model factors discussed above. The final results show that this hazard is prevalent in the flood risk area located in the 

centre of the basin, exactly in the main thalwegs. These flood risk have been grouped into five classes: very low, low, 

moderate, high and very high, according to the vulnerability rate (figure 8).  
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Figure 8: flood susceptibility map 

Approximately 30% of the Oued Cherf watershed is exposed to a high risk of flooding. These areas are mainly located 

in sectors characterised by moderate to steep slopes and moderately dense to very sparse vegetation cover. They 

largely correspond to agricultural land located on relatively steep slopes, which increases vulnerability to flooding. 

Areas with low risk of flooding are mainly found in the moderate parts of the watershed, where slopes are gentle or 

vegetation is dense. Conversely, high risk of flooding values are associated with fragile soils which can impact 

agricultural production—as well as rugged terrain with degraded vegetation. These conditions promote erosion and 

increase the risk of flooding. showing vulnerability classes in km² and % (table 3, figure 9) 

Table 3: Flood Risk classes 

CLASSE Flood Risk Area Km² Area% 

1 Very low risk 315 18 

2 low risk 484 27 

3 Moderate risk 398 23 

4 High risk 140 8 

5 High risk 430 24 

  

 

Figure 9: Flood Risk area in % 

CONCLUSION 

The study used the AHP–MCDA method with GIS software to map flood susceptibility in Foum Elkhanga watershed. 

Five risk levels were identified: very low, low, moderate, high and extreme. The centre of the Fum Elkhanga watershed 

(1,767 km²) and the Sedrata plain and town are mainly classified as high to very high risk, while the mountains and 

hills are dominated by moderate to low risk areas. The validation results (average AUC of 78.3%) confirm the 
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reliability of the map, which can be used as a tool by local authorities to prioritise areas at high or very high risk of 

flooding. 
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