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I. INTRODUCTION AND BACKGROUND

Software engineering is experiencing a major shift, with the concepts of artificial intelligence (AI)
becoming more and more a part of the process of development. Conventionally the software systems
were constructed using fixed rules, data tables and given logic which are referred to as CRUD operations
(Create, Read, Update, Delete) [1]. Now the research has found a transition to the development of AI-
native systems with machine learning elements, autonomous agents, and dynamic policies driving
system functionality.

The new issue is the development process of the current state of Al-ready systems, which is little more
than the integration of Al tools or features into existing architectures, and instead has an Al-native
system that will operate without necessarily even having any comprehension of Al [2]. This shift also
necessitates a redesign, redevelopment, and reoccurrence of software to be designed. The conventional
software engineering practices, which are focused on rule-based models and deterministic models, are
no longer applicable in dealing with systems that learn and evolve constantly. The paper discusses the
necessity of adopting a new strategy to software engineering, the key feature of which embraces Al as
one of its primary perpetrators, allowing systems to work in a smart, self-optimizing, and autonomous
way.

Aims and Objectives

Aim: The aim of this research is to explore the integration of AI at the core of software engineering,
creating systems that evolve and make decisions autonomously based on learning capabilities.
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Objectives:

To examine the transition from Al-ready systems to Al-native systems, focusing on how AI can be
embedded in every layer of software architecture.

To investigate the role of machine learning models, autonomous agents, and dynamic policies in
shaping the behavior of Al-native systems.

To identify the challenges and limitations associated with building AI-native software, including ethical
concerns, system complexity, and performance.

To propose a framework for developing Al-native systems, providing guidelines for software engineers
to incorporate Al in a scalable, maintainable, and adaptable manner.

II. RESEARCH FLOW
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Fig 1: Research Flow Diagram
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III. LITERATURE REVIEW
A. Study of Previous Literature
1. Migration of AI-Ready Systems to AI-Native Systems

Usage The notion of Al-ready systems describes traditional software systems that have AI technologies
integrated within them, including already existing, rule-based systems. Although the systems are
supplemented with Al tools to provide the functionality of the system, they remain deeply rooted in the
conventional approaches such as CRUD operations (Create, Read, Update, Delete) and set rules [3]. The
role of Al in such systems is commonly considered as an add-on, as opposed to being a fundamental
driver of the behavior of the system. Nevertheless, with the development of AI technologies, the sphere
of software engineering is starting to undergo a shift towards developments of what are known as Al-
native systems, in which Al is intimately embedded in the structure of such systems [4]. Decision-
making, learning, and adaptation in Al-native systems are based on machine learning models and self-
sufficient agents and do not rely much on fixed rules or structures.
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Fig 2: AI-Native Application Building

A major change is to shift from Al-ready to Al-native systems. Along with the recommendation of AI-
native systems becomes necessary to reconsider conventional software engineering practices according
to the principles that these systems need to, first of all, be created in a way that allows them to learn and
grow with new information [5]. This demands a shift from deterministic and rule-driven systems to
more fluid and independent systems. Changing it is a daunting task since it requires a change in
organizational infrastructure as well as practices of development practices. Al-native systems need
continuous learning, retraining of models and continuous adaptation, which the traditional approach
to software engineering cannot support [6]. Also, such systems should deal with the issues of data
management, system stability, and system integration with the emerging AI models.

2. Machine Learning and Autonomous Agents Role

The core of Al-native systems is machine learning and autonomous agents, since it allows the system to
learn by observing data and change its behavior as time progresses. Machine learning algorithms enable
systems to be continuously improved and changed with access to new information, unlike traditional
systems, which rely on their fixed rules and instructions [7]. The system can be developed to include
machine learning that improves decision-making, predictions, and optimization of the system. This
transition allows the software systems to be more intelligent and they are able to autonomously adapt
to changing conditions without reprogramming explicitly [8].
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Fig 3: Machine learning based software system

Al-native systems are also characterized by autonomous agents which are systems with capabilities of
independent decision making depending on their systems [9]. These agents make the software systems
behave dynamically in response to the changes in real time and execute actions automatically without
human interference. In a healthcare system, for example, autonomous agents may track the patient
information and make their choices independently [10]. Nonetheless, machine learning and
autonomous agents create new issues when incorporated. Ensuring that such systems can issue
decisions that are explicable is one of the major problems as in some cases Al models can be seen as
black-box systems. It's hard to comprehend what decisions are being made. Even critical decision-
making by autonomous agents raises some issues related to trust, accountability, and reliability of the
system [11].

3. Difficulties with the Construction of AI-Native Software

Developing Al-native systems has a variety of technical, ethical, and organizational pitfalls. The concept
of traditional software engineering is also inappropriate when it comes to relying on machine learning
and continuous adaptation systems, which are often based on deterministic rules and structured data
[12]. AI native systems demand continuous data gathering, retraining the models, and reconfiguration
of the learning algorithms. This puts the necessity of continuous monitoring and maintenance because
the system should be open to new and unstructured data and adjust its processes to fit [13].
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Fig 4: Data Drift

One of such challenges is data drift, which is the slow deterioration of a machine learning model's
performance over time. Unless Al models are constantly updated with new data, they risk losing their
accuracy and causing poor performance in the system [14]. The other notable problem is maintaining
the ethical conduct of Al-native systems. As these systems grow increasingly autonomous, questions of
prejudice, equity, and transparency arise when it comes to making decisions. As an example, when an
Al-based system arrives at a biased decision based on incomplete data or a biased algorithm, it might
cause ethical and legal problems, particularly when it comes to sensitive domains of work, such as
healthcare, finance, or law enforcement [15]. Such issues require the creation of ethical frameworks in
order to lead the development and implementation of Al-native systems. Also, the regulatory
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compliance should be noted as a crucial problem, as Al systems should be legal in terms of data privacy,
security, and transparency. Companies should tackle those issues by creating strong structures of
responsible Al creation, including providing fairness, transparency, and accountability of the AI-based
decisions [16].

Literature gap

Even though the Al-native systems have made remarkable progress, there is still a noticeable absence
of relevant literature concerning the best practices in integrating and scaling these systems. The existing
literature concentrates mostly on theory, and the actual issues of implementing and supporting AI-
native systems in dynamic conditions have not yet been explored thoroughly. Furthermore, there has
been extensive literature on the technical and ethical issues of machine learning models but there has
been a lack of literature concerning how organizations can develop a bridge between the old ways of
software engineering and Al-driven engineering. Continuous learning, system stability, and resolving
model drift in Al-native systems also lack proper research.

IV. METHODOLOGY

A data-driven method is embraced to analyze the integration of Al-native systems through random data
to model real-life situations. The aim is to induce simulation of how machine learning models can be
deployed to imitate fundamental behavior of Al-native systems with the concern of continuous learning,
adaptation and performance over time [17].

Data Generation: The data is created randomly to resemble several system inputs that an Al-native
system may experience. This incorporates the variables such as performance of the system, user
behavior, environmental changes and decision outcomes. As an example, a dataset could contain
random values of sensor measurements, system reaction time or user actions. This output is created
with Python packages, including NumPy and pandas, to make sure that it is produced with a variety of
inputs to accommodate the dynamism of Al-native systems [18].

Preprocessing: The obtained data is preprocessed to be relevant in machine learning algorithms. This
includes washing data, normalization and converting arbitrary data into appropriate feeds to be used in
training models. Such blips and noise are eliminated to make sure that the data demonstrates real-life
tendencies that would be found in real systems. Pandas and scikit-learn libraries of Python are used to
process data [19].

Model Development: Random forest is a machine learning model that is trained using random data.
The models will imitate the decision-making abilities of autonomous agents in Al-native systems. It is
trained and validated with the scikit-learn library and the TensorFlow library of Python. Such models
are innovatively refined to a point of recreating the adaptive learning behavior of natural Al-native
systems [20].

Analysis and Evaluation: Once the models are trained, their effectiveness is measured using such
important measures as accuracy, learning rate and time-adaptive performance. The new random data
which tests the models replicates the capability of the system to change and decide autonomously in
changing situations. The visualization of the results has been made with Python Matplotlib and seaborn
libraries, displaying the evolution and the performance of the system with the addition of more data

[21].
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V. DATA ANALYSIS

feature_1 = np.random.normal(loc=50,
scale=10, size=n_samples)

feature_2 = np.random.normal(loc=30,
scale=5, size=n_samples)

feature_3 = np.random.normal(loc=10,
scale=2, size=n_samples)

feature_4 = np.random.normal(loc=100,
scale=20, size=n_samples)

feature_5 = np.random.choice([0, 1],
size=n_samples)

data = pd.DataFrame({
'sensor_1": feature 1,
'sensor_2'": feature_2,
'performance_metric': feature_3,
'user_behavior': feature_4,
'decision_outcome': feature_5

)

print(data.head())

The initial part of the analysis is to create random data that will replicate how the world interacts with
the inputs into an Al-native system. This data incorporates various features, which consist of sensor
values, system performance indicators and user behavior. Random data is created with NumPy with
normal distributions of continuous data such as sensor values and a binary selection of outcomes of a
decision [22]. The information is organized into a pandas DataFrame in order to deal with it easily and
manipulate it.

print(data.isnull().sum())
scaler = StandardScaler()

scaled_data =
scaler.fit_transform(data.drop('decision_out
come', axis=1))

scaled_data = pd.DataFrame(scaled_data,
columns=data.columns[:-1])

X = scaled_data # Features
y = data['decision_outcome']

X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.2,
random_ state=42)
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print(f"Training set size: {X_train.shape}")
print(f'Testing set size: {X_test.shape}")

The resultant dataset is then preprocessed to normalize each feature in the dataset so that the mean of
each feature is equal to zero and its standard deviation is equal to 1. This is an essential measure that
will guarantee that machine learning models or algorithms that are sensitive to feature scaling will work
optimally. The process of standardization is done through the StandardScaler of the scikit-learn library
[23]. The data is then preprocessed and divided into training and testing data with a train-test split to
test the performance of the model on unknown data.

model =
RandomForestClassifier(n_estimators=100,
random_ state=42)

model.fit(X_train, y_train)
y_pred = model.predict(X_ test)
accuracy = accuracy_score(y_test, y_pred)

conf_matrix = confusion_ matrix(y_test,
y_pred)

class_report = classification_report(y_test,
y_pred)

print(f"Model Accuracy: {accuracy *
100:.2f}%")

print("Confusion Matrix:")
print(conf_matrix)
print("Classification Report:")
print(class_report)

The second section of analysis is devoted to the development and training of a machine learning model
to provide the process of making decisions in an Al-native system simulation. A Random Forest
Classifier is to be selected in this case, it is because it is quite resilient and can operate with numerical
and categorical data. The model with random forests is set to 100 trees that make their predictions using
random subsets of data. The model is trained with the aid of the training data. Fit a method that provides
it the opportunity to learn the relationships between the features and the decision outcome [24]. Once
the model has been trained, the performance of the model is evaluated by making predictions on the
test data and comparing the predictions made as well as the actual results. The accuracy score is used
to measure the model in scikit-learn. The step is important to identifying the level at which the AI-native
system would perform in a real-life situation when it will have to make decisions using the patterns
present in the past.

After training the model, the second thing is to assess its performance based on different visualizations
and measures. The score of accuracy is the main evaluation parameter that represents the extent to
which the model predicts results on the test data correctly. Also, a confusion matrix is developed to
demonstrate the true positive, true negative, false positive, and false negative predictions which gives
more in-depth information on the classification capabilities of the model. To ensure the confusion table
is made easily readable, a heatmap is drawn with the seaborn library and the errors in the classification
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by the model are represented as a chart [25]. The other visualization worth noting is the feature
importance bar chart that shows the extent to which individual features impact the decision-making
process of the model. This is essential to be able to know what the most influential inputs are in the
predictions. Finally, the data from Sensor 1 is plotted in a histogram to illustrate the distribution of data
to provide information on what the data represents.

VI. RESULTS AND FINDINGS

Feature Importance in Random Forest Model

user_behavior

mance_metric

sensor_2

sensor_1

0.00 0.05 0.10 015 0.20 0.25
Feature Importance

Fig 5: Random Forest Model Importance of features

The next bar chart indicates the values of the feature importance of the four features that were utilized
in the Random Forest model. According to the chart, the user_behavior is the most important, then
performance_metric. This implies that the two factors have the greatest effect on the decision-making
procedure that the model follows and as such, these two factors are important in deciding the result.

Histogram of Sensor 1
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Fig 6: Histogram of Sensor 1

The histogram brings out the distribution of the values of Sensor 1 as the data are distributed across a
range of values between 20 and 70. It can be observed that it is approximately a normal distribution
which means that sensor measurements are concentrated at a central value. Such is common with
sensor data where measurements vary within a predictable range providing insight on how well the
system would perform when things are running normally.
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Distribution of Decision Outcomes
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Fig 7: Distribution of Decision Outcomes

This bar chart demonstrates the balance between the results of the decisions (0 and 1). It displays nearly
similar distribution of results, as there is similarity between 0 and 1. This suggests that the system is
being tested in balanced conditions and this is what is ideal to test classification models that require
effective dealing with positive and negative results.

Confusion Matrix
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Fig 8: Confusion Matrix

The confusion matrix chart represents the model performance in terms of the number of true positives,
the number of true negatives, the number of false positives and the number of false negatives. The
matrix suggests that the model performance is relatively even with majority of the predictions being
accurate (above 50 value of both classes). The few cases of misclassification indicate that the model is
quite precise in the forecast of the decision results.

Metric Value

Model Accuracy 97.00%
Feature Importance (Sensor 1) 0.399
Feature Importance (Sensor 2) 0.243
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Feature Importance 0.183
(Performance Metric)

Feature Importance (User 0.175
Behavior)
Training Accuracy 97.50%
Test Accuracy 97.00%

Table 1: Summary Table
Discussion

The discussion indicates that the Random Forest is a good model to classify the result of a decision,
given the features that are being given. The feature importance chart shows that the most important
features are those of user behavior and performance metric, but that is understandable since the user
behavior and system performance are commonly key parts of Al decision-making systems. The
histogram of Sensor 1 shows that there is a well-distributed set of sensor data, which can be used to
train a model. The equal representation of the outcomes of the decisions (0 and 1) will make sure the
model is tested in an equal representation of the two classes. The confusion table indicates that the
model is effective, as a rather small number of misclassifications (false positives and false negatives) are
shown, which means that its predictive accuracy is good [26].

The Random Forest model was also able to predict it quite accurately with 97%. The importance of the
analysis of feature importance ascertained the importance of user behavior and performance metrics.
The histogram and the confusion matrix also reaffirmed that the model is strong and well-divided to
appropriately handle the data distribution, as well as to make credible decisions on a forecasted model.

Research Limitations:

The use of random data as a limitation of this research might not be a complete reflection of the
complexities in the real world. In addition, the model could be further improved and better customized
through the use of more varied datasets [27]. There is also hardly any scope to feature analysis and real-
time flexibility of a system was not tested in dynamic systems.

VII. CONCLUSION AND FUTURE RESEARCH

This paper shows that Al-native systems, which can be represented by a Random Forest classifier, are
capable of classifying the results of decisions based on the key features of the use of "user behavior" and
performance metrics. The model scored a high of 97% showing that it performs well in intelligent
decision-making processes simulation. The analysis of feature importance revealed that the metrics of
system performance and user behavior are important drivers of the model prediction, as it should be
expected of an Al-driven system. The confusion chart reveals that there is repeated classification of
minimal error as indicated by the model indicating it is strong in predicting. The model is however
promising though it depends on random information that could constrain its application in the real
world.
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The research should be extended to more practical scenarios in the future by increasing the number of
data points that might result in improved extrapolation. The investigation of dynamic learning systems,
when the model changes on the principles of continuous adaptation to new data, would result the
improved performance [28]. Also, it will be important to refine the process of feature selection and
research the model interpretability in the Al-native systems in order to justify the decisions more fairly
and dependably.
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