
Journal of Information Systems Engineering and Management

2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

544
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

Automation Frameworks for Regulated Biomedical

Infrastructures

Prudhvi Raju Mudunuri

Independent Researcher, USA

ARTICLE INFO ABSTRACT

Received: 03 Nov 2025

Revised: 06 Dec 2025

Accepted: 18 Dec 2025

Modern biomedical informatics requires secure computing infrastructures
that balance regulatory compliance with operational efficiency. However,
automation frameworks addressing regulatory constraints remain
underdeveloped in healthcare computing domains. Regulatory mandates
traditionally impede DevOps adoption within federally regulated
institutions, where manual deployment processes consume excessive
operational capacity while introducing configuration inconsistencies. This
research presents a novel compliance-aware automation framework that
integrates security validation, policy enforcement, and audit trail
generation directly into deployment workflows. The framework employs
modular pipeline architecture enabling independent component evolution
while maintaining system coherence. Infrastructure-as-Code principles
codify specifications in version-controlled templates supporting
automated policy validation. Declarative configurations eliminate drift
through continuous reconciliation comparing actual states against
approved specifications. Automated security scanning occurs at multiple
pipeline stages including static code analysis, container image validation,
and configuration verification. Policy-as-code frameworks transform
organizational policies into machine-readable specifications enabling
programmatic compliance verification. The originality of this work lies in
treating compliance as an architectural enabler rather than an external
constraint, fundamentally transforming how regulated biomedical
computing infrastructures achieve modernization without compromising
auditability or data protection requirements essential for regulated
domains.

Keywords: Biomedical Informatics, Infrastructure Automation,
Regulatory Compliance, Policy-As-Code, Hybrid Cloud Orchestration,
Configuration Management

I. Introduction

Medical research institutions must adhere to strict regulations regarding personal health record

privacy and ethical approval documentation for clinical trial data. These compliance requirements

create substantial friction in adopting modern DevOps practices. Traditional manual deployment

processes in regulated environments create operational bottlenecks while substantially increasing

human error probability. The agility necessary for contemporary research computing becomes

severely limited under these constraints.

Healthcare institutions face operational inefficiencies related to fragmented data solutions and ad-hoc

system integration. Business intelligence tools have demonstrated potential for streamlining

administrative workflows and reducing redundant processes. However, implementation challenges

persist within regulated biomedical computing environments [1]. Data silos across departmental

boundaries prevent comprehensive visibility into infrastructure operations. Manual reconciliation

processes consume substantial staff time without proportional value addition. The absence of

automated data integration mechanisms forces organizations to maintain duplicate documentation

Journal of Information Systems Engineering and Management

2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

545
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

systems. Compliance officers must cross-reference multiple data sources to verify deployment

configurations against regulatory requirements.

Regulatory compliance in automated infrastructure environments presents unique challenges.

Biomedical informatics platforms require rigorous audit trails. Access controls require continuous

enforcement across heterogeneous systems. System configurations need validation against security

baselines at regular intervals. Reproducibility across deployment cycles demands precise

documentation of environmental states. Conventional automation tools, designed for commercial

software delivery, often lack compliance awareness necessary for regulated domains. These tools

prioritize deployment velocity over auditability, creating gaps in change tracking mechanisms and

inconsistent policy enforcement across deployment pipelines.

Multi-jurisdictional regulatory frameworks compound these difficulties significantly. Research

organizations operating across geographic boundaries face varying compliance mandates. Data

sovereignty requirements restrict information transfer between jurisdictions. Policy-driven

governance models have emerged as essential frameworks for managing regulatory complexity [2].

These models codify jurisdiction-specific requirements into executable policy specifications.

Automated policy engines evaluate proposed infrastructure changes against regulatory constraints

before deployment authorization. This governance approach transforms abstract compliance

requirements into concrete technical controls that enforcement mechanisms can interpret

programmatically.

Research organizations face additional complexities from hybrid biomedical computing

infrastructures. On-premise data centers house sensitive patient information that regulatory

restrictions prevent from migrating to public cloud platforms. Cloud environments offer dynamic

scalability facilitating computationally intensive genomics analysis. Training machine learning models

requires substantial compute resources that on-premise infrastructure cannot provide at scale.

Maintaining consistent security postures across these diverse environments through manual methods

has become increasingly infeasible. Configuration drift between environments introduces subtle

inconsistencies that compromise research reproducibility.

The regulatory landscape governing biomedical informatics continues evolving. Compliance

frameworks mandate increasingly sophisticated technical controls. Documentation requirements

expand continuously. Organizations must demonstrate that relevant security controls are properly

defined and performing effectively throughout system lifecycles. Continuous compliance validation

requires automated tools to detect configuration drift. Policy violations require near real-time

identification. Unauthorized modifications must trigger immediate remediation workflows.

Traditional periodic audit approaches satisfy minimum regulatory requirements but fail to provide the

continuous assurance necessary for modern threat landscapes.

This research addresses the gap between regulatory requirements and modern automation capabilities

by presenting a novel compliance-aware automation framework specifically architected for biomedical

research environments. The framework's originality lies in integrating security validation directly into

deployment workflows, enabling policy enforcement to occur automatically at multiple pipeline

stages, and generating audit trails as an inherent byproduct of normal operations rather than

requiring separate documentation efforts. This approach represents a fundamental paradigm shift,

enabling organizations to achieve both operational efficiency and regulatory compliance

simultaneously—a capability that existing automation frameworks fail to provide.

2. Modular Pipeline Architecture

2.1 Component-Based Design

The automation framework employs modular design where independent functional entities provide

specialized capabilities within the deployment lifecycle. Each module encapsulates specific

Journal of Information Systems Engineering and Management

2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

546
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

responsibilities: source code compilation occurs in dedicated build modules, container image

construction happens in isolated imaging components, security vulnerability scanning operates

through specialized analysis modules, configuration validation executes within dedicated verification

units, and environment-specific deployment modules handle infrastructure provisioning.

Contemporary distributed systems increasingly support microservice architectures for scalability and

maintainability. Design patterns emerging from microservices implementations demonstrate

advantages in managing complex application lifecycles [3]. Service decomposition enables

organizations to partition monolithic deployment pipelines into independent functional units. Each

service maintains autonomous operation while contributing to collective system functionality. This

architectural approach supports independent scaling of resource-intensive components without

affecting lightweight services.

Communication between microservices requires careful interface design. Application Programming

Interfaces define interaction contracts between services. Message queuing systems facilitate

asynchronous communication patterns. Service discovery mechanisms enable dynamic component

location within distributed environments. The modular approach reduces coupling between system

components [3]. Changes to individual services propagate minimally to dependent components,

enabling development teams to work independently on separate modules without constant

coordination overhead.

The separation of concerns enables independent evolution of framework components while

maintaining overall system coherence. Module developers can refactor internal logic without affecting

dependent components. New modules integrate seamlessly when conforming to established interface

contracts. Legacy modules remain functional while newer implementations undergo testing. This

architectural approach supports gradual modernization rather than requiring wholesale system

replacement.

Pipeline modules communicate through standardized interfaces that define input requirements and

output artifacts. Each interface specification documents expected data formats. Schema definitions

ensure type safety across module boundaries. Version compatibility requirements prevent inadvertent

breaking changes. This standardization facilitates module substitution when improved

implementations become available. Alternative scanning engines can replace existing security

modules without modifying upstream or downstream components.

The novel contribution of this abstraction layer lies in enabling regulatory compliance checks to be

injected at appropriate stages without disrupting core deployment logic. Compliance modules insert

naturally into pipeline workflows. Audit trail generation occurs transparently to application

deployment processes. Policy evaluation happens automatically at designated checkpoints. This

injection mechanism transforms compliance from an external verification activity into an intrinsic

pipeline characteristic—a fundamental innovation that distinguishes this framework from

conventional automation tools.

2.2 Orchestration Layer

A central orchestration engine coordinates module execution and manages dependencies between

pipeline stages. Sequential operations proceed only after prerequisite completion. Parallel execution

occurs when dependencies permit concurrent processing. The orchestration logic sequences

operations according to predefined workflow definitions. Workflow specifications declare module

execution order while conditional branches accommodate environment-specific variations.

Hybrid cloud environments present unique orchestration challenges requiring workload coordination

between on-premise infrastructure and multiple cloud providers. Policy-as-code frameworks have

emerged as effective mechanisms for managing compliance requirements programmatically [4].

Regulatory policies transform into executable code specifications. Automated enforcement

mechanisms evaluate infrastructure configurations against policy definitions, eliminating manual

compliance verification processes that introduce delays and inconsistencies.

Journal of Information Systems Engineering and Management

2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

547
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

Hybrid architectures require unified orchestration strategies that abstract provider-specific

implementation details. Compliance policies apply consistently regardless of underlying infrastructure

substrate. Security controls enforce uniformly across diverse environments [4]. The orchestration

layer ingests high-level policy definitions and translates them into provider-specific enforcement

actions. Cloud-native security namespaces enforce network isolation policies in public cloud

environments, while firewall rules achieve equivalent isolation in on-premise data centers.

The orchestration layer implements conditional logic that adapts pipeline behavior based on

deployment context. Development environment deployments may bypass certain security scans to

accelerate iteration cycles, while production deployments enforce comprehensive validation

requirements. Security posture requirements influence validation intensity. The orchestration engine

interprets deployment metadata to determine appropriate workflow paths. This flexible approach

enables the framework to support diverse deployment scenarios while ensuring uniform policy

enforcement independent of operational contexts.

Pipeline

Component
Functional Responsibilities and Orchestration Features

Build

Modules

Execute source code compilation in dedicated isolated units. Maintain clearly

defined boundaries with external interfaces exposing necessary functionality.

Enable independent development cycles without coordinating changes across

entire framework.

Container

Imaging

Components

Construct container images through specialized modules operating

independently. Facilitate module substitution when improved implementations

become available. Support gradual modernization rather than wholesale system

replacement requirements.

Security

Analysis

Modules

Perform vulnerability scanning through dedicated analysis units. Insert

compliance checks at appropriate pipeline stages without disrupting core

deployment logic. Generate audit trails transparently to application deployment

processes.

Configuration

Verification

Units

Validate configurations through dedicated verification components.

Communicate through standardized interfaces defining input requirements and

output artifacts. Facilitate comprehensive validation at multiple abstraction

levels localizing defects to specific components.

Infrastructure

Provisioning

Modules

Deploy environment-specific infrastructure through specialized deployment

modules. Enable parallel execution when dependencies permit concurrent

processing. Implement conditional logic adapting pipeline behavior based on

deployment context and security posture requirements.

Central

Orchestration

Engine

Coordinate module execution managing dependencies between pipeline stages.

Sequence operations according to predefined workflow definitions with

conditional branches accommodating environment-specific variations. Apply

jurisdiction-specific policies automatically based on deployment classification

metadata ensuring consistent policy interpretation.

Table 1. Modular Pipeline Architecture Components and Orchestration Characteristics [3, 4].

3. Infrastructure-as-Code Implementation

3.1 Declarative Configuration Management

The framework employs Infrastructure-as-Code principles to encode infrastructure definitions in

version-controlled configuration files. These templates define compute resources explicitly. Network

Journal of Information Systems Engineering and Management

2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

548
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

topologies receive precise documentation. Storage configurations appear as structured specifications.

Security group policies exist as machine-readable declarations. Standardized syntax ensures

consistency across organizational infrastructure definitions.

Infrastructure-as-Code represents a fundamental shift in infrastructure management practices.

Traditional approaches relied on manual configuration steps executed through graphical interfaces or

command-line operations. The declarative configuration management approach transforms

infrastructure into software artifacts subject to version control and automated testing [5].

Configuration specifications exist as text files stored in repositories. Change tracking occurs through

standard version control mechanisms. Historical infrastructure states remain accessible through

repository history.

Declarative specifications provide several advantages in regulated environments. Version control

systems maintain complete audit trails of infrastructure modifications. Each change receives

documentation through commit messages. Reviewers can examine proposed modifications before

deployment authorization. The peer review process identifies configuration errors before production

impact. Automated validation tools scan templates for policy violations during continuous integration

workflows [5]. Security baseline requirements receive automated verification. Compliance checks

occur programmatically rather than through manual inspection.

Configuration drift represents a significant challenge in manually managed infrastructures. Manual

changes applied directly to production systems bypass formal change control processes.

Undocumented modifications accumulate gradually. System configurations diverge from approved

specifications. The framework eliminates drift through continuous reconciliation processes—a novel

capability that distinguishes this approach from traditional automation tools. Automated agents

periodically compare actual infrastructure state against declared specifications. Discrepancies trigger

alerts and remediation workflows.

The framework periodically compares actual infrastructure state against declared specifications.

Reconciliation intervals range from minutes to hours depending on environmental criticality.

Detection mechanisms identify unauthorized modifications quickly. Automated remediation restores

configurations to approved states. This drift detection mechanism ensures deployed environments

remain compliant with approved configurations throughout their operational lifecycle.

3.2 Parameterization and Reusability

Template parameterization enables organizations to develop infrastructure patterns once and

implement them across multiple contexts. Development, staging, and production environments share

similar architectural foundations. Environmental variations appear as parameter specifications rather

than separate templates. This approach reduces template proliferation significantly while decreasing

maintenance burden when single templates serve multiple purposes.

Knowledge management frameworks emphasize the importance of capturing organizational expertise

in reusable artifacts. Infrastructure templates serve as repositories of institutional knowledge

regarding deployment best practices [6]. Senior engineers encode architectural decisions into

template structures. Junior staff benefit from embedded expertise when utilizing established

templates. Knowledge transfer occurs implicitly through template reuse rather than requiring explicit

training interventions.

Common architectural patterns for database clusters receive standardized template representations.

High-availability configurations appear as predefined patterns. Replication topologies emerge from

template selections. Backup scheduling integrates into template parameters. Application server

templates incorporate load balancing configurations. Auto-scaling policies apply consistently across

similar workloads. Network security zone templates implement standardized isolation controls.

Knowledge-intensive processes benefit substantially from systematic knowledge management

approaches. Template libraries transform tacit infrastructure knowledge into explicit, reusable

artifacts [6]. Organizational best practices propagate automatically through template adoption.

Journal of Information Systems Engineering and Management

2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

549
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

Configuration standards enforce through template design rather than policy documentation. The

systematic approach to knowledge capture ensures consistency across deployment activities.

Parameters control environment-specific values across template instantiations. Instance sizing adapts

through parameter specification. Network addressing schemes vary through parameterization.

Encryption key references point to appropriate key management systems. Backup retention policies

adjust based on data criticality classifications. This abstraction reduces configuration complexity while

promoting standardization across organizational infrastructure.

IaC Feature

Category
Implementation Characteristics and Benefits

Declarative

Template

Specifications

Codify infrastructure specifications in version-controlled templates defining

compute resources, network topologies, storage configurations, and security

policies. Create auditable records through version control history enabling

compliance officers to trace infrastructure state to specific commits.

Automated Policy

Validation

Execute static analysis tools scanning infrastructure templates for policy

violations before deployment authorization. Verify encryption configurations,

access control policies, and network isolation through automated baseline

checks integrated into continuous integration pipelines.

Configuration

Drift Detection

Compare actual infrastructure state against declared specifications at regular

intervals through reconciliation agents. Trigger automated alerts for

discrepancies with critical deviations initiating immediate remediation

workflows ensuring environments remain compliant throughout operational

lifecycle.

Template

Parameterization

Define infrastructure patterns once with instantiation across multiple

environments through environment-specific variable substitution. Eliminate

copy-paste template proliferation reducing maintenance burden while

environmental differences appear as parameter variations.

Reusable Pattern

Libraries

Capture organizational best practices in executable form through database

cluster templates, application server configurations, and network security

zone definitions. Transform tacit infrastructure knowledge into explicit

reusable artifacts propagating standards automatically through template

adoption.

Multi-

Environment

Abstraction

Shield engineers from provider-specific implementation details through high-

level parameter interactions. Adapt instance sizing to workload requirements,

network addressing schemes, encryption key references, and backup retention

policies through parameterized specifications enabling reproducible

deployment.

Table 2. Infrastructure-as-Code Implementation Features and Template Management [5, 6].

4. Compliance Integration Mechanisms

4.1 Automated Security Validation

The framework integrates automated security scanning at multiple pipeline stages. Static code

analysis identifies potential vulnerabilities in application source code before deployment. Container

image scanning verifies base images and installed packages against databases of known

vulnerabilities. Infrastructure configuration analysis ensures that deployed resources comply with

security baseline requirements. Encryption settings receive automated verification. Access control

policies undergo programmatic validation. Network isolation configurations face continuous

assessment.

Journal of Information Systems Engineering and Management

2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

550
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

Continuous integration and continuous deployment pipelines present unique security challenges

distinct from traditional deployment methods. Automated pipeline stages execute without human

supervision. Security vulnerabilities may propagate rapidly through automated deployment chains.

The absence of human checkpoints increases risk exposure [7]. Security controls must integrate

directly into pipeline workflows rather than operating as separate verification layers. Scanning tools

analyze code commits immediately upon repository submission. Vulnerability detection occurs before

code merges into main branches.

Container security presents particular challenges in automated deployment environments. Base

images frequently contain outdated packages with known vulnerabilities. Application dependencies

introduce additional security risks. Image scanning tools compare installed packages against

vulnerability databases maintained by security organizations [7]. Scan results categorize

vulnerabilities by severity classification. Critical vulnerabilities halt image promotion to production

registries. This automated validation prevents vulnerable containers from reaching production

environments.

Security scan results are captured in structured formats that support automated decision-making.

Pipeline logic interprets scan outputs systematically. Deployments exceeding acceptable risk

thresholds face automatic blocking. Low-severity findings may proceed with documented exceptions.

This automated risk assessment accelerates deployment cycles while maintaining security rigor.

Security teams focus attention on high-risk findings rather than routine baseline verifications.

4.2 Policy Enforcement Framework

Organizational policies governing infrastructure deployment are codified in machine-readable policy

specifications. The policy engine evaluates proposed infrastructure changes against these

specifications. Compliance verification occurs programmatically. Technical standards receive

automated enforcement. Regulatory requirements transform into executable policy rules.

Multi-cloud environments compound policy enforcement complexity. Different cloud providers

implement security controls through distinct mechanisms. Organizational policies must apply

consistently regardless of underlying infrastructure provider [8]. Policy-as-code frameworks abstract

provider-specific implementation details. High-level policy declarations translate automatically into

provider-appropriate enforcement actions. Network isolation policies become security groups in

certain cloud environments and firewall rules in others.

Infrastructure-as-Code templates undergo policy validation before deployment authorization. Policy

engines parse template specifications and evaluate resource configurations against organizational

standards. Encryption requirements apply to storage resources automatically. Access control policies

verify that administrative privileges follow least-privilege principles [8]. Network configurations

undergo validation to ensure proper segmentation between security zones. This policy-as-code

approach embeds security controls directly into infrastructure definitions rather than implementing

restrictions after deployment.

The novel contribution of multi-stage policy enforcement throughout the deployment lifecycle

distinguishes this framework from existing approaches. Pre-deployment validation prevents non-

compliant configurations from entering production environments. Post-deployment validation

verifies successful policy application. Continuous monitoring detects policy drift in operational

systems. Manual modifications occasionally bypass formal change control processes. Monitoring

systems compare actual infrastructure state against policy specifications continuously. Drift detection

triggers remediation workflows when deviations are identified.

Journal of Information Systems Engineering and Management

2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

551
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

Compliance

Mechanism
Security Validation and Policy Enforcement Approach

Static Code

Analysis

Identify potential vulnerabilities in application source code before deployment

through automated scanning tools analyzing code commits immediately upon

repository submission preventing vulnerable code from merging into main

branches.

Container Image

Scanning

Validate base images and installed packages against vulnerability databases

maintained by security organizations. Compare installed packages categorizing

vulnerabilities by severity classification with critical vulnerabilities halting image

promotion to production registries.

Infrastructure

Configuration

Analysis

Ensure deployed resources comply with security baseline requirements through

automated verification of encryption settings, access control policies, and

network isolation configurations with scan results captured in structured formats

supporting automated decision-making.

Automated Risk

Assessment

Interpret scan outputs systematically with pipeline logic blocking deployments

exceeding acceptable risk thresholds while permitting low-severity findings to

proceed with documented exceptions accelerating deployment cycles without

compromising security posture.

Policy-as-Code

Specifications

Codify organizational policies governing infrastructure deployment in machine-

readable specifications enabling programmatic compliance verification.

Translate high-level policy declarations automatically into provider-appropriate

enforcement actions ensuring consistent application regardless of underlying

infrastructure provider.

Multi-Lifecycle

Policy

Enforcement

Execute pre-deployment validation preventing non-compliant configurations

from entering production environments. Verify successful policy application

through post-deployment validation with continuous monitoring detecting policy

drift triggering remediation workflows when deviations identified.

Table 3. Compliance Integration and Policy Enforcement Mechanisms [7, 8].

5. Hybrid Environment Support

5.1 Multi-Environment Orchestration

Biomedical research organizations commonly employ hybrid architectures combining on-premise

data centers with cloud service providers. The framework accommodates this heterogeneity through

environment-agnostic orchestration logic and provider-specific adaptation layers. Core workflow

definitions remain independent of underlying infrastructure providers. Adapter modules translate

generic operations into provider-specific API calls.

Multi-cloud resource orchestration has emerged as a critical competency for organizations seeking to

optimize workload distribution while avoiding vendor lock-in. Cloud orchestration frameworks

manage resource provisioning, scaling, and lifecycle operations across heterogeneous cloud platforms

[9]. Different cloud providers expose distinct APIs for resource management. Service models vary

substantially between providers. Orchestration layers abstract these differences through unified

interfaces that present consistent operational models to users.

The challenge intensifies when orchestrating resources across public clouds and private infrastructure

simultaneously. Hybrid deployments require orchestration systems capable of coordinating across

organizational boundaries. Authentication mechanisms differ between internal and external systems.

Network connectivity patterns vary based on deployment location [9]. Orchestration frameworks must

handle these variations transparently while presenting unified management interfaces.

Journal of Information Systems Engineering and Management

2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

552
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

This abstraction enables organizations to maintain consistent deployment processes across diverse

infrastructure substrates. Researchers can provision computational resources without requiring

detailed knowledge of underlying infrastructure differences. The framework handles authentication

mechanisms appropriate to each environment. Resource provisioning requests transform into

provider-specific API calls transparently. Configuration management adapts to environmental

capabilities automatically.

5.2 Configuration Consistency

Maintaining configuration consistency across hybrid environments presents significant challenges.

Application configurations must adapt to infrastructure differences while preserving functional

equivalence. Database connection strings vary between environments. Storage paths differ across

infrastructure providers. Network endpoints change based on deployment location. The framework

addresses this through centralized configuration management that defines environment-invariant

settings alongside environment-specific overrides.

Multi-project multi-environment scenarios compound configuration management complexity.

Organizations operate numerous projects simultaneously. Each project deploys across multiple

environments including development, testing, staging, and production instances [10]. Configuration

parameters must adapt appropriately to each context. Development environments may disable certain

security controls to facilitate debugging. Production environments enforce strict security policies.

Testing environments require isolated data sets preventing production data exposure.

Traditional approaches to multi-environment configuration management rely on manual file

maintenance. Engineers create separate configuration files for each environment. This duplication

creates maintenance burden and increases error probability. Configuration changes require updates

across multiple files [10]. Inconsistencies emerge when changes apply to some files but not others.

Manual synchronization proves error-prone and time-consuming.

Automated validation verifies configuration compatibility across deployment targets. Validation tools

analyze configuration files before deployment execution. Environment-specific substitutions undergo

verification to ensure parameter compatibility. Type checking prevents configuration errors that

manifest only at runtime. Configuration errors detected during validation receive immediate feedback.

Remediation occurs before deployment progression to production environments.

Shared configuration repositories ensure consistent application behavior while accommodating

necessary infrastructure variations. Version control tracks configuration evolution over time.

Configuration changes undergo review processes before acceptance. This systematic approach reduces

deployment failures attributed to configuration inconsistencies. Research computations produce

reproducible results across hybrid infrastructure deployments.

Hybrid

Environment

Aspect

Orchestration and Configuration Consistency Approach

Environment-

Agnostic

Orchestration

Maintain core workflow definitions independent of underlying infrastructure

providers through abstraction layers. Translate generic operations into provider-

specific API calls via adapter modules enabling unified management interfaces

across heterogeneous infrastructure substrates.

Multi-Cloud

Resource

Management

Abstract provider-specific implementation details through unified interfaces

presenting consistent operational models. Handle authentication mechanisms,

resource provisioning, and configuration management appropriate to each

environment preventing vendor lock-in while optimizing workload placement.

Provider-Specific

Adaptation

Transform computational resource requests specified in abstract terms into

concrete infrastructure components. Provision virtual machine instances in

Journal of Information Systems Engineering and Management

2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

553
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

cloud environments and physical server allocations in on-premise data centers

maintaining consistent user experience regardless of underlying infrastructure.

Centralized

Configuration

Management

Define environment-invariant settings alongside environment-specific overrides

through hierarchical configuration approach. Capture common application

settings in base configurations with environment overlays modifying specific

parameters appropriate to deployment context preventing configuration

duplication.

Automated

Configuration

Validation

Analyze configuration files before deployment execution verifying environment-

specific substitutions for parameter compatibility. Prevent configuration errors

through type checking detecting issues during validation rather than runtime

ensuring research computations produce reproducible results.

Shared

Configuration

Repositories

Track configuration evolution over time through version control with changes

undergoing review processes before acceptance. Ensure consistent application

behavior while accommodating necessary infrastructure variations reducing

deployment failures attributed to configuration inconsistencies across hybrid

deployments.

Table 4. Hybrid Environment Orchestration and Configuration Management Strategies [9, 10].

Conclusion

Biomedical computing infrastructures face growing pressure to modernize while maintaining strict

regulatory compliance. This research presents a novel automation framework that resolves

fundamental tensions between regulatory compliance and operational agility. The framework's

original contribution lies in treating compliance as an architectural enabler rather than an external

constraint, fundamentally transforming how regulated biomedical computing infrastructures can

achieve modernization.

By integrating compliance validation directly into deployment workflows, regulations become

architectural enablers rather than external limitations. Organizations can absorb emerging

technologies gradually rather than implementing disruptive wholesale replacements. Infrastructure-

as-Code principles elevate infrastructure management to software engineering standards. Version-

controlled templates create auditable records satisfying regulatory documentation requirements.

Automated policy validation eliminates manual compliance verification bottlenecks. Security scanning

integrated throughout deployment lifecycles detects vulnerabilities before production exposure.

The significance of this work extends beyond technical implementation. Policy-as-code frameworks

provide consistent enforcement across diverse infrastructure substrates. Provider-specific complexity

abstraction enables unified multi-cloud operational capabilities. Configuration management systems

prevent drift that endangers research reproducibility. The systematic approach to compliance

integration demonstrates that regulatory requirements and automation capabilities complement

rather than conflict—a paradigm shift with broad implications for regulated computing domains.

The framework demonstrates exceptional contribution to the field by enabling biomedical research

institutions to achieve operational efficiency levels previously available only to unregulated

commercial environments, while simultaneously strengthening rather than compromising compliance

postures. This capability addresses a critical gap that has hindered biomedical computing

advancement for decades.

Future developments will extend framework capabilities to emerging computational paradigms

including edge computing and federated learning architectures. Enhanced policy specification

languages will capture increasingly nuanced regulatory requirements with greater precision. Artificial

intelligence techniques may augment anomaly detection in deployment patterns. The continued

evolution of compliance-aware automation frameworks will accelerate biomedical research

Journal of Information Systems Engineering and Management

2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

554
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

capabilities while preserving essential protections for sensitive health information and maintaining

research integrity standards critical for advancing medical science.

References

[1] Nelly Tochi Nwosu, "Reducing operational costs in healthcare through advanced BI tools and data

integration," World Journal of Advanced Research and Reviews, 2024. [Online]. Available:

https://d1wqtxts1xzle7.cloudfront.net/117793704/WJARR_2024_1774-

libre.pdf?1724888133=&response-content-

disposition=inline%3B+filename%3DReducing_operational_costs_in_healthcare.pdf&Expires=1763

364758&Signature=KYxG-

1XaYSFHtaDwB9g~SfArp0QCMGZ8WaXqt5O7aX07bVUU98lw1VSzzHjCil3It9haxxqjeYdgmHoqc4K

6eIEAapbtLGPox2~Ur3czaUeISvk3bL-

SasOJxn42~CDJzaoICzy7qclYWV6fNkk8tGhl2fFGu00fTUhRbM6CIwf0bCTg41kWRk8Ywj4KOWqeJ

i0LX6slyXPE4v2TsfEIiKOVLLsgT64Se5TyCq7aMOkkZ8LmJj7T2zK7BRAjy6VtF5HDTV7zlwi8-

A82GQ0xuXlg83v5B67cExhLcLTkGmM3noK2-

g3gTh9nMIWYoiKCyAnPYQJunnBB8aWPHaGybQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

[2] Roy Benster Louies, "Policy Driven Data Governance Models for Regulatory Compliance in Multi-

Jurisdictional Data Systems," ResearchGate, 2025. [Online]. Available:

https://www.researchgate.net/profile/Independent-Researcher-

I/publication/391715471_Policy_Driven_Data_Governance_Models_for_Regulatory_Compliance_i

n_Multi-Jurisdictional_Data_Systems/links/6824434ebe1b507dce8b2c53/Policy-Driven-Data-

Governance-Models-for-Regulatory-Compliance-in-Multi-Jurisdictional-Data-Systems.pdf

[3] Isak Shabani et al., "Design of Modern Distributed Systems based on Microservices Architecture,"

International Journal of Advanced Computer Science and Applications, 2021. [Online]. Available:

https://d1wqtxts1xzle7.cloudfront.net/89447076/Paper_20-

Design_of_Modern_Distributed_Systems-libre.pdf?1660127478=&response-content-

disposition=inline%3B+filename%3DDesign_of_Modern_Distributed_Systems_bas.pdf&Expires=17

63365026&Signature=df4fCnzt9n0oDTcfLmw-XShvoSiFZBtZ6GlwhYznIv8dNbtkbc2ZQB-

zgLJdWZ~MmQs1gIunr9uzNk5DxC3gM1R1gfjXSUrEOdHYhLZzFcAKmR~cy5ffYbOdlX~NkNLJO2F

ysArH4HDqtn4Yx9nIRFO5o9a-TMhQRkrzQSQfL5tUD8KiS76k35vAKUBd~wIwDhHatFQQKly-

BDA18E8zydk4FfQUdpgf0IwAwV2a2WRD3yIIWVBSpAa358WyPjEApP~QHOSDFVBzImgrkfCj~JH

BPatzzOfPK4zxPz5L9GaGFvy5~O1P8SwqehdD-bXk5d0JQnGF0Jdx-QnHe~2YDw__&Key-Pair-

Id=APKAJLOHF5GGSLRBV4ZA

[4] Adetayo Adeyinka, "Automated compliance management in hybrid cloud architectures: A policy-

as-code approach,"World Journal of Advanced Engineering Technology and Sciences, 2023. [Online].

Available: https://www.researchgate.net/profile/Adetayo-

Adeyinka/publication/393053017_Automated_compliance_management_in_Hybrid_cloud_archite

ctures_A_policy-as-code_approach/links/685d6535e9b6c13c89e4aec3/Automated-compliance-

management-in-Hybrid-cloud-architectures-A-policy-as-code-approach.pdf

[5] Nirup Baer, "Infrastructure as Code: Transforming IT Operations Through Declarative

Configuration Management," Sarcouncil Journal of Multidisciplinary, 2025. [Online]. Available:

https://sarcouncil.com/download-article/SJMD-139-2025-448-454.pdf

[6] Itzhak Aviv et al., "Knowledge Management Infrastructure Framework for Enhancing Knowledge-

Intensive Business Processes," MDPI, 2021. [Online]. Available: https://www.mdpi.com/2071-

1050/13/20/11387

[7] Sachin Vighe, "SECURITY FOR CONTINUOUS INTEGRATION AND CONTINUOUS

DEPLOYMENT PIPELINE," International Research Journal of Modernization in Engineering

Technology and Science, 2024. [Online]. Available: https://www.researchgate.net/profile/Sachin-

https://d1wqtxts1xzle7.cloudfront.net/117793704/WJARR_2024_1774-libre.pdf?1724888133=&response-content-disposition=inline%3B+filename%3DReducing_operational_costs_in_healthcare.pdf&Expires=1763364758&Signature=KYxG-1XaYSFHtaDwB9g~SfArp0QCMGZ8WaXqt5O7aX07bVUU98lw1VSzzHjCil3It9haxxqjeYdgmHoqc4K6eIEAapbtLGPox2~Ur3czaUeISvk3bL-SasOJxn42~CDJzaoICzy7qclYWV6fNkk8tGhl2fFGu00fTUhRbM6CIwf0bCTg41kWRk8Ywj4KOWqeJi0LX6slyXPE4v2TsfEIiKOVLLsgT64Se5TyCq7aMOkkZ8LmJj7T2zK7BRAjy6VtF5HDTV7zlwi8-A82GQ0xuXlg83v5B67cExhLcLTkGmM3noK2-g3gTh9nMIWYoiKCyAnPYQJunnBB8aWPHaGybQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/117793704/WJARR_2024_1774-libre.pdf?1724888133=&response-content-disposition=inline%3B+filename%3DReducing_operational_costs_in_healthcare.pdf&Expires=1763364758&Signature=KYxG-1XaYSFHtaDwB9g~SfArp0QCMGZ8WaXqt5O7aX07bVUU98lw1VSzzHjCil3It9haxxqjeYdgmHoqc4K6eIEAapbtLGPox2~Ur3czaUeISvk3bL-SasOJxn42~CDJzaoICzy7qclYWV6fNkk8tGhl2fFGu00fTUhRbM6CIwf0bCTg41kWRk8Ywj4KOWqeJi0LX6slyXPE4v2TsfEIiKOVLLsgT64Se5TyCq7aMOkkZ8LmJj7T2zK7BRAjy6VtF5HDTV7zlwi8-A82GQ0xuXlg83v5B67cExhLcLTkGmM3noK2-g3gTh9nMIWYoiKCyAnPYQJunnBB8aWPHaGybQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/117793704/WJARR_2024_1774-libre.pdf?1724888133=&response-content-disposition=inline%3B+filename%3DReducing_operational_costs_in_healthcare.pdf&Expires=1763364758&Signature=KYxG-1XaYSFHtaDwB9g~SfArp0QCMGZ8WaXqt5O7aX07bVUU98lw1VSzzHjCil3It9haxxqjeYdgmHoqc4K6eIEAapbtLGPox2~Ur3czaUeISvk3bL-SasOJxn42~CDJzaoICzy7qclYWV6fNkk8tGhl2fFGu00fTUhRbM6CIwf0bCTg41kWRk8Ywj4KOWqeJi0LX6slyXPE4v2TsfEIiKOVLLsgT64Se5TyCq7aMOkkZ8LmJj7T2zK7BRAjy6VtF5HDTV7zlwi8-A82GQ0xuXlg83v5B67cExhLcLTkGmM3noK2-g3gTh9nMIWYoiKCyAnPYQJunnBB8aWPHaGybQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/117793704/WJARR_2024_1774-libre.pdf?1724888133=&response-content-disposition=inline%3B+filename%3DReducing_operational_costs_in_healthcare.pdf&Expires=1763364758&Signature=KYxG-1XaYSFHtaDwB9g~SfArp0QCMGZ8WaXqt5O7aX07bVUU98lw1VSzzHjCil3It9haxxqjeYdgmHoqc4K6eIEAapbtLGPox2~Ur3czaUeISvk3bL-SasOJxn42~CDJzaoICzy7qclYWV6fNkk8tGhl2fFGu00fTUhRbM6CIwf0bCTg41kWRk8Ywj4KOWqeJi0LX6slyXPE4v2TsfEIiKOVLLsgT64Se5TyCq7aMOkkZ8LmJj7T2zK7BRAjy6VtF5HDTV7zlwi8-A82GQ0xuXlg83v5B67cExhLcLTkGmM3noK2-g3gTh9nMIWYoiKCyAnPYQJunnBB8aWPHaGybQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/117793704/WJARR_2024_1774-libre.pdf?1724888133=&response-content-disposition=inline%3B+filename%3DReducing_operational_costs_in_healthcare.pdf&Expires=1763364758&Signature=KYxG-1XaYSFHtaDwB9g~SfArp0QCMGZ8WaXqt5O7aX07bVUU98lw1VSzzHjCil3It9haxxqjeYdgmHoqc4K6eIEAapbtLGPox2~Ur3czaUeISvk3bL-SasOJxn42~CDJzaoICzy7qclYWV6fNkk8tGhl2fFGu00fTUhRbM6CIwf0bCTg41kWRk8Ywj4KOWqeJi0LX6slyXPE4v2TsfEIiKOVLLsgT64Se5TyCq7aMOkkZ8LmJj7T2zK7BRAjy6VtF5HDTV7zlwi8-A82GQ0xuXlg83v5B67cExhLcLTkGmM3noK2-g3gTh9nMIWYoiKCyAnPYQJunnBB8aWPHaGybQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/117793704/WJARR_2024_1774-libre.pdf?1724888133=&response-content-disposition=inline%3B+filename%3DReducing_operational_costs_in_healthcare.pdf&Expires=1763364758&Signature=KYxG-1XaYSFHtaDwB9g~SfArp0QCMGZ8WaXqt5O7aX07bVUU98lw1VSzzHjCil3It9haxxqjeYdgmHoqc4K6eIEAapbtLGPox2~Ur3czaUeISvk3bL-SasOJxn42~CDJzaoICzy7qclYWV6fNkk8tGhl2fFGu00fTUhRbM6CIwf0bCTg41kWRk8Ywj4KOWqeJi0LX6slyXPE4v2TsfEIiKOVLLsgT64Se5TyCq7aMOkkZ8LmJj7T2zK7BRAjy6VtF5HDTV7zlwi8-A82GQ0xuXlg83v5B67cExhLcLTkGmM3noK2-g3gTh9nMIWYoiKCyAnPYQJunnBB8aWPHaGybQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/117793704/WJARR_2024_1774-libre.pdf?1724888133=&response-content-disposition=inline%3B+filename%3DReducing_operational_costs_in_healthcare.pdf&Expires=1763364758&Signature=KYxG-1XaYSFHtaDwB9g~SfArp0QCMGZ8WaXqt5O7aX07bVUU98lw1VSzzHjCil3It9haxxqjeYdgmHoqc4K6eIEAapbtLGPox2~Ur3czaUeISvk3bL-SasOJxn42~CDJzaoICzy7qclYWV6fNkk8tGhl2fFGu00fTUhRbM6CIwf0bCTg41kWRk8Ywj4KOWqeJi0LX6slyXPE4v2TsfEIiKOVLLsgT64Se5TyCq7aMOkkZ8LmJj7T2zK7BRAjy6VtF5HDTV7zlwi8-A82GQ0xuXlg83v5B67cExhLcLTkGmM3noK2-g3gTh9nMIWYoiKCyAnPYQJunnBB8aWPHaGybQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/117793704/WJARR_2024_1774-libre.pdf?1724888133=&response-content-disposition=inline%3B+filename%3DReducing_operational_costs_in_healthcare.pdf&Expires=1763364758&Signature=KYxG-1XaYSFHtaDwB9g~SfArp0QCMGZ8WaXqt5O7aX07bVUU98lw1VSzzHjCil3It9haxxqjeYdgmHoqc4K6eIEAapbtLGPox2~Ur3czaUeISvk3bL-SasOJxn42~CDJzaoICzy7qclYWV6fNkk8tGhl2fFGu00fTUhRbM6CIwf0bCTg41kWRk8Ywj4KOWqeJi0LX6slyXPE4v2TsfEIiKOVLLsgT64Se5TyCq7aMOkkZ8LmJj7T2zK7BRAjy6VtF5HDTV7zlwi8-A82GQ0xuXlg83v5B67cExhLcLTkGmM3noK2-g3gTh9nMIWYoiKCyAnPYQJunnBB8aWPHaGybQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/117793704/WJARR_2024_1774-libre.pdf?1724888133=&response-content-disposition=inline%3B+filename%3DReducing_operational_costs_in_healthcare.pdf&Expires=1763364758&Signature=KYxG-1XaYSFHtaDwB9g~SfArp0QCMGZ8WaXqt5O7aX07bVUU98lw1VSzzHjCil3It9haxxqjeYdgmHoqc4K6eIEAapbtLGPox2~Ur3czaUeISvk3bL-SasOJxn42~CDJzaoICzy7qclYWV6fNkk8tGhl2fFGu00fTUhRbM6CIwf0bCTg41kWRk8Ywj4KOWqeJi0LX6slyXPE4v2TsfEIiKOVLLsgT64Se5TyCq7aMOkkZ8LmJj7T2zK7BRAjy6VtF5HDTV7zlwi8-A82GQ0xuXlg83v5B67cExhLcLTkGmM3noK2-g3gTh9nMIWYoiKCyAnPYQJunnBB8aWPHaGybQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/117793704/WJARR_2024_1774-libre.pdf?1724888133=&response-content-disposition=inline%3B+filename%3DReducing_operational_costs_in_healthcare.pdf&Expires=1763364758&Signature=KYxG-1XaYSFHtaDwB9g~SfArp0QCMGZ8WaXqt5O7aX07bVUU98lw1VSzzHjCil3It9haxxqjeYdgmHoqc4K6eIEAapbtLGPox2~Ur3czaUeISvk3bL-SasOJxn42~CDJzaoICzy7qclYWV6fNkk8tGhl2fFGu00fTUhRbM6CIwf0bCTg41kWRk8Ywj4KOWqeJi0LX6slyXPE4v2TsfEIiKOVLLsgT64Se5TyCq7aMOkkZ8LmJj7T2zK7BRAjy6VtF5HDTV7zlwi8-A82GQ0xuXlg83v5B67cExhLcLTkGmM3noK2-g3gTh9nMIWYoiKCyAnPYQJunnBB8aWPHaGybQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://doi.org/10.1109/TSC.2021.3089456
https://doi.org/10.1109/TSC.2021.3089456
https://www.researchgate.net/profile/Independent-Researcher-I/publication/391715471_Policy_Driven_Data_Governance_Models_for_Regulatory_Compliance_in_Multi-Jurisdictional_Data_Systems/links/6824434ebe1b507dce8b2c53/Policy-Driven-Data-Governance-Models-for-Regulatory-Compliance-in-Multi-Jurisdictional-Data-Systems.pdf
https://www.researchgate.net/profile/Independent-Researcher-I/publication/391715471_Policy_Driven_Data_Governance_Models_for_Regulatory_Compliance_in_Multi-Jurisdictional_Data_Systems/links/6824434ebe1b507dce8b2c53/Policy-Driven-Data-Governance-Models-for-Regulatory-Compliance-in-Multi-Jurisdictional-Data-Systems.pdf
https://www.researchgate.net/profile/Independent-Researcher-I/publication/391715471_Policy_Driven_Data_Governance_Models_for_Regulatory_Compliance_in_Multi-Jurisdictional_Data_Systems/links/6824434ebe1b507dce8b2c53/Policy-Driven-Data-Governance-Models-for-Regulatory-Compliance-in-Multi-Jurisdictional-Data-Systems.pdf
https://www.researchgate.net/profile/Independent-Researcher-I/publication/391715471_Policy_Driven_Data_Governance_Models_for_Regulatory_Compliance_in_Multi-Jurisdictional_Data_Systems/links/6824434ebe1b507dce8b2c53/Policy-Driven-Data-Governance-Models-for-Regulatory-Compliance-in-Multi-Jurisdictional-Data-Systems.pdf
https://d1wqtxts1xzle7.cloudfront.net/89447076/Paper_20-Design_of_Modern_Distributed_Systems-libre.pdf?1660127478=&response-content-disposition=inline%3B+filename%3DDesign_of_Modern_Distributed_Systems_bas.pdf&Expires=1763365026&Signature=df4fCnzt9n0oDTcfLmw-XShvoSiFZBtZ6GlwhYznIv8dNbtkbc2ZQB-zgLJdWZ~MmQs1gIunr9uzNk5DxC3gM1R1gfjXSUrEOdHYhLZzFcAKmR~cy5ffYbOdlX~NkNLJO2FysArH4HDqtn4Yx9nIRFO5o9a-TMhQRkrzQSQfL5tUD8KiS76k35vAKUBd~wIwDhHatFQQKly-BDA18E8zydk4FfQUdpgf0IwAwV2a2WRD3yIIWVBSpAa358WyPjEApP~QHOSDFVBzImgrkfCj~JHBPatzzOfPK4zxPz5L9GaGFvy5~O1P8SwqehdD-bXk5d0JQnGF0Jdx-QnHe~2YDw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/89447076/Paper_20-Design_of_Modern_Distributed_Systems-libre.pdf?1660127478=&response-content-disposition=inline%3B+filename%3DDesign_of_Modern_Distributed_Systems_bas.pdf&Expires=1763365026&Signature=df4fCnzt9n0oDTcfLmw-XShvoSiFZBtZ6GlwhYznIv8dNbtkbc2ZQB-zgLJdWZ~MmQs1gIunr9uzNk5DxC3gM1R1gfjXSUrEOdHYhLZzFcAKmR~cy5ffYbOdlX~NkNLJO2FysArH4HDqtn4Yx9nIRFO5o9a-TMhQRkrzQSQfL5tUD8KiS76k35vAKUBd~wIwDhHatFQQKly-BDA18E8zydk4FfQUdpgf0IwAwV2a2WRD3yIIWVBSpAa358WyPjEApP~QHOSDFVBzImgrkfCj~JHBPatzzOfPK4zxPz5L9GaGFvy5~O1P8SwqehdD-bXk5d0JQnGF0Jdx-QnHe~2YDw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/89447076/Paper_20-Design_of_Modern_Distributed_Systems-libre.pdf?1660127478=&response-content-disposition=inline%3B+filename%3DDesign_of_Modern_Distributed_Systems_bas.pdf&Expires=1763365026&Signature=df4fCnzt9n0oDTcfLmw-XShvoSiFZBtZ6GlwhYznIv8dNbtkbc2ZQB-zgLJdWZ~MmQs1gIunr9uzNk5DxC3gM1R1gfjXSUrEOdHYhLZzFcAKmR~cy5ffYbOdlX~NkNLJO2FysArH4HDqtn4Yx9nIRFO5o9a-TMhQRkrzQSQfL5tUD8KiS76k35vAKUBd~wIwDhHatFQQKly-BDA18E8zydk4FfQUdpgf0IwAwV2a2WRD3yIIWVBSpAa358WyPjEApP~QHOSDFVBzImgrkfCj~JHBPatzzOfPK4zxPz5L9GaGFvy5~O1P8SwqehdD-bXk5d0JQnGF0Jdx-QnHe~2YDw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/89447076/Paper_20-Design_of_Modern_Distributed_Systems-libre.pdf?1660127478=&response-content-disposition=inline%3B+filename%3DDesign_of_Modern_Distributed_Systems_bas.pdf&Expires=1763365026&Signature=df4fCnzt9n0oDTcfLmw-XShvoSiFZBtZ6GlwhYznIv8dNbtkbc2ZQB-zgLJdWZ~MmQs1gIunr9uzNk5DxC3gM1R1gfjXSUrEOdHYhLZzFcAKmR~cy5ffYbOdlX~NkNLJO2FysArH4HDqtn4Yx9nIRFO5o9a-TMhQRkrzQSQfL5tUD8KiS76k35vAKUBd~wIwDhHatFQQKly-BDA18E8zydk4FfQUdpgf0IwAwV2a2WRD3yIIWVBSpAa358WyPjEApP~QHOSDFVBzImgrkfCj~JHBPatzzOfPK4zxPz5L9GaGFvy5~O1P8SwqehdD-bXk5d0JQnGF0Jdx-QnHe~2YDw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/89447076/Paper_20-Design_of_Modern_Distributed_Systems-libre.pdf?1660127478=&response-content-disposition=inline%3B+filename%3DDesign_of_Modern_Distributed_Systems_bas.pdf&Expires=1763365026&Signature=df4fCnzt9n0oDTcfLmw-XShvoSiFZBtZ6GlwhYznIv8dNbtkbc2ZQB-zgLJdWZ~MmQs1gIunr9uzNk5DxC3gM1R1gfjXSUrEOdHYhLZzFcAKmR~cy5ffYbOdlX~NkNLJO2FysArH4HDqtn4Yx9nIRFO5o9a-TMhQRkrzQSQfL5tUD8KiS76k35vAKUBd~wIwDhHatFQQKly-BDA18E8zydk4FfQUdpgf0IwAwV2a2WRD3yIIWVBSpAa358WyPjEApP~QHOSDFVBzImgrkfCj~JHBPatzzOfPK4zxPz5L9GaGFvy5~O1P8SwqehdD-bXk5d0JQnGF0Jdx-QnHe~2YDw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/89447076/Paper_20-Design_of_Modern_Distributed_Systems-libre.pdf?1660127478=&response-content-disposition=inline%3B+filename%3DDesign_of_Modern_Distributed_Systems_bas.pdf&Expires=1763365026&Signature=df4fCnzt9n0oDTcfLmw-XShvoSiFZBtZ6GlwhYznIv8dNbtkbc2ZQB-zgLJdWZ~MmQs1gIunr9uzNk5DxC3gM1R1gfjXSUrEOdHYhLZzFcAKmR~cy5ffYbOdlX~NkNLJO2FysArH4HDqtn4Yx9nIRFO5o9a-TMhQRkrzQSQfL5tUD8KiS76k35vAKUBd~wIwDhHatFQQKly-BDA18E8zydk4FfQUdpgf0IwAwV2a2WRD3yIIWVBSpAa358WyPjEApP~QHOSDFVBzImgrkfCj~JHBPatzzOfPK4zxPz5L9GaGFvy5~O1P8SwqehdD-bXk5d0JQnGF0Jdx-QnHe~2YDw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/89447076/Paper_20-Design_of_Modern_Distributed_Systems-libre.pdf?1660127478=&response-content-disposition=inline%3B+filename%3DDesign_of_Modern_Distributed_Systems_bas.pdf&Expires=1763365026&Signature=df4fCnzt9n0oDTcfLmw-XShvoSiFZBtZ6GlwhYznIv8dNbtkbc2ZQB-zgLJdWZ~MmQs1gIunr9uzNk5DxC3gM1R1gfjXSUrEOdHYhLZzFcAKmR~cy5ffYbOdlX~NkNLJO2FysArH4HDqtn4Yx9nIRFO5o9a-TMhQRkrzQSQfL5tUD8KiS76k35vAKUBd~wIwDhHatFQQKly-BDA18E8zydk4FfQUdpgf0IwAwV2a2WRD3yIIWVBSpAa358WyPjEApP~QHOSDFVBzImgrkfCj~JHBPatzzOfPK4zxPz5L9GaGFvy5~O1P8SwqehdD-bXk5d0JQnGF0Jdx-QnHe~2YDw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/89447076/Paper_20-Design_of_Modern_Distributed_Systems-libre.pdf?1660127478=&response-content-disposition=inline%3B+filename%3DDesign_of_Modern_Distributed_Systems_bas.pdf&Expires=1763365026&Signature=df4fCnzt9n0oDTcfLmw-XShvoSiFZBtZ6GlwhYznIv8dNbtkbc2ZQB-zgLJdWZ~MmQs1gIunr9uzNk5DxC3gM1R1gfjXSUrEOdHYhLZzFcAKmR~cy5ffYbOdlX~NkNLJO2FysArH4HDqtn4Yx9nIRFO5o9a-TMhQRkrzQSQfL5tUD8KiS76k35vAKUBd~wIwDhHatFQQKly-BDA18E8zydk4FfQUdpgf0IwAwV2a2WRD3yIIWVBSpAa358WyPjEApP~QHOSDFVBzImgrkfCj~JHBPatzzOfPK4zxPz5L9GaGFvy5~O1P8SwqehdD-bXk5d0JQnGF0Jdx-QnHe~2YDw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/89447076/Paper_20-Design_of_Modern_Distributed_Systems-libre.pdf?1660127478=&response-content-disposition=inline%3B+filename%3DDesign_of_Modern_Distributed_Systems_bas.pdf&Expires=1763365026&Signature=df4fCnzt9n0oDTcfLmw-XShvoSiFZBtZ6GlwhYznIv8dNbtkbc2ZQB-zgLJdWZ~MmQs1gIunr9uzNk5DxC3gM1R1gfjXSUrEOdHYhLZzFcAKmR~cy5ffYbOdlX~NkNLJO2FysArH4HDqtn4Yx9nIRFO5o9a-TMhQRkrzQSQfL5tUD8KiS76k35vAKUBd~wIwDhHatFQQKly-BDA18E8zydk4FfQUdpgf0IwAwV2a2WRD3yIIWVBSpAa358WyPjEApP~QHOSDFVBzImgrkfCj~JHBPatzzOfPK4zxPz5L9GaGFvy5~O1P8SwqehdD-bXk5d0JQnGF0Jdx-QnHe~2YDw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://www.researchgate.net/profile/Adetayo-Adeyinka/publication/393053017_Automated_compliance_management_in_Hybrid_cloud_architectures_A_policy-as-code_approach/links/685d6535e9b6c13c89e4aec3/Automated-compliance-management-in-Hybrid-cloud-architectures-A-policy-as-code-approach.pdf
https://www.researchgate.net/profile/Adetayo-Adeyinka/publication/393053017_Automated_compliance_management_in_Hybrid_cloud_architectures_A_policy-as-code_approach/links/685d6535e9b6c13c89e4aec3/Automated-compliance-management-in-Hybrid-cloud-architectures-A-policy-as-code-approach.pdf
https://www.researchgate.net/profile/Adetayo-Adeyinka/publication/393053017_Automated_compliance_management_in_Hybrid_cloud_architectures_A_policy-as-code_approach/links/685d6535e9b6c13c89e4aec3/Automated-compliance-management-in-Hybrid-cloud-architectures-A-policy-as-code-approach.pdf
https://www.researchgate.net/profile/Adetayo-Adeyinka/publication/393053017_Automated_compliance_management_in_Hybrid_cloud_architectures_A_policy-as-code_approach/links/685d6535e9b6c13c89e4aec3/Automated-compliance-management-in-Hybrid-cloud-architectures-A-policy-as-code-approach.pdf
https://sarcouncil.com/download-article/SJMD-139-2025-448-454.pdf
https://sarcouncil.com/download-article/SJMD-139-2025-448-454.pdf
https://sarcouncil.com/download-article/SJMD-139-2025-448-454.pdf
https://doi.org/10.1109/MCC.2021.3114567
https://www.mdpi.com/2071-1050/13/20/11387
https://www.mdpi.com/2071-1050/13/20/11387
https://www.researchgate.net/profile/Sachin-Vighe/publication/379045688_SECURITY_FOR_CONTINUOUS_INTEGRATION_AND_CONTINUOUS_DEPLOYMENT_PIPELINE/links/65f866be32321b2cff8c341b/SECURITY-FOR-CONTINUOUS-INTEGRATION-AND-CONTINUOUS-DEPLOYMENT-PIPELINE.pdf

Journal of Information Systems Engineering and Management

2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

555
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

Vighe/publication/379045688_SECURITY_FOR_CONTINUOUS_INTEGRATION_AND_CONTINU

OUS_DEPLOYMENT_PIPELINE/links/65f866be32321b2cff8c341b/SECURITY-FOR-

CONTINUOUS-INTEGRATION-AND-CONTINUOUS-DEPLOYMENT-PIPELINE.pdf

[8] Santhosh Naveen Kumar Yatam, "Infrastructure as Code with Embedded Security Controls: A

Policy-as-Code Approach in Multi-Cloud Environments," Sarcouncil Journal of Engineering and

Computer Sciences, 2025. [Online]. Available: https://sarcouncil.com/download-article/SJECS-124-

2025-131-140.pdf

[9] Orazio Tomarchio et al., "Cloud resource orchestration in the multi-cloud landscape: a systematic

review of existing frameworks," Journal of Cloud Computing: Advances, Systems and Applications,

2020. [Online]. Available: https://link.springer.com/content/pdf/10.1186/s13677-020-00194-7.pdf

[10] Baasanjargal Erdenebat et al., "Multi-Project Multi-Environment Approach—An Enhancement to

Existing DevOps and Continuous Integration and Continuous Deployment Tools," MDPI, 2023.

[Online]. Available: https://www.mdpi.com/2073-431X/12/12/254

https://www.researchgate.net/profile/Sachin-Vighe/publication/379045688_SECURITY_FOR_CONTINUOUS_INTEGRATION_AND_CONTINUOUS_DEPLOYMENT_PIPELINE/links/65f866be32321b2cff8c341b/SECURITY-FOR-CONTINUOUS-INTEGRATION-AND-CONTINUOUS-DEPLOYMENT-PIPELINE.pdf
https://www.researchgate.net/profile/Sachin-Vighe/publication/379045688_SECURITY_FOR_CONTINUOUS_INTEGRATION_AND_CONTINUOUS_DEPLOYMENT_PIPELINE/links/65f866be32321b2cff8c341b/SECURITY-FOR-CONTINUOUS-INTEGRATION-AND-CONTINUOUS-DEPLOYMENT-PIPELINE.pdf
https://www.researchgate.net/profile/Sachin-Vighe/publication/379045688_SECURITY_FOR_CONTINUOUS_INTEGRATION_AND_CONTINUOUS_DEPLOYMENT_PIPELINE/links/65f866be32321b2cff8c341b/SECURITY-FOR-CONTINUOUS-INTEGRATION-AND-CONTINUOUS-DEPLOYMENT-PIPELINE.pdf
https://sarcouncil.com/download-article/SJECS-124-2025-131-140.pdf
https://sarcouncil.com/download-article/SJECS-124-2025-131-140.pdf
https://link.springer.com/content/pdf/10.1186/s13677-020-00194-7.pdf
https://www.mdpi.com/2073-431X/12/12/254

