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Enterprise organizations face increasing pressure to leverage distributed data
assets for artificial intelligence advancement while maintaining strict data
governance requirements. Conventional machine studying frameworks
require the centralization of facts, which ends up in privateness dangers that
aren't suited and conflicts with guidelines. As a end result, federated getting to
know becomes a revolutionary architectural sample that allows collaborative
model education with out sharing uncooked information. Participating
entities retain complete control over sensitive information. Model parameters
transmit between distributed nodes and central aggregation servers instead of
underlying training examples. The federated paradigm addresses multiple
interconnected challenges simultaneously. Communication efficiency requires
optimization through gradient compression and extended local training
intervals. Privacy preservation demands formal mathematical guarantees
through differential privacy integration and secure aggregation protocols.
Statistical heterogeneity across organizational boundaries necessitates
personalization mechanisms accommodating divergent data distributions.
Cross-silo federation patterns suit enterprise deployments where participants
maintain substantial computational infrastructure. Horizontal and vertical
partitioning schemes address varying data relationship configurations. Meta-
learning formulations enable rapid local adaptation from shared global
initializations. On top of that, the adoption of cryptographic protections,
communication optimizations, and heterogeneity handling being
implemented together opens up realistic ways for enterprise artificial
intelligence to be integrated while still complying with data sovereignty
requirements.
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1. Introduction

The spread of enterprise data assets beyond the internal structure of the organizations has, in fact,
opened up new and previously unimaginable possibilities for collaborative machine learning
initiatives. The organizations have a great deal of domain-specific datasets which, if combined through
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smart model training, could result in improved predictive capabilities and deeper operational insights.
However, centralizing these distributed data repositories introduces unacceptable risks including
regulatory non-compliance, intellectual property exposure, and competitive disadvantage.

Federated learning emerges as a paradigm shift addressing this fundamental tension between
collaborative AI development and data protection imperatives. The approach enables model training
across decentralized data sources. Raw data never leaves its originating environment. This
architectural distinction fundamentally transforms enterprise Al integration possibilities. Traditional
distributed computing approaches merely partition computation across nodes. Federated learning
differs fundamentally by keeping data stationary while sharing only model parameters [1]. Diao et al.
[1] identified that participating clients in federated networks exhibit significant heterogeneity in
computational resources. Some clients possess powerful hardware configurations. Others operate
under severe resource constraints. This disparity creates practical deployment challenges. The
HeteroFL framework addresses this reality by enabling clients to train local models of varying
complexity. Smaller clients train reduced versions of the global model. Larger clients handle full
model architectures. The aggregation process accommodates these differences seamlessly. Such
flexibility proves essential for enterprise environments where subsidiary units maintain diverse
infrastructure capabilities [1].

The problem space encompasses three interconnected challenges. Model accuracy must remain
comparable to centralized approaches. Communication efficiency across wide-area networks requires
optimization. Formal privacy guarantees must satisfy regulatory frameworks. Li et al. [2] presented a
comprehensive categorization of federated learning challenges. Expensive communication emerges as
a primary concern since training involves iterative exchanges between distributed nodes and central
coordinators. Network bandwidth limitations constrain synchronization frequency. Systems
heterogeneity compounds these difficulties as participating devices vary in storage capacity,
processing power, and connectivity stability. Statistical heterogeneity presents perhaps the most
fundamental obstacle [2]. Data distributions across participating nodes rarely exhibit identical
characteristics. Local datasets reflect organizational specializations and regional variations. This non-
independent and identically distributed nature causes model updates to diverge during local training
phases. Aggregated global models may fail to generalize across the federation. Privacy concerns
extend beyond mere data localization. Sophisticated adversaries may infer sensitive information from
shared model parameters or gradient updates. Formal differential privacy guarantees and secure
aggregation protocols become necessary components of enterprise deployments [2].

Current enterprise integration patterns fail to address these requirements simultaneously. A
significant gap exists in practical deployment capabilities. This article contributes a comprehensive
examination of federated learning mechanisms applicable to enterprise data integration scenarios.
Architectural patterns receive detailed analysis. Privacy-preserving protocols undergo systematic
evaluation. Practical implementation considerations inform deployment recommendations.

II. Related Work

Federated learning has evolved significantly since initial algorithmic formulations addressing
decentralized model training. Early contributions established foundational optimization techniques
enabling collaborative learning without data centralization. The FedAvg algorithm introduced
iterative parameter averaging across distributed clients. Subsequent developments addressed
practical deployment challenges systematically.

Communication efficiency emerged as a primary concern in distributed training scenarios. Gradient

compression techniques, including quantization and sparsification, reduce transmission overhead
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substantially. Structured and sketched update strategies constrain communication requirements while
preserving model quality. Extended local training intervals decrease synchronization frequency
without compromising convergence guarantees.

Privacy-preserving mechanisms received substantial attention from the academic community.
Differential privacy integration provides formal mathematical guarantees against inference attacks.
Secure aggregation protocols leverage cryptographic primitives that protect individual contributions
during parameter combination. Medical imaging applications demonstrated the viability of privacy-
preserving deep learning in sensitive domains.

Statistical heterogeneity handling advanced through multiple complementary directions. Data sharing
strategies reduce distribution divergence across participants. Proximal regularization terms maintain
stability during aggressive local optimization. Personalized federated learning formulations embrace
participant differences explicitly. Meta-learning principles enable rapid adaptation from shared global
initializations.

Cross-silo federation patterns address enterprise deployment requirements specifically. Horizontal
and vertical partitioning schemes accommodate varying data relationship configurations across
organizational boundaries.

II1. Architectural Foundations of Federated Learning Systems
A. Cross-Silo Federation Patterns

Enterprise federated learning deployments typically follow cross-silo patterns. Participating
organizations maintain dedicated computational infrastructure in such arrangements. Unlike cross-
device scenarios involving numerous resource-constrained endpoints, cross-silo federations involve
fewer participants. These participants possess substantial computing capabilities. Network
connectivity remains reliable and consistent. Chen et al. [3] categorized federated learning
architectures based on data distribution patterns across participants. Horizontal federated learning
applies when organizations share the same feature space. The sample spaces differ across participants
in this configuration. Vertical federated learning addresses different scenarios. Participants hold
different features for overlapping sample populations. Federated transfer learning handles cases
where both feature and sample spaces differ substantially [3].

The architectural foundation requires coordinated interaction between local training components and
central aggregation services. Each participating organization executes model training on local data.
Model updates are transmitted to the aggregation infrastructure. Underlying training examples never
leave organizational boundaries. Chen et al. [3] described the standard federated optimization process
as iterative parameter exchange. Local clients perform gradient descent on private datasets. Updated
parameters travel to a central server for aggregation. The aggregated global model returns to clients
for subsequent training rounds. This cycle continues until the convergence criteria are satisfied [3].

B. Aggregation Server Architecture

Central aggregation components receive model updates from distributed participants. These
contributions combine into improved global models. The refined models are redistributed for
subsequent training rounds. Blanco-Justicia et al. [4] examined the security implications of
centralized aggregation architectures. The aggregation server represents a critical trust assumption in
federated systems. Participants must trust the server to perform honest aggregation. The server must
not attempt to extract private information from received updates. This trust requirement creates
potential vulnerabilities [4].
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The iterative refinement process progressively improves model capabilities. Data locality constraints
remain enforced throughout the training lifecycle. Blanco-Justicia et al. [4] identified multiple threat
vectors targeting aggregation infrastructure. Malicious servers may attempt inference attacks against
participant data. Compromised aggregation points could manipulate global model updates. Byzantine
participants might submit poisoned gradients to corrupt the learning process. Secure aggregation
protocols address some concerns. Cryptographic techniques enable aggregation without revealing
individual contributions. The server learns only the combined result. Individual participant updates
remain protected from inspection [4].

Enterprise deployments require additional architectural considerations. Chen et al. [3] noted that
asynchronous aggregation strategies accommodate heterogeneous participant capabilities. Faster
clients need not wait for slower participants. Staleness-aware weighting adjusts the influence of
delayed updates. Such mechanisms improve system throughput in practical deployments. The choice
between synchronous and asynchronous coordination involves tradeoffs. Synchronous approaches
provide clearer convergence guarantees. Asynchronous methods offer better resource utilization [3].

Component Cross-Silo Federation Cross-Device Federation
Participant Count Small number of organizations Large number of endpoints
Computational Resources Substantial infrastructure Limited device capabilities
Network Connectivity Reliable and consistent Intermittent and variable
Data Availability Continuous operation Sporadic participation
Client Identity Stable across federation Anonymous or transient
Synchronization Mode Synchronous aggregation feasible Asynchronous often required
Data Partitioning Horizontal or vertical Primarily horizontal
Trust Requirements Inter-organizational agreements r?)igf;fgfstation

Table 1. Architectural Foundations of Federated Learning Systems [3, 4].

III. Privacy-Preserving Mechanisms and Security Protocols
A. Differential Privacy Integration

Formal privacy guarantees require mathematical frameworks ensuring individual data contributions
remain statistically indistinguishable within aggregated outputs. Differential privacy mechanisms
introduce calibrated noise during gradient computation or aggregation phases. These mechanisms
provide quantifiable privacy bounds independent of adversarial capabilities. Ziller et al. [5] examined
differential privacy applications within medical imaging contexts. Healthcare data presents unique
sensitivity concerns. Patient information requires stringent protection under regulatory frameworks.
The research demonstrated that differentially private training remains viable for clinical deep learning
tasks. Model utility preservation depends heavily on implementation choices [5].

Enterprise implementations must balance privacy budget consumption against model utility
degradation. Careful parameter selection aligns with organizational risk tolerance and regulatory
requirements. Ziller et al. [5] investigated the privacy-utility tradeoff across multiple medical imaging
modalities. Chest radiograph analysis served as a primary evaluation domain. Histopathology image
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classification provided additional validation scenarios. The findings revealed that privacy guarantees
affect different architectures variably. Deeper networks demonstrated greater resilience to privacy-
induced noise. Transfer learning from pre-trained models improved performance under differential
privacy constraints. Such strategies reduce the amount of private data requiring protection during
training [5].

B. Secure Aggregation Protocols

Cryptographically secure aggregation ensures that aggregation servers learn only combined model
updates. Individual participant contributions remain inaccessible to the server. Bonawitz et al. [6]
designed practical secure aggregation protocols specifically for federated learning applications. The
protocol enables computation of aggregate statistics over distributed user data. No individual
contribution becomes visible during the process. The construction addresses real-world deployment
requirements comprehensively [6].

These protocols leverage threshold cryptography and secret sharing schemes. Computation over
masked values becomes possible through these techniques. Even a compromised aggregation
infrastructure cannot extract participant-specific information. Bonawitz et al. [6] developed a multi-
round protocol supporting large-scale deployments. The first round establishes cryptographic keys
between participant pairs. Subsequent rounds handle the actual secure aggregation computation.
Participants mask their inputs using shared secrets derived from key agreement. The masks cancel
perfectly upon aggregation at the server [6].

The protocol addresses practical deployment challenges directly. Bonawitz et al. [6] incorporated fault
tolerance mechanisms handling participant dropout. Mobile devices frequently disconnect during
protocol execution. Network instability causes unpredictable availability patterns. Secret sharing
distributes recovery information across remaining participants. Threshold reconstruction enables
completion despite missing contributors. The protocol maintains security guarantees even under
adversarial dropout patterns. Communication complexity scales efficiently with participant count.
Each user sends and receives data proportional to the number of participants. Computational
overhead remains acceptable for resource-constrained devices. Enterprise deployments benefit from
enhanced infrastructure reliability. Higher bandwidth connections enable more sophisticated
cryptographic operations. Secure aggregation integrates naturally with differential privacy
mechanisms. The combination provides defense-in-depth against multiple threat vectors [6].

Mechanism Primary Function Protection Target Implement?tlon
Complexity
. . . Statistical Individual data
Differential Privacy indistinguishability contributions Moderate
. . . Model update .
Secure Aggregation | Cryptographic masking confidentiality High
. .. e . Outlier contribution
Gradient Clipping Sensitivity bounding limiting Low
. . . Individual parameter
Pairwise Masking Secret cancellation . Moderate
protection
Threshold Distributed key Recovery information Hi
. igh
Cryptography management security
Transfer Learning Pre-trained initialization Prlvate: training data Low
reduction

Table 2. Comparison of Privacy Protection Techniques in Federated Learning [5, 6].
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IV. Communication Efficiency and Optimization Strategies

Federated learning introduces substantial communication requirements as model parameters traverse
network boundaries during each training round. Enterprise deployments across geographically
distributed facilities face particular challenges. Bandwidth constraints limit transmission capacity.
Latency sensitivity affects synchronization timing. Kone¢ny et al. [7] identified communication costs
as the primary bottleneck in federated optimization. Modern deep learning models contain millions of
parameters. Transmitting full model updates consumes significant bandwidth. Mobile and edge
devices face particular constraints. Network connections may be slow or expensive. Reducing
communication overhead becomes essential for practical deployment [7].

Gradient compression techniques reduce transmission volumes through quantization, sparsification,
and encoding optimizations. These approaches selectively transmit significant gradient components.
Less impactful updates receive approximation or elimination. Konec¢ny et al. [7] proposed two
complementary strategies for communication reduction. Structured updates constrain model changes
to specific forms. Low-rank matrix representations reduce dimensionality substantially. Random
masks select subsets of parameters for updates. Sketched updates take a different approach. Full
model updates compute locally without constraints. Compression applies before transmission to the
server. Quantization reduces the numerical precision of gradient values. Subsampling transmits only
selected gradient components [7].

Additionally, local training strategies enable multiple optimization steps before synchronization.
Communication frequency reduces while maintaining convergence properties. Konec¢ny et al. [7]
demonstrated that combining compression with increased local computation yields substantial
benefits. Clients perform several stochastic gradient descent iterations locally. Only compressed final
updates are transmitted to the central server. The server aggregates received updates and broadcasts
the improved global model. This approach reduces both the frequency and size of communications [7].

Li et al. [8] examined federated optimization under heterogeneous network conditions. Enterprise
environments exhibit significant variability across participants. Some clients possess powerful
computational resources. Others operate under severe hardware limitations. Network connectivity
varies in reliability and bandwidth. Statistical heterogeneity compounds these challenges. Local data
distributions differ substantially across organizational units. Standard federated averaging struggles
under such conditions [8].

The FedProx framework addresses heterogeneity through algorithmic modifications. Li et al. [8]
introduced a proximal term in the local optimization objective. This regularization penalizes excessive
deviation from the current global model. Local updates remain anchored to the shared reference
point. The modification provides stability during aggressive local training. Convergence guarantees
extend to heterogeneous settings. Partial participation becomes manageable through this approach

[8].

Enterprise deployments benefit from flexible participation requirements. Li et al. [8] analyzed
scenarios where clients perform variable amounts of local work. Faster participants complete more
optimization steps. Resource-constrained clients contribute fewer iterations. The proximal term
ensures coherent aggregation despite uneven contributions. Stragglers need not block system
progress. The algorithm tolerates dropout and delayed participation gracefully. Such flexibility proves
essential for real-world federated deployments across organizational boundaries [8].
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Strategy Mechanism Tradeoff Consideration
Gradient Quantization Reduced numerical precision Model accuracy impact
Gradient Sparsification Selective parameter transmission Information loss potential
Structured Updates Low-rank matrix constraints Expressiveness limitation
Sketched Updates Randomized compression Reconstruction overhead

.. . . . Distribution divergence

Extended Local Training Multiple local iterations risk Vers
Proximal Regularization Divergence penalty term Local adaptation constraint
Asynchronous Aggregation | Elimination of synchronization barriers | Staleness accumulation
Partial Participation Subset client selection Coverage completeness

Table 3. Communication Reduction Techniques and Optimization Approaches [7, 8].

V. Handling Data Heterogeneity Across Enterprise Boundaries
A. Non-IID Data Distribution Challenges

Enterprise data sources exhibit inherent heterogeneity reflecting organizational specializations,
regional variations, and operational differences. This non-independent and identically distributed
characteristic creates convergence challenges. Local model updates may conflict when representing
divergent data distributions. Zhao et al. [9] investigated the impact of non-IID data on federated
learning performance systematically. The federated averaging algorithm performs well under uniform
data distributions. Real-world scenarios rarely satisfy this assumption. Data naturally partitions along
organizational boundaries. Each enterprise collects information from distinct user populations. Label
distributions vary significantly across participants [9].

The severity of performance degradation depends on distribution characteristics. Zhao et al. [9]
examined scenarios where participants hold data from limited label categories. Extreme cases involve
single-label partitions. Each client possesses examples from only one or two classes. Such
configurations cause severe accuracy reduction compared to centralized training. The global model
struggles to learn generalizable representations. Local optimization pulls parameters toward client-
specific optima. These optima may contradict each other fundamentally. Weight divergence
accumulates as training progresses through rounds [9].

Practical mitigation strategies reduce the impact of statistical heterogeneity. Zhao et al. [9] proposed
sharing a small portion of global data across participants. This shared dataset contains balanced class
representations. Local training combines private data with shared examples. The shared component
anchors optimization toward common objectives. Distribution divergence decreases without requiring
full data centralization. Privacy implications remain manageable given the small shared fraction.
Enterprise deployments can curate synthetic or public datasets for sharing purposes [9].

B. Personalization and Adaptation Mechanisms

Addressing heterogeneity requires architectural provisions for model personalization. Participants
maintain locally-adapted variants while contributing to global model improvement. Fallah et al. [10]
formulated personalized federated learning through meta-learning principles. The approach treats
federated optimization differently from standard formulations. Rather than seeking a single optimal
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global model, the algorithm learns good initialization points. Local adaptation produces personalized
models from shared starting parameters [10].

Multi-task learning formulations accommodate distribution shifts across organizational boundaries.
Fallah et al. [10] applied model-agnostic meta-learning concepts to federated settings. The global
model optimizes for adaptability explicitly. Fast adaptation on local data becomes the primary
objective. Participants perform gradient-based fine-tuning after receiving global parameters. Few
local steps yield strong personalized performance. This formulation embraces heterogeneity as
inherent rather than problematic [10].

Theoretical foundations support the personalization approach rigorously. Fallah et al. [10] established
convergence guarantees for the proposed algorithm. The analysis covers both convex and non-convex
objective functions. Convergence rates account for heterogeneity across participant distributions. The
framework handles partial participation scenarios gracefully. Not all clients must participate in every
round. Stochastic client selection integrates naturally with the meta-learning formulation. Enterprise
environments benefit from such flexibility. Organizational data remains locally optimized while
federation provides beneficial initialization [10].

Challenge Type Description Mitigation Approach
Label Distribution Uneven class representation across .
. P Global data sharing
Skew participants
Feature Distribution . .. . . .
Shift Varying input characteristics Domain adaptation techniques
Quantity Imbalance Unequal dataset sizes Weighted aggregation schemes
. . . Continuous adaptation
Temporal Variation Data distribution changes over time e P
mechanisms
Single-Label Partitions | Participants holding limited categories Balanced shared datasets
Weight Divergence Conflicting local optimization directions Proximal term regularization
Personalization Need Participant-specific model requirements Meta-learning formulations
Rapid Adaptation Fast local fine-tuning requirement Model-agnostic initialization
Table 4. Data Heterogeneity Challenges and Personalization Mechanisms [9, 10].
Conclusion

Federated mastering represents a fundamental shift in corporate artificial intelligence improvement
practices. Businesses can now pursue collaborative systems, getting to know initiatives without
sacrificing statistical management or regulatory compliance. The architectural foundations help
significant cooperation across organizational barriers. Raw data remains permanently within
originating environments throughout the training lifecycle. Only model parameters and gradient
updates traverse network boundaries during iterative refinement cycles.

Privacy-preserving mechanisms provide layered protections against various threat vectors.
Differential privacy introduces mathematical guarantees independent of adversarial capabilities.
Secure aggregation protocols prevent even compromised infrastructure from accessing individual
contributions. The combination establishes defense-in-depth suitable for sensitive enterprise
applications. Healthcare and financial sectors benefit particularly from such robust protections.
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Communication efficiency optimizations reduce bandwidth requirements to practical levels. Gradient
compression techniques minimize transmission volumes substantially. Extended local training
intervals decrease synchronization frequency without sacrificing convergence properties. Enterprise
networks can accommodate federated workloads alongside existing operational traffic.

Data heterogeneity handling remains essential for real-world deployments. Personalization
frameworks acknowledge participant differences as inherent characteristics rather than obstacles.
Meta-learning formulations optimize for adaptability across varying distributions. Local fine-tuning
produces specialized models from shared initializations. Destiny business enterprise artificial
intelligence projects will more and more adopt federated architectures as statistics sovereignty
requirements accentuate globally.

References

[1] Enmao Diao et al., "HETEROFL: COMPUTATION AND COMMUNICATION EFFICIENT
FEDERATED LEARNING FOR HETEROGENEOUS CLIENTS," arXiv, 2021. [Online]. Available:
https://arxiv.org/pdf/2010.01264

[2] Tian Li et al., "Federated Learning: Challenges, Methods, and Future Directions," arXiv, 2019.
[Online]. Available: https://arxiv.org/pdf/1908.07873

[3] HUIMING CHEN et al., "Advancements in Federated Learning: Models, Methods, and Privacy,"
ACM, 2024. [Online]. Available: https://dl.acm.org/doi/pdf/10.1145/3664650

[4] Alberto Blanco-Justicia et al., "Achieving security and privacy in federated learning systems:
Survey, research challenges and future directions,” ScienceDirect, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S095219762100316X

[5] Alexander Ziller et al., "Medical imaging deep learning with differential privacy,” Scientific
Reports, 2021. [Online]. Available: https://www.nature.com/articles/s41598-021-93030-0.pdf

[6] Keith Bonawitz et al., "Practical Secure Aggregation for Privacy-Preserving Machine Learning,"
ACM, 2017. [Online]. Available: https://dl.acm.org/doi/pdf/10.1145/3133956.3133982

[7]1 Jakub Konecn™ y et al, "FEDERATED LEARNING: STRATEGIES FOR IMPROVING
COMMUNICATION EFFICIENCY," arXiv, 2017. [Online]. Available:
https://arxiv.org/abs/1610.05492

[8] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, "Federated Optimization in
Heterogeneous Networks," ACM, 2018. [Online]. Available:
https://dl.acm.org/doi/pdf/10.1145/3286490.3286559

[o] Yue Zhao et al., "Federated Learning with Non-IID Data," arXiv 2022. [Online]. Available:
https://arxiv.org/pdf/1806.00582

[10] Alireza Fallah et al., "Personalized Federated Learning with Theoretical Guarantees: A Model-
Agnostic Meta-Learning Approach," 34th Conference on Neural Information Processing Systems,
2020. [Online]. Available:
https://proceedings.neurips.cc/paper/2020/file/24389bfe4fe2eba8bfgaag203a44cdad-Paper.pdf

1136
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.


https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629
https://arxiv.org/pdf/2010.01264
https://arxiv.org/pdf/1908.07873
https://dl.acm.org/doi/pdf/10.1145/3664650
https://arxiv.org/abs/1902.04885
https://arxiv.org/abs/1902.04885
https://www.sciencedirect.com/science/article/pii/S095219762100316X
https://www.nature.com/articles/s41598-021-93030-0.pdf
https://dl.acm.org/doi/pdf/10.1145/3133956.3133982
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://dl.acm.org/doi/pdf/10.1145/3286490.3286559
https://arxiv.org/abs/1806.00582
https://arxiv.org/abs/1806.00582
https://arxiv.org/pdf/1806.00582
https://proceedings.neurips.cc/paper/2020/file/24389bfe4fe2eba8bf9aa9203a44cdad-Paper.pdf

