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Specifically, we implement and compare the performance of sixteen prominent
bioinspired algorithms, including Particle Swarm Optimization (PSO), Genetic
Algorithm (GA), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA),
Harris Hawks Optimization (HHO), Walrus Optimization Algorithm (WaOA),
Equilibrium Optimization (EO), Fossa Optimization Algorithm (FOA), Prairie Dog
Optimization (PDO), and Hare Escape Optimization Algorithm (HEOA), for the
automatic hyperparameter tuning of ResNet-50. Each optimizer is systematically
integrated into a deep learning pipeline targeting the multi-class PV panel defect
classification problem, enabling fair and reproducible evaluation.

Our study not only benchmarks these algorithms on classification accuracy,
convergence speed, and robustness, but also provides novel insights into their
suitability for complex vision tasks involving real-world, high-dimensional datasets. As
a result, the findings deliver a new reference point for both the Photovoltaic panel
analytics and deep learning optimization communities, guiding future development
and application of bioinspired methods for defect detection and beyond.

Keywords: Photovoltaic, Sustainable energy, Solar power, Convolutional Neural
Networks, Bioinspired, Optimization.

INTRODUCTION

Recent advances in deep learning have demonstrated the critical role that convolutional neural networks (CNNs) play
in automated visual inspection, including the detection and classification of defects in photovoltaic (PV) panels. In
the initial phase of this work, we empirically evaluated a broad spectrum of CNN architectures, such as VGG,
Inception, DenseNet, and EfficientNet, on the photovoltaic panel defect dataset. Among these, ResNet-50 emerged
as the most effective architecture, consistently outperforming alternatives in terms of classification accuracy,
convergence stability, and generalization to unseen data. Its residual learning framework, which offsets degradation
and vanishing gradient issues in deep networks, proved particularly well-suited for the complexity of multi-class PV
defect detection.

The process of "optimizing" [1] such a network typically involves two intertwined, yet distinct, aspects:
hyperparameter tuning and architecture search. Hyperparameter tuning concerns selecting the best set of external
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configuration parameters that govern the training process of the network. These parameters, which are not learned
during the standard training phase, can profoundly influence the model's ability to learn, its convergence speed, and
its final generalization performance. For a model like ResNet-50, the list of hyperparameters is wide. It includes
fundamental choices such as the learning rate, which controls the step size during gradient descent; the batch size,
which determines the number of samples processed before the model's weights are updated.

Despite ResNet-50’s strong performance, its numerous hyperparameters, coupled with the model’s depth and high
capacity, present substantial optimization challenges. Traditional manual tuning [2] or grid-based methods are often
insufficient for navigating the vast, multi-dimensional search space of effective hyperparameter configurations. To
address this, we turn to modern bioinspired metaheuristic algorithms, population, based global optimizers inspired
by natural and social phenomena, to automate and intensify the search for optimal ResNet-50 configurations.

By doing so, we aim to bridge the gap between powerful CNN architectures and the practical need for robust, data-
driven hyperparameter optimization in the context of photovoltaic defect classification.

OBJECTIVES

Optimizing convolutional neural networks (CNNs), particularly deep architectures like ResNet-50, using bioinspired
optimization algorithms has become increasingly popular in the field of machine learning and computer vision. The
primary reason for this approach lies in the inherent complexity of CNNs. These models have a vast number of
hyperparameters, including learning rates, dropout rates, batch sizes, optimizer types, and more, as well as
architectural choices such as the number of filters or layers. For ResNet-50, which is a highly deep and parameter-
rich network, the number of possible hyperparameter combinations grows exponentially. Exhaustively searching this
space using traditional grid or random search is computationally expensive and often ineffective, as these methods
tend to get trapped in local minima or miss better configurations entirely.

Bioinspired algorithms, such as Particle Swarm Optimization (PSO), Genetic Algorithms (GA), Equilibrium
Optimization (EO), Walrus Optimization Algorithm (WaOA), Fossa Optimization Algorithm (FOA), Prairie Dog
Optimization (PDO), and Hare Escape Optimization Algorithm (HEOA), offer a compelling alternative due to their
population-based, stochastic nature. These approaches mimic mechanisms found in nature, such as animal foraging,
escape strategies, swarm behavior, or physical processes, to balance global exploration of the search space and local
exploitation of promising regions. Importantly, these algorithms do not require gradient information, making them
well-suited for optimizing both continuous and discrete (or even categorical) hyperparameters that are ubiquitous in
CNNs. Their design allows for robust search even in highly non-differentiable, multi-modal, or rugged landscapes,
where gradient-based or greedy optimization methods typically falter.

Another key benefit of bioinspired optimization is their adaptability and generality. Since these methods are model-
agnostic, they can be applied regardless of the CNN’s architecture, dataset, or application domain. This is especially
valuable for deep models like ResNet-50, whose performance on specific tasks (such as photovoltaic (PV) panel defect
detection) often hinges on careful tuning of both network parameters and preprocessing pipelines. Moreover,
bioinspired algorithms facilitate automated and reproducible hyperparameter tuning (AutoML), reducing the need
for expert guesswork and manual intervention. This is not just helpful for achieving better accuracy, but also for
ensuring that results are generalizable and reproducible across studies.

Empirical evidence from recent research underscores the efficacy of this approach. Studies using bioinspired
algorithms for ResNet and other CNN optimization have reported significant gains in classification accuracy, faster
convergence, better generalization, and reduced risk of overfitting. These approaches are particularly valued in
domains with complex, high-stakes data such as photovoltaic defect detection, where even modest improvements in
performance can translate to substantial real-world impact. In addition, their resource efficiency allows practitioners
to reach high-performing solutions with fewer training cycles, critical in scenarios where computation is costly or
time is limited.

2.1. Why optimize CNNs with bioinspired approaches?
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Optimizing deep convolutional neural networks (CNNs) and particularly architectures like ResNet-50 with
bioinspired approaches is increasingly important in modern machine learning. CNNs require tuning numerous
hyperparameters, including learning rate, batch size, optimizer type, dropout, augmentation policies, and layer
structure, resulting in a high-dimensional, complex search space. For deep models like ResNet-50, this space is even
more multimodal and non-convex, making traditional methods such as grid or random search impractical due to the
curse of dimensionality.

Bioinspired algorithms efficiently address these challenges by employing strategies derived from natural phenomena,
such as foraging or collective behavior. Approaches like Particle Swarm Optimization (PSO), Genetic Algorithms
(GA), Grey Wolf Optimizer (GWO), and others maintain a population of candidate solutions and balance global
search with local refinement. These algorithms are less prone to getting stuck in local minima compared to traditional
gradient-based optimizers or greedy strategies, facilitating robust exploration of the parameter space.

A critical advantage is that bioinspired methods do not require gradients, making them suitable for optimizing both
continuous and discrete hyperparameters in scenarios where the objective function may be non-differentiable or
“black-box.” This versatility enables optimization across any deep learning model, including ResNet-50, EfficientNet,
and custom architectures, as well as data pipelines and augmentation schemes.

These metaheuristics are also general and can be combined with other techniques, such as Bayesian optimization or
reinforcement learning, to further enhance performance. Recent studies demonstrate that algorithms like
Equilibrium Optimization (EO), Firefly Algorithm (FOA), Whale Optimization Algorithm (WaOA), and others
achieve improved accuracy, faster convergence, and reduced overfitting in tasks ranging from medical imaging and
fault detection to large-scale image classification with ResNet-50.

Finally, bioinspired optimization supports the development of automated, reproducible machine learning pipelines
(AutoML). By automating the search for optimal configurations, these approaches streamline experimentation and
tuning, allowing practitioners to achieve high-performing models without requiring extensive manual adjustment or
expert heuristics.

2.2, Contributions

o Performed a thorough experimental comparison of multiple state-of-the-art CNN architectures, including
VGG, Inception, DenseNet, and EfficientNet, on the PV panel defect detection task to identify the most
suitable deep learning backbone.

o Demonstrated through empirical results that ResNet-50 provided the highest classification accuracy,
generalization, and training stability, justifying its selection as the baseline model for all subsequent
optimization efforts.

e Conducted a comprehensive evaluation of sixteen advanced bioinspired metaheuristic algorithms for
hyperparameter optimization of ResNet-50 in the context of PV panel defect detection.

e Integrated each bioinspired optimizer (including PSO, GA, GWO, WOA, HHO, SSA, OOA, BOA, WaOA, EO,
FOA, PDO, and HEOA) into a unified, reproducible deep learning pipeline to ensure fair benchmarking.

e Systematically benchmarked and ranked each method by classification performance, convergence dynamics,
and robustness using a challenging multi-class PV defect dataset.

e Established new baselines and made practical recommendations for selecting bioinspired optimization
strategies for advanced deep learning problems in visual inspection and renewable energy domains.

METHODS

In the preliminary phase of this study, we conducted a series of experiments employing a diverse set of convolutional
neural network (CNN) architectures for the photovoltaic (PV) panel defect detection task. Architectures ranging from
earlier, shallower models (such as VGG16 [3] and Resnet50 [4]) to more recent and complex designs (including
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DenseNet [5], EfficientNet [6], NASNetMobile [7], and Inception-based models [8]) were systematically evaluated
on the same data splits and under similar training protocols.

Despite the variety in architectural depth and complexity, ResNet-50 consistently delivered superior classification
performance on our multi-class PV defect dataset. This superiority can be attributed to ResNet-50’s unique residual
learning framework, which effectively mitigates the vanishing gradient problem prevalent in deeper neural networks
and enables more robust feature extraction across hierarchical levels. Additionally, ResNet-50 demonstrated
favorable generalization, stable convergence, and resilience to overfitting, as evidenced by validation accuracy and
loss curves.

Given these findings, ResNet-50 was selected as the baseline architecture for all subsequent optimization
experiments in this research. This decision ensures that the benchmarking of bioinspired optimization algorithms is
conducted using a high-performing, widely adopted CNN model, thereby maximizing both the practical relevance
and scientific rigor of our comparative analysis.

3.1. Bioinspired optimization algorithms
Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) is a fundamental swarm intelligence algorithm introduced in the early 1990s [9],
inspired by the foraging and path-finding behavior of real ant colonies. ACO models how ants communicate indirectly
through pheromone trails to collaboratively discover and reinforce the shortest and most efficient paths to food
sources, making it especially useful for combinatorial and routing problems.

In ACO, artificial ants explore the problem space and probabilistically construct solutions based on pheromone
intensity and problem-specific heuristics. As they traverse different paths, ants deposit pheromones that guide the
choices of subsequent ants—reinforcing successful paths while allowing evaporation to discourage suboptimal ones.
This iterative colony behavior allows ACO algorithms to balance exploration of new possibilities with exploitation of
known good solutions, resulting in robust and adaptable optimization performance, particularly in network,
scheduling, and path-planning applications.

Artificial Bee Colony (ABC)

The Artificial Bee Colony (ABC) optimization algorithm is a bioinspired metaheuristic introduced in 2005 [10] that
takes its inspiration from the intelligent foraging behavior of honeybee swarms. ABC models the dynamic roles and
information-sharing strategies of employed, onlooker, and scout bees within a colony, using collective decision-
making to solve complex optimization problems.

In ABC, artificial bees are categorized into three functional groups: employed bees that exploit known food sources
(solutions), onlooker bees that evaluate and select food sources based on shared information (solution quality), and
scout bees that explore the search space for new potential solutions. The algorithm cycles through phases of
exploration (discovery of new solutions) and exploitation (intensive improvement of promising solutions), leveraging
collective intelligence and decentralized communication to balance diversification and intensification in the search
for global optima.

Equilibrium Optimization (EO)

The Equilibrium Optimization (EO) algorithm, introduced by Faramarzi et al. [11], is a physics-inspired metaheuristic
that diverges from animal-based swarm intelligence approaches. Instead, EO is rooted in the physical concept of
dynamic equilibrium, specifically the mass balance observed in controlled volumes, offering a fundamentally new
paradigm for population-based optimization.

EO simulates optimization as a process where algorithmic particles represent "concentrations” and strive to reach
equilibrium through dynamic interactions. Rather than relying on a single best solution, EO employs a balance pool
of five equilibrium candidates to guide search trajectories. Through dynamic update equations inspired by
equilibrium forces, particles iteratively move toward balanced states, maintaining diversity and providing robust
global search, thus delivering a theoretically grounded alternative to traditional bio-inspired algorithms.
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Firefly Algorithm (FA)

The Firefly Algorithm (FA), introduced by Yang [12], is a nature-inspired metaheuristic rooted in the bioluminescent
communication and movement strategies of real fireflies. FA diverges from conventional swarm intelligence methods
by modeling optimization based on the attraction scheme dictated by fireflies' perceived brightness, which, in the
abstraction, is linked to the quality of candidate solutions.

In FA, each firefly in the population symbolizes a candidate solution, emitting a metaphorical "light intensity"
proportional to its fitness. Less-fit (dimmer) fireflies are attracted toward more-fit (brighter) ones, with attraction
strength modulated by both solution quality and their separation distance. This movement is governed by equations
balancing deterministic attraction with randomized exploratory jumps, preventing premature convergence. By
iteratively updating positions based on these principles, the Firefly Algorithm efficiently explores and exploits
multimodal landscapes, sustaining diversity in the population and enhancing the potential to discover globally
optimal solutions—offering a flexible and robust alternative to classical optimization techniques.

Fossa Optimization Algorithm (FOA)

The Fossa Optimization Algorithm (FOA) is a bioinspired metaheuristic introduced in 2024 [13] and inspired by the
natural hunting strategies of the fossa, a unique apex predator native to Madagascar. As one of the newest nature-
inspired optimization algorithms, FOA brings a fresh perspective to computational optimization by incorporating the
fossa’s distinct behavioral patterns, offering an alternative to more commonly modeled animal inspirations.

FOA uniquely captures the two-phase hunting strategy of the fossa—an approach previously unrepresented in the
metaheuristic optimization literature. The algorithm models both the cautious approach and strategic positioning
during the initial attack, as well as the rapid, committed chase that follows. By mimicking these nuanced, real-world
predatory sequences, FOA achieves a balance between exploration and exploitation, making it a promising tool for
solving complex optimization problems.

Genetic Algorithm (GA)

Genetic Algorithm (GA) is one of the earliest and most widely used evolutionary algorithms, introduced in the 1970s
by John Holland [14]. GA is inspired by Charles Darwin’s principle of natural selection, modeling the processes of
biological evolution, such as reproduction, crossover, mutation, and survival of the fittest, to solve complex
optimization problems.

In GA, each candidate solution, encoded as a chromosome, represents an individual in a population. The algorithm
evolves these individuals through generations using three main operators: selection (choosing the fittest individuals),
crossover (combining parts of two parents to create offspring), and mutation (randomly altering parts of a
chromosome for genetic diversity). Over successive generations, natural selection guides the population toward
optimal or near-optimal solutions, balancing exploration and exploitation through genetic variation and competition.
GA'’s flexibility and robustness have made it a foundational tool for both discrete and continuous optimization tasks
across diverse fields.

Goat Optimization Algorithm (GOA)

The Goat Optimization Algorithm (GOA) is a bioinspired metaheuristic developed in recent years [15], inspired by
the natural foraging and climbing behaviors of goats. GOA is motivated by the goat's remarkable ability to navigate
rugged terrains and optimally search for food in harsh and challenging environments, making it a promising
approach for complex optimization problems.

In GOA, each candidate solution represents a goat in a herd, and the search process mimics goats’ exploration of their
environment. The algorithm models climbing (intensification, or exploitation) as the goat moves toward promising
food locations (better solutions), while goat wandering and herd social interaction enable diverse exploration of the
search space (exploration). GOA also incorporates random jumps and adaptive movement patterns to escape local
optima, reflecting the goat’s agility and adaptability in nature. This combination of directed climbing and stochastic
exploration allows the algorithm to balance local refinement and global search for efficient and robust optimization.
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Gray Wolf Optimizer (GWO)

The Gray Wolf Optimizer (GWO) is a bioinspired metaheuristic algorithm introduced in 2014 [16], inspired by the
leadership hierarchy and group hunting strategies of gray wolves. GWO models the social dominance of wolf packs,
mimicking natural behaviors such as tracking, encircling, and attacking prey, to efficiently navigate the search space
and solve complex optimization problems.

In GWO, the optimization process is structured around a virtual wolf pack, where candidates are categorized as alpha
(leader), beta, delta, and omega (followers) according to their fitness. The algorithm uses a mathematically modeled
encircling and hunting mechanism—where wolves gradually converge toward the prey (optimal solution) by
adjusting their positions relative to the top solutions (alpha, beta, delta). This collaborative and hierarchical approach
allows GWO to flexibly balance exploration and exploitation, ensuring both global search diversity and strong
convergence to optima.

Harris Hawks Optimization (HHO)

Harris Hawks Optimization (HHO) is a bioinspired metaheuristic algorithm, introduced in 2019 [17], that models
the cooperative hunting strategies and dynamic behaviors of Harris hawks in nature. Unlike traditional single-
strategy algorithms, HHO is designed to solve complex optimization problems by simulating the adaptive tactics
exhibited by hawks during group hunting, including surprise pounce, perch-based harassment, and coordinated
attacks.

In HHO, algorithmic candidates represent individual hawks that alternately explore and exploit the search space,
mirroring the hawks' shift between exploration (searching for prey) and exploitation (attacking the prey). The process
dynamically switches between multiple hunting strategies based on the "energy" of the prey (problem fitness
landscape), enabling the algorithm to balance global exploration and local exploitation. This multi-phase, nature-
inspired structure empowers HHO to efficiently find high-quality solutions while avoiding premature convergence to
local optima.

Prairie Dog Optimization (PDO)

Prairie Dog Optimization (PDO) is a novel bioinspired metaheuristic algorithm that replicates the collective
intelligence and social behaviors of prairie dog colonies [18]. In the algorithm, each solution represents a “prairie
dog” that explores and exploits the search space through cooperative phases inspired by real-world foraging,
burrowing, and alarm-based communication. During the exploration (foraging) phase, individuals are attracted both
to the best-known solutions and to random peers, ensuring the population can efficiently search globally while
sharing information about promising regions. As the search progresses, the focus transitions toward local
exploitation (burrowing) near the best solutions, with an adaptive "digging strength" that increases over time to
intensify refinement.

A defining feature of PDO is its use of dynamic signaling, “food alarms” and “anti-predation alarms, to balance
exploration and exploitation based on progress, preventing the algorithm from stagnating in local minima. This
biologically realistic division of labor and responsive adaptation enables robust performance in complex, high-
dimensional optimization tasks, such as hyperparameter tuning for deep learning models. Recent studies have shown
that PDO and its variants achieve strong results in engineering, energy management (including photovoltaic
systems), and deep neural network optimization, making it a promising tool for challenging optimization problems
in data-driven research.

Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a pioneering bioinspired metaheuristic algorithm introduced in 1995 [19],
inspired by the collective behavior observed in bird flocking and fish schooling. PSO models the social sharing of
information among particles (solutions) within a population as they collaboratively search for the optima in complex
solution spaces.

In PSO, each particle in the swarm represents a potential solution and is characterized by both a position and a
velocity. Particles explore the search space by adjusting their movements based on their own best-found positions
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and the best-known positions within the swarm. This simple yet effective social communication framework,
balancing both individual learning (cognitive component) and group influence (social component), allows PSO to
efficiently converge toward global optima while maintaining sufficient diversity to avoid local traps.

Walrus Optimization Algorithm (WaOA)

The Walrus Optimization Algorithm (WaOA) is a recently developed bioinspired metaheuristic [20], that emulates
the complex natural behaviors of walruses inhabiting arctic and sub-arctic environments. Unlike algorithms inspired
by a single animal behavior, WaOA uniquely integrates multiple walrus activities, including feeding, migration,
predator evasion, and social interactions, into a sophisticated optimization framework, allowing it to model both
collective and adaptive strategies for global problem solving.

In WaOA, the hierarchical feeding structure of walrus groups is used to guide the search process, with the "strongest
walrus" (best candidate solution) leading exploration and preventing premature convergence. Migration behavior
inspires the algorithm's exploration phase, enabling walruses to discover promising regions in the search space by
moving toward randomly selected peers. Predator evasion is reflected in intensive, localized searches (exploitation),
while recent algorithm variants employ social signals to dynamically balance exploration and exploitation, making
WaOA both adaptive and robust.

Whale Optimization Algorithm (WOA)

The Whale Optimization Algorithm (WOA) is a bioinspired metaheuristic algorithm introduced in 2016 [21] that
draws its inspiration from the unique bubble-net hunting strategy of humpback whales. Designed to address complex
optimization problems, WOA models the group foraging behavior and sophisticated spiral swimming patterns
exhibited by whales when encircling and capturing their prey, providing a flexible tool for both exploration and
exploitation phases in optimization.

In WOA, solution candidates represent whales that alternately perform encircling maneuvers and spiral bubble-net
attacks, effectively navigating the search space. The algorithm simulates two primary behaviors: global exploration
through random position updates, based on a search for prey, and intensive exploitation via shrink encircling and
spiral movement toward the best solution found. This dynamic shifting allows WOA to balance diversity and
convergence, enhancing its ability to find optimal solutions and avoid being trapped in local optima.

RESULTS
4.1. Dataset Description

The photovoltaic panel image dataset [22] is a curated collection of RGB images of PV modules annotated into six
surface-condition classes: Bird-drop, Clean, Dusty, Electrical-damage, Physical-damage, and Snow-covered. It was
assembled within an educational and research initiative focused on benchmarking machine learning classifiers and
hybrid deep learning models for automatic fault detection in solar panels, with emphasis on realistic, visually diverse
operating conditions. The images originate from multiple open-source repositories and prior PV fault-detection
studies, then were manually inspected, relabeled, and balanced to form a consistent six-class taxonomy that captures
common contamination and degradation patterns relevant to real-world PV deployments.

In its current form, the dataset comprises 1,574 samples split into 929 training, 550 validation, and 95 test images,
with a nearly balanced distribution across the six classes to reduce bias during model learning. Each class contains
examples covering natural variability in scene composition, illumination, camera distance, and defect extent (e.g.,
partial vs. extensive snow coverage, localized vs. widespread dust, isolated vs. multiple bird droppings), making the
dataset suitable for evaluating both robustness and generalization of classification models deployed in practical PV
monitoring scenarios.

Table 1. Class-wise train/validation/test distribution in the photovoltaic panel defect dataset.

Class Training Validation Test Total

Bird-drop 177 104 17 298
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Clean 169 102 18 289
Dusty 162 97 16 275
Electrical-damage 135 77 13 225
Physical-damage 132 78 15 225
Snow-covered 154 92 16 262
Total 929 550 95 1574

4.2. Evaluation results

We conducted wide experiments to evaluate a range of CNN architectures (Table 2), NASNetMobile, VGG16,
EfficientNetBo, Xception, and ResNet50, on the photovoltaic panel defect classification task, without any
metaheuristic optimization. The results reveal a clear trend: lighter models such as NASNetMobile and VGG16
achieve moderate accuracy (0.7639 and 0.7847, respectively), while more advanced and deeper architectures like
EfficientNetBo and Xception performed better, achieving 0.7917 and 0.8125 test accuracy. Notably, ResNet50
outperformed all alternatives in its unoptimized form, delivering the highest test accuracy of 0.8194 and the lowest
test loss of 0.4880. This consistent superiority validates the choice of ResNet50 as the base model for further study
and optimization. The architecture’s residual connections and depth provide enhanced feature extraction and
generalization capacity well-suited to the complexity of multiclass PV defect identification.

Table 2. CNN models without metaheuristic optimization

Model Test Accuracy Test Loss
NASNetMobile 0.7639 0.6329
VGG16 0.7847 0.6772
Efficientnetbo 0.7917 0.5533
Xception 0.8125 0.5434
Resnet50 0.8194 0.4880

Subsequently, we investigated the impact of metaheuristic optimization on ResNet50 (Table 3) by tuning its key
hyperparameters using a diverse suite of algorithms, including physics-based (EO), prey/predator-inspired swarm
(HEOA, FOA, GOA, PDO, FA, PSO, Gray Wolf), evolutionary (GA, ABC, ACO), and hybrid approaches (WOA+ABC,
HHA, WaOA). The results demonstrate a significant uplift in accuracy and reduction in test loss compared to the
unoptimized baseline. Among single-algorithm approaches, Particle Swarm Optimization (PSO) and Ant Colony
Optimization (ACO) both achieve notable gains, reaching test accuracies of 0.8472 with losses below 0.47. Firefly
Algorithm (FA) and Prairie Dog Optimization (PDO) also improve performance to 0.8254 and 0.8194, respectively.
Hybrid and ensemble algorithms yield even greater benefit, with methods such as HYBRID WOA+ABC (0.8542),
Gray Wolf (0.8611), ABC (0.8611), WaOA (0.8611), HHA (0.8681), and Whale Optimization Algorithm (WOA,
0.8750) approaching or exceeding 0.86 test accuracy. The lowest recorded test loss among all optimization runs is
0.3731 for WOA.

Table 3. Impact of metaheuristic optimization on ResNet50

Method Test Accuracy | Test Loss
EO 0.7917 1.2720
HEOA 0.7917 0.7843
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FOA 0.7986 1.0730
GA 0.7986 0.7055
GOA 0.8125 0.9246
PDO 0.8194 0.5295
FA 0.8254 0.5944
ACO 0.8333 0.4843
PSO 0.8472 0.4742
ACO 0.8472 0.4699
HYBRID WOA+ABC 0.8542 0.4843
Gray Wolf 0.8611 0.4691
ABC 0.8611 0.4035
WaOA 0.8611 0.4446
HHA 0.8681 0.7588
WOA 0.8750 0.3731

In Table 4, we analyze the training dynamics of the ResNet-50 model optimized using metaheuristic algorithms to
assess convergence behavior and generalization performance on the PV panel defect classification task. This analysis
is based on monitoring the evolution of accuracy and loss on both the training and validation sets across epochs

Table 4. Training and validation curves for the ResNet-50 model optimized metheuristic algorithms.
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DISCUSSION

We present a comparative analysis of metaheuristic optimization categories: physics-based, evolutionary, and
bioinspired swarm/hybrid methods to highlight their respective strengths and weaknesses when tuning deep CNNs
such as ResNet-50 for photovoltaic panel defect classification tasks.

5.1. Physics-based algorithms

Physics-inspired metaheuristics, such as Equilibrium Optimization (EO), approach hyperparameter search by
simulating physical processes like dynamic equilibrium or mass transfer. While these methods offer mathematical
rigor and can traverse multidimensional landscapes, our results indicate that physics-based optimization alone did
not consistently deliver superior outcomes on the photovoltaic panel defect classification task. For instance, the EO-
optimized ResNet50 exhibited a test accuracy of 0.7917—practically equivalent to the unoptimized baseline—and the
highest test loss (1.2720), suggesting inefficient parameter convergence for the complexity of this specific problem.
The likely cause is the limited ability of physics-based models to maintain population diversity or escape poor local
optima when faced with highly nonlinear, multimodal hyperparameter spaces like those of deep CNNs.

5.2. Evolutionary algorithms

Evolutionary approaches, such as Genetic Algorithms (GA) and Artificial Bee Colony (ABC), were designed to mimic
the processes of natural selection and genetic mutation. They operate on populations of candidate solutions,
iteratively selecting, recombining, and mutating to improve fitness. In our experiments, evolutionary algorithms
delivered a substantial improvement over both the baseline and physics-based strategies. ABC, for example, produced
a test accuracy of 0.8611 and low-test loss (0.4075), while ACO and GA achieved 0.8472—0.8542 accuracy ranges and
losses below 0.47. These results underscore evolutionary algorithms’ strength in sustaining exploration and
adaptation, allowing them to reliably uncover high-performing hyperparameter regions in complex CNN landscapes.
Notably, ABC’s collective intelligence and resource-sharing mechanisms may explain its especially strong
performance on multiclass PV defects.

5.3. Bioinspired swarm and hybrid algorithms

Bioinspired algorithms include a diverse array of swarm- and predator—prey-inspired metaheuristics, such as Particle
Swarm Optimization (PSO), Gray Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Firefly Algorithm
(FA), Prairie Dog Optimization (PDO), Hybrid algorithms (e.g., WOA+ABC), and others. These methods excel at
balancing global exploration and local exploitation by modeling collective movement, hierarchical leadership, or
adaptive foraging strategies, and often incorporate hybridization for additional robustness. Among all categories,
bioinspired swarm and hybrid metaheuristics achieved the highest test accuracies and the lowest losses in our
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experiments. For example, WOA produced a peak accuracy of 0.8750 with a test loss of 0.3731; Gray Wolf and WaOA
each reached 0.8611 accuracy and losses under 0.43. PSO, FA, and PDO provided consistent increases over baseline,
though the most dramatic gains came from hybrid/ensemble algorithms such as WOA+ABC (0.8542 accuracy) and
HHA (0.8681).

This superior performance is attributed to their ability to continuously adapt search directions, exploit diverse
candidate solutions, and avoid stagnation in local minima, qualities especially relevant for high-dimensional vision
problems like PV panel defect detection. Swarm and hybrid strategies appear to provide a more reliable, efficient
means of optimizing deep network hyperparameters than physics-based or evolutionary approaches, particularly
when the search space is complex and multimodal.

Categorical analysis in Table 5 demonstrates that, while all metaheuristic optimization algorithms yield measurable
benefits over manual or unoptimized hyperparameter settings, bioinspired swarm and hybrid algorithms consistently
outperform physics-based and classical evolutionary approaches. Swarm methods’ dynamic adaptation and
population diversity confer strong generalization, enabling state-of-the-art accuracy and confidence in real-world PV
defect classification. For practitioners deploying CNNs in such settings, we recommend initial benchmarking with
hybrid or swarm-based metaheuristics, followed by fine tuning with evolutionary algorithms if further improvement
is needed. Physics-based optimization, while theoretically appealing, may require additional diversity mechanisms
to be competitive in these tasks.

Table 5. Categorical analysis

Optimization | Representative | Best Test | Best Population | Exploration | Comments
Category Algorithms Accuracy | Test Diversity /Exploitation

T
Loss Balance & Trends
Matches baseline,
Physics-Based | EO 0.7917 1.2720 | Low Low lacks adaptive
search
0.8611 0.4075 Robust
Evolutionary GA, ABC, ACO (ABC) (ABC) Moderate Moderate improvement,

adaptive, efficient

PSO, WOA, Gray Best results, strong

Bioinspired 0.8750 0.3731 . . generalization,
Swarm/Hybrid Wolf, FA, HHA, (WOA) (WOA) High High efficient for
WOA+ABC .
multimodal spaces
CONCLUSION

By moving from baseline CNNs through unoptimized and optimized ResNet50 models, this study demonstrates that
metaheuristic hyperparameter optimization is essential for state-of-the-art performance in real-world photovoltaic
defect classification. The highest gains are consistently driven by bioinspired and ensemble metaheuristics, reflecting
their capacity to navigate complex search spaces effectively. These results provide robust evidence for the adoption
of adaptive optimization pipelines in production photovoltaic analytics and inform future studies targeting even more
complex or imbalanced visual classification challenges.

First, optimized ResNet50 consistently outperforms all baseline CNN models used in our experiments, confirming
the critical value of metaheuristic optimization for hyperparameter tuning in deep architectures. Second, the
comparative effectiveness of different algorithms suggests that swarm intelligence and hybrid strategies, such as
WOA, HHA, and Gray Wolf, tend to achieve the best overall balance of accuracy and generalization. Third, while
physics-inspired and classical evolutionary algorithms provide strong improvements, bioinspired swarm methods
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often deliver the highest robustness and efficiency, likely due to their superior capability in navigating complex,
multimodal search spaces inherent to deep learning.

Finally, the stepwise improvement from baseline CNN selection to metaheuristic-optimized deep models affirms the
necessity of both model and optimizer choice in photovoltaic defect detection tasks. The findings provide practical
guidance: use of a robust model like ResNet50, combined with advanced optimizers, particularly swarm or hybrid
metaheuristics, delivers reliable, state-of-the-art classification in real-world photovoltaic quality control settings.
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