

# **RF Design and Integration Strategies for Non-Terrestrial Networks in Next-Generation Mobile Systems**

Gaurav Patel

T-Mobile USA Inc, USA

---

**ARTICLE INFO****ABSTRACT**

Received: 01 Dec 2025

Revised: 02 Jan 2026

Accepted: 14 Jan 2026

The evolution toward 5G-Advanced and 6G networks necessitates ubiquitous connectivity through seamless Non-Terrestrial Network (NTN) integration with terrestrial infrastructure. This addresses coverage gaps in remote, maritime, aerial, and disaster-affected regions while presenting significant technical challenges. Propagation disparities between satellite and terrestrial links introduce complexities in managing extended round-trip times, Doppler shifts, and variable elevation angles. Mobility management complexity increases due to dynamic satellite footprints requiring sophisticated handover mechanisms. This paper presents a hybrid RF planning framework combining deterministic propagation models with AI-driven traffic prediction for optimized resource allocation. Predictive handover algorithms leverage ephemeris data and machine learning to ensure session continuity. Dual connectivity architectures enable simultaneous NTN-terrestrial operation, while distributed intelligence and edge processing facilitate ultra-low latency decision-making. User-centric QoS management prioritizes mission-critical applications through dynamic resource allocation. Digital twin simulation environments provide validation platforms for performance prediction across heterogeneous networks. These innovations align with 3GPP Release-18/19 specifications, establishing foundations for global, resilient wireless connectivity.

**Keywords:** Non-Terrestrial Networks, Satellite-Terrestrial Integration, RF Design, Predictive Handover, Digital Twin Simulation.

---

## **1. Introduction and Motivation**

### **1.1 Advancement Trajectory from Fifth-Generation Networks toward Sixth-Generation Wireless Systems**

The telecommunications sector is experiencing a profound transformation as 5G infrastructure evolves toward 6G capabilities. While current terrestrial cellular networks achieve significant deployment success in urban and suburban areas, next-generation systems demand comprehensive architectural redesign beyond traditional infrastructure models. The 5G-Advanced phase bridges this transition, introducing enhanced functionalities while establishing foundations for 6G's vision of integrated, intelligent connectivity that merges terrestrial and orbital networks into a unified platform [2].

### **1.2 Universal Coverage Requirements and Terrestrial Infrastructure Shortcomings**

Significant service constraints persist in sparsely populated areas, maritime regions, flight paths, and disaster zones where traditional cell towers face economic or physical barriers. This mismatch

between connectivity demands and terrestrial infrastructure reach drives satellite-based communication adoption as a core component of modern wireless frameworks. Financial challenges in low-density zones, geographic barriers across oceans and remote areas, and ground equipment vulnerability during natural disasters collectively underscore the need for space-based assets extending service beyond conventional boundaries.

### **1.3 Satellite Network Functions across Isolated, Oceanic, Airborne, and Crisis-Affected Territories**

Orbital platforms at various altitudes—geostationary (GEO), medium Earth orbit (MEO), and low Earth orbit (LEO)—supplemented by stratospheric platforms and unmanned aerial systems, provide distinct capabilities for expanding coverage. Strategic integration supports vessel and aircraft communications, powers sensor networks across dispersed locations, maintains backup pathways during infrastructure collapse, and reduces connectivity inequality in underserved regions. These space-based assets operate as integral components within diverse frameworks designed to sustain reliable service regardless of location.

### **1.4 Standards Development Framework through Third Generation Partnership Project Specifications**

The 3GPP has advanced satellite integration specifications through consecutive releases. Release 15 provided conceptual groundwork, Release 16 expanded scenario coverage, and Release 17 introduced substantial technical foundations addressing synchronization timing, frequency deviation correction, and connection management adaptations for orbital contexts [1]. Release 18 delivered further enhancements including terminal location validation, onboard processing satellite designs, inter-satellite links, and refined handover procedures [1][2].

### **1.5 Scope Definition and Technical Objectives**

This paper examines RF design factors, infrastructure innovations, and intelligent coordination strategies critical for successful NTN-terrestrial integration. Key contributions include: hybrid radio planning combining physics-based modeling with machine learning; advanced handover mechanisms utilizing satellite trajectory data; simultaneous connectivity structures enabling parallel link usage; distributed intelligence architectures for edge-based decision-making; user-centric QoS management; and digital twin platforms for performance evaluation.

## **2. Core Technical Obstacles in Satellite-Terrestrial Network Convergence**

### **2.1 Electromagnetic Wave Behavior Differences**

Merging orbital and terrestrial networks encounters distinct electromagnetic transmission characteristics. Satellite links exhibit extended propagation delays (hundreds of milliseconds for GEO, tens for LEO) compared to terrestrial links' single-digit milliseconds. Doppler frequency shifts from satellite motion require continuous correction algorithms. Elevation angle dependencies create power fluctuations as satellite positions change, while terrestrial channels exhibit multipath reflections, shadowing, and diffraction effects. Urban environments produce significant blocking, and atmospheric layers add degradation factors including tropospheric attenuation and ionospheric scintillation [3][4].

**Table 1: Propagation Characteristics Comparison Between NTN and Terrestrial Links [3][4]**

| Parameter                    | Satellite Links (NTN)                                                               | Terrestrial Links                             |
|------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------|
| Signal Propagation Delay     | Extended intervals (hundreds of milliseconds for GEO, tens of milliseconds for LEO) | Minimal intervals (single-digit milliseconds) |
| Doppler Frequency Shift      | Significant shifts due to orbital motion relative to ground terminals               | Minimal shifts in stationary cell scenarios   |
| Elevation Angle Dependencies | Signal strength varies with satellite position changes                              | Relatively constant in fixed cell deployments |
| Primary Propagation Effects  | Atmospheric absorption, ionospheric scintillation, and rain attenuation             | Multipath reflections, shadowing, diffraction |
| Channel Characteristics      | Predominantly line-of-sight or near-line-of-sight                                   | Complex multipath environments in urban areas |
| Environmental Factors        | Weather-dependent attenuation, solar activity influences                            | Building obstruction, urban canyon effects    |

## 2.2 Terminal Movement and Connection Transfer Difficulties

Dynamic satellite footprints create substantial coordination requirements. Satellite antenna systems must track coverage regions as vehicles progress through orbits, demanding precise pointing and scheduling. Brief overhead passages for LEO constellations (minutes) require frequent handover procedures. Maintaining session integrity during NTN-terrestrial transitions demands sophisticated mobility frameworks with seamless state handoff. Predictive handover strategies leveraging ephemeris data forecast coverage shifts before signal degradation, though implementation requires precise orbital position and terminal location knowledge [3][4].

## 2.3 Frequency Allocation Conflicts and Unwanted Signal Impacts

Operating satellite and terrestrial systems in common or adjacent frequencies creates mutual interference. Satellite downlinks may disrupt terrestrial reception in shared bands, while terrestrial transmitters generate interference toward satellite receivers. Different transmission power characteristics and coverage dimensions complicate interference assessment. Terrestrial networks using intensive frequency reuse may produce emissions disrupting satellite assignments, while satellite transmitter imperfections cause spectrum expansion affecting terrestrial bands. Regulatory frameworks define technical specifications and coordination procedures for shared spectrum use [3][4].

## 2.4 Service Quality Variation Challenges

Latency differences between satellite and terrestrial channels establish fundamental QoS obstacles. GEO connections add propagation delays exceeding 250ms, while LEO reduces but doesn't eliminate considerable latency relative to terrestrial millisecond-range performance. These differences impact interactivity, efficiency, and user satisfaction. Resource allocation requires intelligent assignment accounting for throughput characteristics and quality demands, with satellite links typically delivering asymmetric capacity contrasting balanced terrestrial arrangements. SLA implementation demands comprehensive monitoring across management domains and technology divisions [3][4].

**3. Combined Radio Frequency Design and Power Budget Enhancement****3.1 Cross-Domain Signal Transmission Characterization**

Accurate propagation assessment spanning orbital and terrestrial environments requires merging distinctive frameworks. ITU-R P.452 provides procedures for satellite-to-ground path loss estimation, incorporating atmospheric gaseous absorption, tropospheric scattering, and terrain effects. ITU-R P.618 addresses rain attenuation. Terrestrial modeling utilizes COST-231 Hata for urban/suburban zones and 3GPP TR 38.901 for detailed channel characterization including small-scale fading, angular spread, and delay dispersion. Hybrid approaches combine deterministic ray-tracing with statistical techniques for comprehensive coverage prediction [5].

**Table 2: Propagation Model Selection for Hybrid NTN-Terrestrial Planning [5]**

| Network Domain      | Propagation Model        | Primary Applications                                    | Key Parameters                                                                |
|---------------------|--------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------|
| Satellite-to-Ground | ITU-R P.452              | Path loss prediction for various satellite orbits       | Atmospheric gaseous absorption, tropospheric scattering, and elevation angles |
| Satellite-to-Ground | ITU-R P.618              | Rain attenuation and atmospheric effects                | Rainfall rate, frequency band, slant path length                              |
| Terrestrial Urban   | COST-231 Hata            | Metropolitan and suburban coverage prediction           | Building density, carrier frequency, base station height                      |
| Terrestrial Generic | 3GPP TR 38.901           | 5G NR channel modeling across deployment scenarios      | Small-scale fading, angular spread, and delay dispersion                      |
| Hybrid Scenarios    | Ray-tracing + Stochastic | Combined deterministic and statistical characterization | Environmental geometry, statistical channel behavior                          |

**3.2 Intelligent Traffic Volume and Terminal Movement Forecasting**

Machine learning structures enable predictive assessment for capacity projection and device movement. Neural networks process historical traffic records, temporal patterns, and contextual variables to forecast capacity demands across network sectors. These predictions enable proactive resource reservation preceding actual demand emergence, reducing congestion and enhancing consistency. Mobility prediction algorithms analyze device trajectory history and motion characteristics to project future positions and handover timing, enabling anticipatory resource positioning. Iterative optimization refines RF parameters through experimentation cycles, adjusting transmission power, modulation schemes, and beamforming based on performance across varying conditions [5][6].

**3.3 Transmission Power Budget Modification Approaches**

Adaptive power control adjusts transmission strength responding to channel quality fluctuations, maintaining target signal-to-noise ratios while minimizing interference and energy consumption. Adaptive modulation and coding select appropriate constellation sizes and redundancy levels matching instantaneous conditions, boosting data rates during favorable propagation while ensuring connectivity during fading. These adaptations prove particularly valuable in satellite scenarios where

atmospheric attenuation varies with weather and elevation angle changes. Beamforming technologies focus transmitted power toward designated receivers via antenna array processing, amplifying effective radiated power and reducing interference. MIMO arrangements exploit spatial diversity through simultaneous data streams across multiple antenna elements, increasing spectral efficiency. Rain fade mitigation employs adaptive coding, power boosting during precipitation, and site diversity exploiting spatial decorrelation to maintain connectivity [5].

#### **4. Sophisticated Network Architecture and Communication Protocol Design**

##### **4.1 Forward-Looking Connection Transition Systems**

Handover prediction leverages ephemeris data to forecast coverage boundary encounters before signal degradation triggers reactive procedures. Orbital trajectory databases enable computation of future satellite positions relative to ground terminals, allowing advance identification of when current satellite visibility ends and alternative coverage becomes available. Context-aware selection incorporates multiple factors beyond signal strength—terminal velocity, service requirements, network load, and predicted channel evolution—to determine optimal handover timing and target selection. Machine learning-enhanced decision refinement adjusts handover thresholds via training on historical outcomes, learning configurations distinguishing successful transitions from failures. Neural networks process multifaceted inputs spanning signal metrics, mobility specifications, and network state to produce handover decisions balancing service continuity against resource utilization [7][8].

**Table 3: Handover Paradigm Comparison in NTN-Terrestrial Integration [7][8]**

| Aspect                     | Predictive Handover                                                         | Reactive Handover                                            |
|----------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------|
| Trigger Mechanism          | Satellite trajectory calculations and forecasted coverage transitions       | Signal strength measurements and quality thresholds          |
| Decision Inputs            | Ephemeris data, terminal location, mobility vectors, network state          | Real-time signal metrics, received signal strength indicator |
| Timing Characteristics     | Anticipatory transitions before signal degradation                          | Response to measured signal quality decline                  |
| Implementation Complexity  | Higher complexity requiring orbital position data and prediction algorithms | Lower complexity with standard measurement procedures        |
| Handover Failure Risk      | Reduced through advance planning and resource reservation                   | Increased during rapid signal quality changes                |
| Computational Requirements | Machine learning algorithms, trajectory prediction models                   | Signal measurement processing and threshold comparison       |
| Suitability                | Dynamic LEO satellite scenarios with predictable motion patterns            | Terrestrial scenarios with unpredictable mobility            |

##### **4.2 Parallel Link Operation and Heterogeneous Technology Integration**

Dual connectivity toward satellite and terrestrial infrastructure applies concepts similar to EUTRA-NR dual connectivity, enabling terminals to maintain simultaneous bearers across diverse radio access

technologies. This architecture permits traffic splitting where distinct data streams route via appropriate paths based on latency sensitivity, throughput demands, and channel conditions, exploiting complementary advantages. Carrier aggregation combines spectrum resources across satellite and terrestrial nodes, presenting consolidated bandwidth to higher protocol layers while physical transmission occurs via distinct radio links in separate frequency bands. Traffic steering policies execute intelligent flow assignment dynamically allocating sessions to available radio bearers considering QoS requirements, link capability, and optimization objectives. Load balancing redistributes traffic across infrastructure segments avoiding congestion on individual paths while underutilized resources remain available via alternative connections [7][8].

#### **4.3 Communication Layer Protocol Modifications**

Transport protocol modifications address performance degradation conventional TCP implementations experience across high-latency satellite links, where extended round-trip times produce inefficient window management and timeout reactions. QUIC adaptations provide enhanced congestion control and loss recovery mechanisms suited to variable delay environments, incorporating explicit congestion notification and flexible acknowledgment schemes. Performance-enhancing proxies position intermediate infrastructure components terminating transport connections at strategic locations, transforming end-to-end paths into multiple shorter segments where protocols function effectively within delay constraints. Split-TCP approaches partition connections at satellite-terrestrial boundaries, permitting terrestrial segments to utilize standard protocol specifications while satellite segments employ modified timers and window sizes calibrated for orbital link characteristics. QoS mapping frameworks establish correspondence between service class definitions across infrastructure domains, ensuring capability commitments translate appropriately when traffic crosses boundaries with fundamentally different performance profiles [7][8].

#### **4.4 Distributed Intelligence and Edge Processing Architectures**

Distributed AI frameworks decentralize computational decision-making across network infrastructure, positioning intelligent processing at strategic locations throughout the satellite-terrestrial ecosystem. Edge computing nodes at satellite gateways, base stations, and aggregation points execute localized analytics and control decisions, minimizing signaling overhead and reducing end-to-end latency for time-critical applications. Machine learning model distribution partitions neural networks between centralized cloud platforms and edge devices, enabling collaborative inference where intensive training occurs centrally while lightweight inference executes at network edges. This proves particularly valuable in NTN scenarios where satellite link delays would otherwise prevent real-time responsiveness for latency-sensitive services including autonomous vehicles, industrial automation, and augmented reality.

Federated learning enables distributed model training across geographically dispersed edge nodes without centralizing raw data, preserving privacy while continuously improving prediction accuracy through collaborative learning. Edge intelligence facilitates localized handover decisions by processing mobility predictions and channel state information at regional controllers rather than routing through centralized entities experiencing satellite delays. Dynamic resource allocation algorithms at edge nodes respond immediately to traffic fluctuations and interference within their service domains, coordinating with neighbors through lightweight inter-node protocols maintaining global optimization while enabling autonomous local authority. This distributed paradigm aligns with emerging architectures emphasizing disaggregation and functional decomposition, enabling heterogeneous NTN-terrestrial systems to achieve ultra-low latency approaching single-digit milliseconds despite incorporating satellite segments [2][9].

**4.5 User-Centric Quality-of-Service and Service-Level Agreement Management**

User experience optimization in hybrid NTN-terrestrial environments requires sophisticated frameworks dynamically prioritizing resources according to application requirements and contractual obligations. Mission-critical services—emergency response, industrial control, remote healthcare—demand stringent QoS guarantees encompassing latency boundaries, reliability thresholds, and availability commitments that conventional best-effort strategies cannot consistently satisfy. Context-aware QoS differentiation classifies traffic flows based on application semantics, subscription tiers, and real-time conditions, applying appropriate scheduling priorities and reservations ensuring critical services receive preferential treatment during congestion.

SLA mapping translates abstract performance commitments into concrete network resource allocations spanning satellite and terrestrial segments, accounting for fundamentally different capability profiles. Proactive SLA monitoring continuously tracks performance indicators including packet delivery ratios, latency distributions, and throughput consistency, triggering preemptive reallocation or routing adjustments when measurements approach violation thresholds. Predictive SLA assurance leverages machine learning trained on historical data to forecast potential violations before materialization, enabling preventive interventions maintaining compliance without over-provisioning. Dynamic service composition algorithms automatically select optimal satellite-terrestrial path combinations satisfying requirements while minimizing resource consumption, adapting as conditions evolve [6][7].

User experience metrics extending beyond traditional network performance incorporate application-layer quality measures including video perceptual scores, voice intelligibility ratings, and interactive responsiveness assessments, providing holistic frameworks better reflecting actual service value. These user-centric approaches transform hybrid NTN-terrestrial systems from connectivity providers into intelligent service platforms capable of supporting demanding enterprise and industrial applications with predictable, contractually-guaranteed performance [2][10].

**5. Computational Replica Frameworks for System Verification****5.1 Synthetic Network Environment Construction**

Digital twin technologies provide virtual representations for hybrid NTN-terrestrial infrastructure, enabling detailed investigation without physical deployment risks. These environments reproduce satellite constellation motion with terrestrial station configurations, documenting temporal coverage footprint changes as orbital platforms progress through trajectories while ground equipment maintains stationary positions. Precise channel modeling integrates atmospheric effects, multipath, and frequency-dependent attenuation specific to each transmission domain, producing authentic propagation conditions matching operational deployments. Traffic synthesis generates demand patterns mirroring diverse services, mobility patterns, and temporal variations, permitting performance evaluation under authentic load conditions [9][10].

**5.2 Capability Indicator Estimation and System Assessment**

Performance forecasting exploits synthetic environment data to project network behavior metrics covering latency characteristics, throughput, and connection persistence across operational scenarios. Service availability probability calculations establish geographic zones where provision meets minimum quality thresholds, identifying potential coverage gaps demanding infrastructure expansion or configuration modifications. Outage assessment measures service interruption occurrence and duration during failure conditions, environmental stress, or congestion circumstances, guiding reliability enhancement strategies. Parametric scenario investigation allows systematic modification

of architecture variables, environmental conditions, or traffic patterns to observe resulting performance consequences, exposing sensitivity relationships between input factors and outcome metrics. These computational experiments enable comprehensive architecture space exploration, identifying optimal configurations without expensive physical prototyping [9][10].

### 5.3 Strategy Confirmation and Refinement Procedures

Function verification via digital twin frameworks allows risk-free investigation of handover algorithms and resource management tactics before operational deployment. Proposed handover decision logic undergoes testing across varied mobility scenarios, service combinations, and load conditions to confirm effectiveness and identify failure modes requiring refinement. Resource allocation policies undergo assessment during stress conditions featuring sudden traffic surges, equipment failures, or adverse propagation to guarantee graceful degradation and recovery behavior. Iterative improvement cycles utilize synthetic environment feedback where modified functions experience immediate reevaluation, accelerating development schedules relative to operational experiment iterations demanding physical installation changes. Field trial planning benefits from digital twin insights identifying critical test scenarios, measurement requirements, and anticipated outcome ranges, improving experiment efficiency and data collection capability [9][10].

**Table 4: Digital Twin Validation Capabilities for NTN-Terrestrial Systems [9][10]**

| <b>Validation Category</b>         | <b>Assessment Metrics</b>                                                                 | <b>Testing Scenarios</b>                                                         | <b>Output Deliverables</b>                                                       |
|------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Handover Algorithm Verification    | Handover success rate, service interruption duration, and ping-pong occurrence frequency  | Diverse mobility patterns, varying satellite visibility conditions               | Algorithm refinement recommendations, failure mode identification                |
| Resource Allocation Policy Testing | Throughput distribution, congestion probability, and resource utilization efficiency      | Traffic surge events, infrastructure failure conditions, and adverse propagation | Policy optimization parameters, load balancing effectiveness                     |
| Coverage Performance Analysis      | Service availability probability, geographic coverage extent, signal quality distribution | Various satellite constellation configurations, terrestrial deployment densities | Coverage gap identification, infrastructure augmentation requirements            |
| Protocol Behavior Assessment       | End-to-end latency, packet loss rate, and throughput consistency                          | High-latency satellite paths, mixed satellite-terrestrial routing                | Protocol parameter tuning recommendations, performance bottleneck identification |
| Field Trial Planning               | Expected performance ranges, critical test scenarios, and instrumentation requirements    | Anticipated deployment environments, operational condition variations            | Trial design specifications, data collection strategies                          |

**6. Future Research Directions and Emerging Challenges****6.1 Advanced Distributed Intelligence Paradigms**

Future trajectories encompass increasingly sophisticated distributed AI architectures extending beyond current edge processing. Multi-agent reinforcement learning systems where autonomous entities at different hierarchy levels collaborate through negotiation protocols represent promising directions for managing network complexity. Neuromorphic computing platforms mimicking biological neural structures offer potential for ultra-efficient edge inference with drastically reduced power consumption, particularly valuable for satellite-based processing where energy constraints limit computational capacity. Transfer learning mechanisms enabling rapid model adaptation across diverse deployment environments could accelerate edge intelligence deployment by leveraging knowledge from mature terrestrial networks to bootstrap satellite network optimization with limited training data.

**6.2 Quantum-Enhanced Network Management**

Quantum computing applications in network optimization represent frontier research with transformative potential. Quantum annealing could solve complex combinatorial optimization problems in spectrum allocation and routing exceeding classical computational tractability. Quantum machine learning algorithms may offer exponential speedups for network state prediction and anomaly detection, enabling proactive management at unprecedented scales. However, practical implementations face substantial technological barriers requiring continued research in quantum error correction, algorithm development, and quantum-classical hybrid architectures.

**6.3 Autonomous Network Evolution and Self-Optimization**

Self-evolving architectures capable of autonomous adaptation without human intervention represent ambitious long-term objectives. Continuous learning systems perpetually refining operational policies through ongoing environmental interaction could eliminate periodic manual retraining. Automated network design algorithms might eventually generate optimal topology configurations and protocol parameters directly from high-level performance objectives, abstracting technical details from human operators. Achieving truly autonomous evolution requires breakthroughs in explainable AI enabling operators to understand and trust automated decisions, robust safety mechanisms preventing catastrophic failures, and standardized interfaces for multi-vendor autonomous system interoperability.

**Conclusion**

NTN-terrestrial convergence represents a transformative milestone toward ubiquitous wireless connectivity for 5G-Advanced and 6G deployments, addressing fundamental technical obstacles—propagation disparities, mobility complexity, spectrum coexistence, and service quality heterogeneity—through innovative RF design strategies and architectural enhancements. Hybrid planning frameworks synthesizing deterministic propagation models with AI-driven predictive analytics enable optimized resource allocation across heterogeneous domains, while predictive handover mechanisms exploiting orbital trajectory calculations and machine learning facilitate seamless transitions during NTN-terrestrial boundary crossings. Dual connectivity architectures supporting simultaneous multi-RAT operation maximize throughput and reliability through intelligent traffic distribution, complemented by distributed intelligence architectures positioning edge processing throughout network infrastructure to enable ultra-low latency decision-making essential for time-critical applications. User-centric QoS frameworks dynamically prioritize mission-critical applications through sophisticated resource allocation maintaining SLA compliance across

heterogeneous transmission domains, while protocol stack modifications address transport layer inefficiencies in extended delay environments and digital twin platforms provide risk-free validation for algorithm verification and performance optimization before operational deployment. These advancements collectively establish foundations for integrated satellite-terrestrial systems aligned with international standardization, enabling reliable communications spanning remote territories, maritime expanses, aerial corridors, and emergency-affected regions where conventional infrastructure proves inadequate, with future research encompassing advanced distributed intelligence, quantum-enhanced management, and autonomous self-optimization promising continued evolution toward increasingly sophisticated, resilient, and universally accessible wireless systems serving diverse applications and user requirements.

**References**

- [1] Malik Muhammad Saad, et al., "Non-Terrestrial Networks: An Overview of 3GPP Release 17 & 18," *IEEE Communications Standards Magazine*, vol. 8, no. 1, pp. 8-15, 11 January 2024. [Online]. Available: <https://ieeexplore.ieee.org/abstract/document/10397575>
- [2] Muhammad Ali Jamshed, et al., "Non-Terrestrial Networks for 6G: Integrated, Intelligent, and Ubiquitous Connectivity," *IEEE Network*, 22 May 2025. [Online]. Available: <https://ieeexplore.ieee.org/document/11010845>
- [3] Fatma Aktas, et al., "Routing Challenges and Enabling Technologies for 6G–Satellite Network Integration: Toward Seamless Global Connectivity," *Technologies*, vol. 13, no. 6, 12 June 2025. [Online]. Available: <https://www.mdpi.com/2227-7080/13/6/245>
- [4] Ali Z. K. Matloob, Muammer Aksoy, Ali Kadhum M. Al-Qurabat, and Nabaa A. AL Lawndi, "A Comprehensive Analysis of Non-Terrestrial Networks Impact on 5G NR Random Access," *Telecommunication Systems*, 6 May 2025, Date Added (Online): 8 May 2025. [Online]. Available: <https://link.springer.com/article/10.1007/s11235-025-01294-y>
- [5] Syed Bilal Raza Tirmizi, et al., "Hybrid Satellite–Terrestrial Networks toward 6G: Key Technologies and Open Issues," *Sensors*, vol. 22, no. 21, 6 November 2022. [Online]. Available: <https://www.mdpi.com/1424-8220/22/21/8544>
- [6] Zhiguo Liu, et al., "Research on Satellite Network Traffic Prediction Based on Improved GRU Neural Network," *Sensors*, vol. 22, no. 22, 10 November 2022. [Online]. Available: <https://www.mdpi.com/1424-8220/22/22/8678>
- [7] Dinghe Fan, et al., "Joint Traffic Prediction and Handover Design for LEO Satellite Networks with LSTM and Attention-Enhanced Rainbow DQN," *Electronics*, vol. 14, no. 15, 30 July 2025. [Online]. Available: <https://www.mdpi.com/2079-9292/14/15/3040>
- [8] Dong-Fang Wu, et al., "LB-DDQN for Handover Decision in Satellite-Terrestrial Integrated Networks," *Wireless Communications and Mobile Computing*, 08 December 2021. [Online]. Available: <https://onlinelibrary.wiley.com/doi/10.1155/2021/5871114>
- [9] Hayder Al-Hraishawi, et al., "Digital Twin for Non-Terrestrial Networks: Vision, Challenges, and Enabling Technologies," *arXiv preprint*, 19 November 2024. [Online]. Available: <https://arxiv.org/pdf/2305.10273>
- [10] Elif Ak, et al., "What-if Analysis Framework for Digital Twins in 6G Wireless Network Management," Accepted at IWCNC 2024 – International Wireless Communications & Mobile Computing Conference, 24 April 2024. What-if Analysis Framework for Digital Twins in 6G Wireless Network Management | IEEE Conference Publication | IEEE Xplore