Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

Federated Event-Driven Architecture: Transforming Financial
Systems Through Decoupled Service Design

Vijay Kishorkumar Jothangiya
Independent Researcher, USA

ARTICLE INFO ABSTRACT

Received: 06 Nov 2025 The challenges are growing as modern financial platforms transform from
single-purpose processing engines to place-based digital chains. This
article discusses that federated event-driven architecture is used to
overcome these issues by enabling the decoupling of services but ensuring
data integrity using standardized event schemas and asynchronous
processing patterns. Based on the experience of Xometry, Wayfair, and
Western Union, the article shows how domain-driven design concepts,
when used to distributed financial systems, provide resilient operational
structures that respond to changes in the volume of transactions and yet
remain regulatory compliant. It explores four fundamental architectural
concepts, namely domain-driven federation, event sourcing that is
replayable, dependable message processing, and schema governance. All
the principles help to solve particular financial processing problems, such
as removing the duplications of payments, to allowing the accurate
reconstruction of the history of the state to be audited. The case studies
recorded show a radical increase in processing efficiency, development
pace, and operational resilience, which presents a roadmap to financial
technology organizations that aim to modernize a monolithic system, as
well as improve the level of compliance and lower operational expenses.

Revised: 05 Dec 2025

Accepted: 16 Dec 2025

Keywords : Event-Driven Architecture, Domain-Driven Design,
Financial Reconciliation, Distributed Systems, Asynchronous Processing

1. Introduction
1.1 The Evolving Financial Ecosystem

Financial systems no longer operate as isolated processing engines but have evolved into real-time
digital supply chains that function across complex service meshes, enabling the continuous processing
of transactions. Event-driven architecture has emerged as the foundation for modern financial
platforms, enabling organizations to build loosely coupled systems that respond to business events in
near real-time, thereby maintaining system resilience. These have become quite critical because
financial transactions related to payment processing, refunds, or journal entries now span multiple
independent services, such as billing platforms, accounting systems, compliance frameworks, and
external payment processors. The nature of event-driven architecture, giving distributed systems the
ability to effectively meet intermittent loads, is capable of building a scalable system capable of
dynamically increasing resources according to their volume, as opposed to operating at a constant
capacity. This approach fundamentally addresses the limitations in traditional synchronous
architectures that create compounding latency issues and cascading failures, affecting downstream
settlement and reporting processes.

Legacy batch-oriented systems, which dominated previous generations of financial technology, are
deficient in several operational aspects that become even more pronounced when deployed within

527
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

modern payment environments. Moreover, these systems struggle with reconciliation when
transaction volumes change, especially during peak processing periods. The nature of financial
operations has evolved toward real-time movement of money and requires systems that have the
ability to maintain transactional integrity across organizational boundaries but provide visibility into
payment statuses immediately [2]. Traditional batch processing approaches are often devoid of
replayability and audit capabilities required in contemporary regulatory environments, making error
recovery cumbersome and thereby introducing errors that delay reconciliation and hamper business
operations. Modern payment operations require systems to track the lifecycle of every transaction
across multiple intermediaries while keeping track of constantly evolving regulatory frameworks that
differ from jurisdiction to jurisdiction.

The financial technology sector has, therefore, witnessed a paradigm shift toward architectural models
emphasizing resiliency, scalability, and auditability through event-driven design patterns. Event-
driven architectures have the ability to implement key capabilities for financial systems, including
event sourcing, wherein the full history of all state changes is kept as an immutable sequence of
events. This leads to a comprehensive audit trail for compliance purposes and also provides powerful
recovery mechanisms via event replay [1]. Payment operations platforms require sophisticated
orchestration capabilities in order to coordinate complex transaction flows across banking partners,
payment processors, and internal accounting systems while maintaining continuous reconciliation
between these entities [2]. In particular, federated event-driven systems have been very valuable in
enterprise-scale applications within supply-chain finance and digital-payment orchestration
frameworks by decentralizing processing responsibility while maintaining consistency through
standardized event schemas and idempotent message handling.

2. Core Architectural Principles
2.1 Domain-Driven Federation

Federated event architecture is built on the principles of domain-driven design of distributed systems,
which form bounded contexts that package particular business capabilities. Under this model/style,
functional domains have complete control over their own internal data models and business logic, but
publish standardized events that characterize state changes in the domain. These events are published
to a shared messaging backbone, typically implemented using Apache Kafka, which serves as the
central nervous system for the entire financial ecosystem. This pattern creates a loosely coupled
system where services can evolve independently while still maintaining essential communication
pathways, fundamentally addressing the challenges of monolithic architectures where changes to one
component can have cascading impacts throughout the system [3]. The domain-driven federation
model promotes organizational alignment by ensuring that service boundaries directly correspond to
business capabilities rather than technology implementation details.

At Xometry, the manufacturing-as-a-service platform implemented this approach within its financial
operations by creating distinct bounded contexts for supplier relationship management and financial
accounting functions. The Partner Payment Service (PPS) emits standardized PaymentInitiated and
PaymentSettled events, which are consumed by both the Accounting Automation Service (AAS) and
Billing Account Service (BAS). This event-based integration enabled Xometry to maintain separate
development cadences for each domain while ensuring that financial transactions maintained proper
reconciliation across systems. By organizing their architecture around business domains and
establishing clear boundaries with well-defined interfaces, Xometry achieved the resilience benefits of
microservices while avoiding the distributed monolith anti-pattern that often emerges when service

528
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

boundaries are poorly defined [3]. The standardized event schema approach creates a shared
understanding across organizational boundaries while preserving the autonomy of each domain team
to evolve their internal implementations.

2.2 Event Sourcing and Replayability

Financial operations require deterministic reconstruction capabilities for both operational resilience
and regulatory compliance, making event sourcing a cornerstone pattern in modern financial
architectures. Event sourcing fundamentally changes the data persistence model by storing the
sequence of state-changing events rather than just the current state, creating an immutable log that
serves as the system's authoritative record. Unlike traditional CRUD operations that overwrite
previous states, event sourcing captures the complete history of all changes, enabling precise temporal
reconstruction of any entity's state at any point in time [4]. This capability is essential for audit
compliance, operational reconciliation, and complex analytics in financial systems. Wayfair's
implementation of event sourcing within its supplier management domain demonstrates how this
pattern enables regulatory compliance while improving operational resilience through the ability to
replay events for recovery scenarios.

In a financial system, the implementation of event sourcing requires careful thought about event
schema design to make sure that events capture enough business context to make sense
independently. The design of the events should reflect a transition in the business facts, as opposed to
changes in data, with the intent for each change to use domain-specific terminology to describe it.
Events have a natural affinity for domain-driven design since events are a direct expression of the
ubiquitous language used within the business domain [4]. Wayfair's events design approach involved
a complete capture of business transactions to the extent that each event had sufficient context to
make them meaningful even when dealt with months or years later during an audit review. The event
sourcing pattern also yields temporal querying benefits, enabling a system to answer complex
historical questions like "what was the state of this account during the reconciliation period?" without
the need for separate reporting databases or a complex data warehousing solution.

2.3 Idempotent Consumers

Distributed financial systems need to ensure absolute transactional integrity in the presence of
network partitions, process failures, and retry scenarios that are inevitable in complex distributed
environments. Idempotent message processing is one important principle to meet this challenge by
ensuring that multiple deliveries of the same event cannot create duplicate effects within consuming
systems. This capability is critical in financial contexts where duplicate processing has material
financial consequences and may result in violation of regulations. The inherently asynchronous nature
of communication in event-driven architectures introduces challenges regarding delivery guarantees
that must be overcome through prudent system design. Most messaging brokers provide at-least-
once-delivery semantics, meaning messages will not get lost but may be delivered more than once
during recovery scenarios [3]. This fact calls for idempotent consumer implementations to avoid
duplicate processing.

Redis-based Bloom filter implementations have served these high-throughput financial systems
effectively, providing probabilistic duplicate detection with minimal memory overhead relative to
traditional approaches that store complete message identifiers. These approaches maintain efficient
duplicate detection across process restarts by persisting filter state periodically to durable storage. The
transactional outbox pattern complements this deduplication by ensuring that database updates and
the publication of messages happen atomically. This prevents either lost updates or duplicate
messages that otherwise might occur in recovery scenarios. Implementation of these patterns creates

529
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

exactly-once processing semantics atop at-least-once delivery guarantees, effectively transforming the
reliability characteristics of the messaging infrastructure without changes in broker technology
beneath it [3]. Avoiding duplicate payment scenarios is one of the most concrete and financially
quantifiable benefits of event-driven financial architectures.

2.4 Schema Governance

As event-driven systems continue to evolve, it will be critical to manage schema for system integrity
across service boundaries while enabling the independent evolution of their respective components.
Financial organizations have specific challenges in this area because of the long-lived nature of
financial transactions and regulatory imperatives for maintaining a constant interpretation of
financial events over their lifetimes. The organizations everyone studied addressed this challenge by
establishing formal schema governance frameworks based on technologies like Apache Avro and
Confluent Schema Registry, which support versioning of event schemas with preservation of backward
compatibility guarantees. Such governance frameworks operate under formal controls that meet SOX
requirements for change management in financial systems.

Effective schema governance has to tackle both technical and organizational aspects: on the technical
side, a Schema Registry stores all the definitions of events in a centralized way; it provides
compatibility checks that prevent the deployment of breaking changes. Compatibility modes are
backward, forward, and full; each has its own evolution strategy depending on the event type. On the
organizational side, governance processes ensure schema changes are reviewed before deployment,
with due attention being paid to semantic integrity across versions of financial events. Along with
event versioning strategies, schema governance allows for the independent evolution of producers and
consumers while maintaining coherence on the system level [4]. All this constitutes the foundation for
continuous delivery practices that otherwise would be really hard to achieve in a distributed
environment where parts evolve at different rates and are maintained by different teams.

. .. Impl i Busi
Architectural Principle Key Benefit mp ementaittlon usIness
Complexity Value
Domain-Driven Federation | Service Autonomy Medium High
Event Sourcing Audit Compliance High Very High
Idempotent Consumers Transac.tlon Medium High
Integrity
Schema Governance System Evolution Medium Medium

Table 1: Core Architectural Principles in Federated Event-Driven Systems [3, 4]

3. Case Studies in Implementation
3.1 Xometry: Automating Supplier Payments

Xometry's implementation of the federated event architecture transformed its supplier payment
processing workflow through the comprehensive modernization of its financial operations platform.
Before switching to event-driven architecture, Xometry's manufacturing marketplace had significant
pain related to payment reconciliation due to the complex nature of its business model, which
connects customers with distributed manufacturing partners across multiple tiers. The previous

530
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

synchronous integration between ordering systems and financial platforms created tremendous
operational inefficiencies, whereby reconciliation teams manually validate pre-payment jobs before
releasing the funds to manufacturing partners. Xometry fundamentally transformed this process into
an automated flow that has continuous reconciliation by publishing event streams for critical financial
state transitions. This architectural approach aligns with established patterns for payment system
modernization, which emphasize decoupling payment initiation from settlement processes via event-
driven choreography [5]. Today, the Partner Payment Service is emitting standardized payment
lifecycle events that are being consumed asynchronously by downstream accounting and compliance
systems, completely eliminating manual reconciliations for standard payment flows. This
architectural shift has unlocked quantifiable business value in reducing the end-to-end payment cycle
from 48 hours down to 6 hours while driving dramatic improvements in supplier satisfaction metrics
and enabling more efficient capital utilization throughout their manufacturing network.

The implementation of idempotent processing patterns within the financial event consumers proved
particularly valuable in the elimination of a whole class of duplicate-payment incidents.
Manufacturing marketplaces are particularly susceptible to this issue, given the high volume of
transactions and complex approval workflows that can create duplicate submission scenarios. One
documented incident, before the implementation of their event-driven architecture, involved a
synchronous payment API failure during a network partition that resulted in duplicate payments
totaling $48,000, necessitating complex manual recovery procedures. This anecdote represents a real-
world scenario from the payment processing challenges outlined by AWS's event-driven payment
system guidance, which identifies idempotency as a critical requirement for financial systems since
multiple processing of the same message may have severe business consequences [5]. The adoption of
Redis-based deduplication combined with business-level idempotency keys completely eliminated
these scenarios, with the system automatically detecting and rejecting duplicate payment attempts
during normal operations and recovery scenarios. More than the direct financial impact, this
improvement significantly reduced operational risk and enhanced the compliance posture by
guaranteeing exactly-once processing semantics for all financial transactions. The Xometry example
serves to illustrate how appropriately implemented event-driven architectures can improve
operational efficiency, financial accuracy, and compliance capabilities in the complex multi-party
payment scenarios typical of digital marketplaces and financial technology platforms.

3.2 Wayfair: Partner Home Ecosystem

Wayfair applied the principles of federated event to the transformation of the supplier integration
platform, which unified several business domains ranging from their Partner Home portal, through
Help Center, to the Supplier Resolution systems into one event bus. This was a significant departure
from their previous architecture, centered on point-to-point REST integrations between these
components, creating tightly coupled interactions impeding independent evolution and scaling. The
new approach used events to clearly define bounded contexts with standardized event interfaces,
allowing each domain team to independently evolve their system while maintaining consistent
integrations across the partner ecosystem. This architectural transformation exemplifies the
fundamental shift from request-driven integration towards event-driven communication patterns: the
systems react to events instead of directly invoking each other via synchronous API calls [6]. Also,
MTTR improved by 40% due to improved observability and the ability to replay event streams during
troubleshooting scenarios. Development velocity metrics also improved significantly; the Pull Request
cycle time improved by a factor of 1.6 as teams could implement and deploy changes independently
without complex coordination of cross-service release processes.

531
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

Most significantly, perhaps, event sourcing the critical supplier data at Wayfair created a full audit
trail of all the partner interactions. This allowed them to reconstruct the historical state, whether it
was for operational recovery or compliance purposes. Events representing changes to suppliers,
modifications of purchase orders, and handling disputes are recorded as immutable streams that
allow for deterministic recreation of the ledger for auditing purposes. This was very important in
difficult-to-handle supplier disputes, where the ability to accurately reconstitute what the state of an
account was at any given time in history helped iron out discrepancies much faster. Event sourcing
also granted the company immense analytical capabilities, enabling retroactive analysis of historical
partner interactions to discern optimization opportunities and predict future support needs by
recognizing patterns. Indeed, this approach aligns with well-documented patterns in event-driven
architecture that stress dual operational and analytics value from the maintenance of comprehensive
event histories [6]. What the Wayfair implementation has demonstrated is precisely how event-driven
architectures can serve to improve system performance but also development velocity, operational
response capability, and business intelligence functions based on creating a comprehensive,
immutable record of all domain events.

3.3 Western Union: Remittance Refactoring

Western Union's migration from legacy SOAP services to a cloud-native event architecture, using AWS
SNS/SQS, represents one of the most instructive case studies regarding the modernization of
established financial platforms while maintaining strict compliance requirements. As a regulated
financial institution operating in more than 200 countries and territories, Western Union possesses
unique challenges in technology modernization, whereby any new system must demonstrate complete
traceability and reconciliation capabilities across diverse regulatory jurisdictions. Their legacy
architecture relied on synchronous SOAP services, which were deployed in traditional data centers
and thus resulted in significant scaling limitations during peak transaction periods, particularly
around holidays and major remittance events. The migration to an event-driven architecture,
deployed on AWS infrastructure, brought substantial performance improvements whereby system
throughput increased by 38% while simultaneously reducing the failed message rate by 90%. This
transformation follows documented patterns for payment system modernization that stress the use of
managed messaging services like SNS/SQS to improve resiliency with reduced operational overhead
in financial transaction processing [5]. Elastic scaling capabilities were implemented, significantly
optimizing infrastructure costs by automatically adjusting capacity to actual transaction volumes
instead of provisioning for peak capacity at all times.

Beyond the technical performance improvements, Western Union's implementation demonstrates
how event-driven architectures can enhance compliance capabilities in heavily regulated financial
contexts. The immutable nature of the event streams provided comprehensive audit trails for all
money movement transactions, simplifying regulatory reporting and reducing the time required to
respond to compliance inquiries. The asynchronous processing model also improved system resilience
during third-party outages, with the message queuing infrastructure automatically buffering
transactions when downstream payment processors or banking partners experienced availability
issues. This design pattern directly addresses one of the core challenges in payment systems:
maintaining transaction integrity across distributed processing environments with varying availability
characteristics [5]. Transaction replay capabilities enabled operational teams to recover from these
scenarios without manual intervention, significantly reducing the operational burden associated with
integration incidents. This case study highlights how traditional financial services organizations can
successfully transition from legacy synchronous architectures to modern event-driven models while
improving reliability, performance, and compliance capabilities—demonstrating that event-driven

532
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

approaches are suitable not only for digital-native organizations but also for established financial
institutions with complex regulatory requirements.

Organization Key Metric Improvement
Xometry Payment Cycle Time (hours) 87.50%
Incident MTTR Reduction 40%
Wayfair
PR Cycle Time Factor 1.6x
System Throughput 38%
Western Union
Failed Message Rate 90% reduction

Table 2: Performance Improvements from Event-Driven Architecture in Financial Systems [5, 6]

4. Operational Automation

Comprehensive observability and strong automation frameworks are key enablers for managing
complex distributed systems in federated event architectures. The case studies have shown that
architectural advances have to be complemented by operational practices to fulfill their promise of
effectiveness. As a critical prerequisite to this operational evolution, this means having sophisticated
observability pipelines that can collect, process, and route telemetry data with high volume and
velocity specific pain point in event-driven architectures due to the distribution of transactional flows
across services [7]. The adoption of distributed tracing becomes fundamental in these contexts,
enabling operators to trace the propagation of events across service boundaries and pinpoint
performance bottlenecks or points of failure.

Addressing these challenges, the studied organizations implemented a number of innovative
approaches, starting with sophisticated integration between alerting platforms and team
communication tools. PagerDuty-Slack integrations automatically analyzed event payloads and
routing metadata in order to tag and direct alerts to appropriate responders based on both service
ownership and event characteristics. These integrations took advantage of advanced observability
pipeline features such as data aggregation, sampling, and intelligent routing that prevented alert
storms during cascading failure scenarios [7]. This context-aware approach significantly reduced alert
fatigue by ensuring notifications reached only relevant personnel with sufficient contextual
information to begin troubleshooting immediately.

Observability implementations evolved beyond simple metric dashboards to track complete business
processes across service boundaries. Coralogix dashboard implementations monitored entire business
processes such as Payment—Invoice—Revenue Recognition pipelines, correlating events across
multiple systems to provide visibility into end-to-end transaction flows. This approach aligns with
established practices for production-ready microservices that emphasize the importance of cross-
service observability with standardized metrics, logs, and trace formats [8]. Organizations that
standardized on consistent monitoring taxonomies across services achieved significantly faster
incident resolution times compared to those with fragmented observability implementations.

Most notably, the organizations developed their on-call operations to conform to their distributed

architectures. Better on-call rotation systems had structured escalation policies and standardized
533

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

incident response procedures, which resulted in a 12-minute to only 3 3-minute to mean
acknowledgment times. These systems incorporated template-driven runbooks that guided
responders through complex troubleshooting scenarios involving multiple services. Leading
organizations established designated site reliability engineering teams with specialized expertise in
distributed systems observability and implemented comprehensive service-level objectives aligned
with business metrics [8]. These operational improvements demonstrate that the full potential of
federated event architectures can only be realized when technology transformations are accompanied
by corresponding evolutions in team structure, processes, and tooling.

Automation Component Primary Benefit Resl;;?;:c'fime Cm;‘l:‘l]z(ity
PagerDuty-Slack Integration | Targeted Alerts High Medium
Distributed Tracing Cross-Service Visibility Medium High
Coralogix Dashboards End-to-End Monitoring Medium Medium
Template-Driven Runbooks Structured Response Medium Low
Improved On-Call Rotation ﬁ;r:} Acknowledgment Very High Low

Table 3: Operational Improvements Through Automation in Event-Driven Systems [7, 8]

5. Quantitative Impact

The implementation of Federated Event Architectures yielded significant improvements in many key
performance indicators within the organizations studied. System latency, one of the important metrics
in financial processing environments, has drastically reduced from over 2 hours to less than 10
minutes, which translates to an 88% improvement in end-to-end processing speed. This decrease in
latency matches McKinsey's research into IT architecture modernization, indicating that those using
event-driven patterns will realize 3 to 5 times performance improvements while simultaneously
reducing infrastructure costs by improving resource utilization [9]. This drastic reduction in the
latency associated with processing directly correlates with customer satisfaction and allows for near-
real-time operations of financial transactions, impossible under traditional synchronous processing
models.

Operational resilience significantly improved, as measured by Mean Time To Resolution for incidents,
from 7.2 hours to 3.9 hours reduction of 46% which substantially improved system availability. Such
improvement in the effectiveness of incident response can be attributed to a number of architectural
characteristics of event-driven systems, including improved component isolation, fault containment,
and the ability to replay event streams during recovery scenarios. According to McKinsey's analysis on
IT architecture transformations, properly implemented decoupling between services typically reduces
cross-system dependencies by 60-70%, leading to faster incident isolation with more targeted
remediation approaches. In fact, organizations that adopted comprehensive frameworks for
observability demonstrated the greatest level of improvements in MTTR, thereby demonstrating the
synergistic relationship between architectural patterns and operational practices.
From a business operations perspective, perhaps the most significant improvement was the reduction
in reconciliation effort, which decreased from 12 full-time equivalent hours to just 3.5 hours—a 71%

534
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

efficiency gain that directly reduced operational costs while improving accuracy. Boston Consulting
Group's research on payment transformations indicates that financial institutions implementing
event-driven architectures with continuous reconciliation capabilities typically achieve 65-75%
reductions in manual exception handling while substantially improving straight-through processing
rates [10]. The economic benefit is not only the saved labor time but also the lessening of the
operational risk, the better usage of the capital, and the ability to improve compliance. All these
metrics indicate that migrating to event-driven architectures in financial operations is highly
beneficial in terms of operation, especially in those spheres where time-to-settlement and error-fixing
directly affect the business operations.

Performance Metric Impact Level Iilngrl:ln;i:;?:;o Bl‘llsailr:l eess ;l?;lr?liltglt
System Latency Very High Medium Critical Strong
Incident Resolution Time High High Significant Moderate
Reconciliation Effort Very High Medium Substantial Strong
Infrastructure Cost Medium Low Moderate Strong
Process Automation High Medium High Strong

Table 4: Comparative Business Impact Categories in Federated Systems [9, 10]

Conclusion

Federated event architecture is an innovative model of financial technology systems that needs to
endure the twin demands of blistering innovation and the strictness of governance. By implementing
domain-driven bounded contexts connected through standardized event schemas, organizations
achieve the seemingly contradictory goals of high service autonomy and system-wide coherence. The
case studies presented demonstrate that properly implemented event-driven architectures deliver
substantial benefits across multiple dimensions, including processing efficiency, operational
resilience, development agility, and compliance capabilities. The trends that have been recorded in
this study, such as domain federation, event sourcing, idempotent processing, and schema
governance, have developed into a multifaceted framework that can be applied in different financial
settings of manufacturing marketplaces to international remittance networks. With financial
ecosystems ever evolving to real-time processing and stricter regulatory oversight, these structural
designs are likely to form the core design elements of an enterprise technological plan, as
organizations will be able to preserve competitive nimbleness whilst guaranteeing the integrity and
auditability needed by the financial procedure.

References

[1] AWS, "Event-Driven Architecture,”. [Online]. Available: https://aws.amazon.com/event-driven-
architecture/

[2] Modern Treasury, "Move Money, Instantly,". [Online]. Available:
https://www.moderntreasury.com/

535
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

https://aws.amazon.com/event-driven-architecture/
https://aws.amazon.com/event-driven-architecture/
https://www.moderntreasury.com/

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

[3] Bahadir Tasdemir, "Event Driven Microservice Architecture," Medium, 2019. [Online]. Available:
https://medium.com/trendyol-tech/event-driven-microservice-architecture-91f8oceaa21e

[4] Martin Fowler, "Event Sourcing," 2005. [Online]. Available:
https://martinfowler.com/eaaDev/EventSourcing.html

[5] AWS, "Guidance for Building Payment Systems Using Event-Driven Architecture on AWS,".
[Online]. Available: https://aws.amazon.com/solutions/guidance/building-payment-systems-using-
event-driven-architecture-on-aws/

[6] Confluent, "Event-Driven Architecture,". [Online]. Available:
https://www.confluent.io/learn/event-driven-architecture/

[7]1 Datadog, "Best Practices for Scaling Observability Pipelines,". [Online]. Available:
https://docs.datadoghq.com/observability_pipelines/scaling_and_ performance/best_practices_for_
scaling_ observability_pipelines/

[8] Susan J. Fowler, "Production-Ready Microservices," O'Reilly Media, 2016. [Online]. Available:
https://www.oreilly.com/library/view/production-ready-microservices/ 9781491965962/

[9] Janaki Akella, Helge Buckow, and Stéphane Rey, "IT architecture: Cutting costs and complexity,"
McKinsey Technology, 2009. [Online]. Available: https://www.mckinsey.com/capabilities/tech-and-
ai/our-insights/it-architecture-cutting-costs-and-complexity

[10] Markus Ampenberger et al., "The Future Is (Anything but) Stable,” BCG Financial Institutions,
2025. [Online]. Available: https://www.bcg.com/publications/2025/global-payments-
transformation-amid-instability

536
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

https://medium.com/trendyol-tech/event-driven-microservice-architecture-91f80ceaa21e
https://martinfowler.com/eaaDev/EventSourcing.html
https://aws.amazon.com/solutions/guidance/building-payment-systems-using-event-driven-architecture-on-aws/
https://aws.amazon.com/solutions/guidance/building-payment-systems-using-event-driven-architecture-on-aws/
https://aws.amazon.com/solutions/guidance/building-payment-systems-using-event-driven-architecture-on-aws/
https://www.confluent.io/learn/event-driven-architecture/
https://www.confluent.io/learn/event-driven-architecture/
https://www.confluent.io/learn/event-driven-architecture
https://docs.datadoghq.com/observability_pipelines/scaling_and_performance/best_practices_for_scaling_observability_pipelines/
https://docs.datadoghq.com/observability_pipelines/scaling_and_performance/best_practices_for_scaling_observability_pipelines/
https://docs.datadoghq.com/observability_pipelines/scaling_and_performance/best_practices_for_scaling_observability_pipelines/
https://docs.datadoghq.com/observability_pipelines/scaling_and_performance/best_practices_for_scaling_observability_pipelines/
https://www.oreilly.com/library/view/production-ready-microservices/9781491965962/
https://www.oreilly.com/library/view/production-ready-microservices/9781491965962/
https://www.oreilly.com/library/view/production-ready-microservices/9781491965962/
https://www.mckinsey.com/capabilities/tech-and-ai/our-insights/it-architecture-cutting-costs-and-complexity
https://www.mckinsey.com/capabilities/tech-and-ai/our-insights/it-architecture-cutting-costs-and-complexity
https://www.mckinsey.com/capabilities/tech-and-ai/our-insights/it-architecture-cutting-costs-and-complexity
https://www.bcg.com/publications/2025/global-payments-transformation-amid-instability
https://www.bcg.com/publications/2025/global-payments-transformation-amid-instability
https://www.bcg.com/publications/2025/global-payments-transformation-amid-instability

