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Customarily, enterprise data architectures have been understood to be built 

on the separation of transactional systems and analytical systems, leading to 

separate repository data stores, extract-transform-load (ETL) processes, and 

latency to business-critical decision-making. Modern cloud-native data 

platforms are beginning to challenge this model with a new architecture that 

breaks down the boundary between operational systems and analytical 

systems. In a data-first application architecture, the data platform is the 

system of record, and applications pull from it. A hub-and-spoke model is 

often used with medallion data layers to maintain multiple representations of 

business-ready data as it passes through various levels of refinement from 

raw ingested data to business-ready data structures. Hybrid transactional-

analytical processing allows a mixture of OLTP and OLAP workloads with 

dual-format data representations, query optimizers, and related techniques. 

Streaming ingestion and change data capture enable streaming data with sub-

second data freshness and ACID transaction semantics using isolation levels 

such as serializable snapshot isolation. Event-driven architectures 

complement this pattern by propagating data in the form of immutably 

logged events to distributed consumers. They can respond to business event 

flows through choreography without tight coupling. Practical implementation 

aspects of workload-optimized querying, multi-tier caching, elastic resource 

management, and infrastructure consolidation yield economic benefits and 

extremely low-latency performance for business events consumed by users. 

Those organizations using unified transactional-analytical architectures 

report dramatic improvements in time-to-understand, reduced infrastructure 

costs, accelerated development lifecycles, and improved support for machine 

and artificial intelligence-based systems that require a fresh and consistent 

view of data on which prescriptive models can act. Operational-analytical 

workload convergence is an architectural step change to make organizations 

more agile in data-rich environments where speed of business understanding 

and decisions are critical to competitive differentiation. 

Keywords: Hybrid Transactional-Analytical Processing, Data-First 

Architecture, Event-Driven Systems, Streaming Data Ingestion, Unified Data 

Platforms 

1. Introduction: Breaking Down the OLTP-OLAP Divide 

Enterprise architecture has historically split transactional systems for high-volume, consistent write 

transactions (online transaction processing—OLTP) and analytical systems for complex queries across 

historical data (online analytical processing—OLAP). Originally, hardware and performance 
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differences between these types of systems led to this distinction, which was considered a compromise 

at the time. However, in practice, this distinction has resulted in duplicate data stores, brittle ETL 

pipelines, and challenges with data synchronization. To address these issues, self-driving database 

systems have emerged that leverage autonomous optimization and adaptive tuning based on learned 

workload patterns [1]. These smart database systems automatically employ machine learning 

techniques to adjust database configuration settings, predict resource requirements, and optimize 

query execution plans, providing an advanced solution for managing mixed workload databases 

without human intervention. 

At a high level, the architecture is expensive and simple: operational databases capture the 

transactions, ETL pipelines batch-extract and batch-transform this transactional data, and analytical 

warehouses are independent systems of perception. This leads to a batch architecture with many 

problems: high latency and inconsistent operational and analytical data, high infrastructure costs, and 

development teams maintaining a number of disparate data models. To overcome these limitations, 

new techniques have been proposed to provide consistency and isolation with strong guarantees while 

still supporting concurrent transaction processing [2]. Serializable snapshot isolation techniques 

provide the highest level of isolation without the overhead of strictly serializable systems. This 

approach provides a more consistent interface for transactional and analytical workloads to coexist, 

with the strongest possible isolation guarantees. 

However, the emergence of cloud-native data platforms with distributed computing, columnar 

storage, query optimization, hybrid processing engines, and other features has made it feasible to 

capture both transactional and analytical workloads on the same data platform. This has resulted in 

the emergence of a new data-first application architecture, where the data platform becomes the 

system of record for all applications, and where the boundaries between the system of record and the 

system of insight have been eliminated. 

 

2. The Hub-and-Spoke Model: The Data Platform as Central Nervous System 

In this approach, a hub and spoke model is used: the data platform or warehouse is the hub, with 

applications, services, and analytics consumers as spokes. This is the reverse of the classic application 

architecture pattern, where each application has its own dedicated database, and a network of 

databases at the edge of the network feeds data to a data warehouse in periodic batches. This 

architectural jump to cloud-native data platforms means shared data management for multiple 

workload types without any degradation in performance or consistency. In a much less conventional 

approach to solving mixed workloads, self-driving database systems that identify resource parameters 

to tune, based on predictions of resource saturation in the near future, have been proposed [1]. These 

systems are based on Machine Learning models trained with the patterns of queries and resource 

usage, taking into account the mechanisms of indexes, materialized views, and query routing to 

deliver optimal performance to operational and analytical consumers without the need for database 

administrator intervention. 

As a hub-and-spoke data platform, the Lakehouse is the system of record for authoritative business 

event history, the integration backbone receiving data from multiple systems through streaming 

ingestion, API write, and many others; the serving layer performing best optimization for operational 

and analytical workloads; and the consistency layer enforcing data quality and schema evolution. The 

Lakehouse implementation is typically represented through a medallion architecture, with Bronze, 

Silver, and Gold layers representing the progression from raw ingestion, through refinement, to 

business-ready datasets with different access patterns and latency profiles. The Bronze layer captures 

raw data and its complete lineage. The Silver layer performs the data standardization and 

deduplication processes to produce clean datasets. The Gold layer contains aggregated datasets that 

have been improved with business logic for specific consumption patterns. Depending on their latency 
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and quality requirements, applications access the appropriate layer. User-facing applications, which 

have sub-second SLAs, access materialized views from the Gold layer. 

The advantages of centralized architecture are the elimination of duplicated data across application 

silos, the reduction of the total cost of ownership (TCO) due to shared infrastructure, the creation of a 

single source of truth to read from for a data consumer, the simplification of data governance via a 

common access control, and the acceleration of data engineering development on reused curated 

datasets. These include the requirement of central platform availability, handling distributed 

contention over shared compute resources, minimizing latency across a network between 

applications, hub integration, and developing wide-ranging observability to understand where events 

are coming from in many consumers. Therefore, to reduce these trade-offs, organizations are 

generally recommended to implement the appropriate failover and caching strategies when leveraging 

centralized data in a managed way. As an example of this, self-driving databases offer autonomous 

tuning of their parameters, which can be tedious when manually tuning for different access patterns 

and workload characteristics [1]. 

Layer Primary Function Data State Typical Use Cases 
Performance 

Characteristics 

Bronze 
Raw data landing 

zone 

Unprocessed, as-

received from 

sources 

Audit trails, data 

lineage, and regulatory 

compliance 

High write throughput, 

append-only operations 

Silver 
Cleansed and 

standardized data 

Deduplicated, 

validated, 

conformed 

Cross-application 

integration, shared 

business entities 

Balanced read-write 

performance, 

normalized structures 

Gold 
Business-ready 

aggregated data 

Pre-computed, 

enriched, 

optimized 

Operational 

dashboards, user-facing 

applications, ML 

features 

Ultra-low latency reads, 

materialized views 

Consumption 
Application-specific 

views 

Highly specialized, 

domain-optimized 

Real-time 

personalization, fraud 

detection, 

recommendations 

Sub-second query 

response, edge caching 

Table 1: Hub-and-Spoke Architecture Layers and Characteristics [3, 4] 

 

3. Achieving Sub-Second Data Freshness with Transactional Integrity 

Transactional-analytical systems maintain current data and support the ACID properties of 

operational systems. Current systems focus on using excellent technology to provide these 

capabilities. As such, their deployment has demonstrated that the proper design of low-latency data 

ingestion and data query performance is not mutually exclusive in the same infrastructure. Advanced 

research into memory-optimized storage architectures has shown the ability to create dual 

representations of data in support of transactional and analytical workloads without sacrificing 

performance for either use case [3]. Such architectures can support row-based and columnar 

representations of the same data and may be capable of automatically synchronizing the two 

representations with only a small amount of overhead on transactional paths. 

In contrast to batch processing ETL architectures, data-first architectures leverage Change Data 

Capture (CDC) strategies that continuously read and process source system transaction logs and 

consume every row-level change (insert/update/delete) with minimal performance overhead on 
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source systems. Change events are streamed into the data platform in quasi-real-time via message 

queues and stream processing frameworks that provide event buffering and ordering guarantees that 

support correct data. The streaming changes are then delivered to the platform's storage layer, where 

they are typically processed in micro-batches, which are batches of changes that are committed 

frequently to provide a near-continuous update while maintaining transactional semantics. Hybrid 

Transactional and Analytical Processing systems apply complex dual storage representation patterns 

in a single system where row-oriented storage structures optimize transactional workloads with low-

latency indexed lookups, and column-oriented storage structures are optimized for analytics-style 

scans that perform aggregations across millions of rows [4]. In these architectures, smart optimizers 

explore a query's individual statements, classify them as either latency-sensitive or throughput-

oriented, and examine the selectivity and access pattern before directing the query towards the storage 

representations best suited for the task at hand. 

Selecting the appropriate transaction isolation level that balances concurrency and correctness 

guarantees is crucial for maintaining strong consistency under mixed workloads. Modern 

implementations use snapshot-based approaches to guarantee serializability while avoiding the 

performance overhead of lock-based protocols [5]. Serializable snapshot isolation techniques provide 

the same level of isolation as strict serializability, and they avoid write-write conflicts and serialization 

anomalies. The availability of dependency tracking allows read operations to avoid blocking other 

concurrent transactions and provide serializability at higher throughput, reducing the overhead for 

mixed transactional analytical workloads. Likewise, read-committed isolation allows analytical 

reporting queries to read concurrently from the database without blocking concurrent writes, while 

snapshot isolation provides point-in-time consistent reads for long-running analytical queries. Multi-

version concurrency control improves concurrency by maintaining multiple copies of each record 

simultaneously, allowing operations not to block each other and periodic garbage collection to free old 

versions. When coupled with read-your-writes consistency, strict freshness guarantees that each 

application is immediately notified of the completion of its transaction. For analytical workloads with 

a push toward slightly stale results, eventual consistency with bounded staleness may increase 

performance by restricting queries from seeing data more than a certain amount of time behind the 

present. 

 

Isolation Level 
Consistency 

Guarantee 

Concurrency 

Characteristics 

Typical 

Applications 

Performance 

Trade-offs 

Read 

Uncommitted 

Minimal, allows 

dirty reads 

Maximum 

concurrency, no 

blocking 

Background analytics, 

approximate 

aggregations 

Highest throughput, 

lowest consistency 

Read Committed 
Prevents dirty 

reads 

Good concurrency, 

short read locks 

Standard analytical 

queries, reporting 

Balanced 

performance and 

consistency 

Snapshot 

Isolation 

Point-in-time 

consistency 

Excellent concurrency, 

MVCC-based 

Long-running 

analytics, data exports 

Minimal contention, 

version overhead 

Serializable 

Snapshot 

Full serializability 

guarantees 

Good concurrency with 

conflict detection 

Financial 

transactions, 

inventory 

management 

Slight overhead for 

anomaly detection 

Table 2: Consistency Models and Isolation Mechanisms [5, 6] 

 



Journal of Information Systems Engineering and Management 
2026, 11(1s) 

e-ISSN: 2468-4376 
https://www.jisem-journal.com/ Research Article  

 

 998 
Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

4. Event-Driven Architectures for State Synchronization 

The event-driven pattern extends the hub-and-spoke pattern by enacting state changes in interested 

consumers that require real-time notifications from the data platform. Event-driven patterns alter the 

way systems interact and maintain consistency among distributed components. Decoupling is 

achieved from a request-response model to an event-driven model, making strong consistency 

guarantees with a carefully structured event stream and the idempotency property of processing. 

Messaging streaming platforms are widely adopted as the backbone of highly scalable event-driven 

architectures with durability and ordering guarantees, capable of more than a million events per 

second [6]. Such systems have a fault-tolerant, distributed commit log, multi-tiered message queue, 

storage engine, and stream-processing engine, allowing applications to post events that can be 

consumed by multiple independent consumers in a parallel fashion without synchronization and 

coordination overhead or performance penalties. 

Event sourcing models change in the system as an immutable sequence of events that describe the 

business transactions, unlike mutable records that are rewritten to the database with changes to their 

properties. Event sourcing can ease audit trails, temporal querying, and debugging because it 

preserves a detailed sequence of all changes to the system state [7]. Applications and other analytics 

users can subscribe to streams of events that interest them. This saves clients money on polling and 

speeds up response times and resource use. Events are automatically written to the data platform's 

event log, which acts as a system of record for events and a notification mechanism. Immutable event 

logs allow full audit trails and enable temporal queries to recreate what the state looked like at any 

moment. To maintain low-latency aggregation queries, these aggregates are incrementally maintained 

in materialized views, with systems simply determining which aggregates have been invalidated by the 

change and only updating the changed partitions rather than all partitions. As a result, incremental 

maintenance is done continuously, and these views are always up to date within seconds of the source. 

Materialized views can be used for low-latency queries of commonly used aggregated data, allowing 

end-users to receive up-to-date data at the required speed. Together with event-driven patterns, they 

help a set of systems act on the same underlying platform events in a choreographed way, with each 

system being notified of a state change in a context sensitive to its own business concerns and 

maintaining use-specific derived state. Distributed log-processing messaging systems automate this 

choreography via high-throughput, low-latency message delivery with strong ordering guarantees 

within partitions [8]. For example, when customers place orders, the order event is published to 

several consumers that process inventory updates, payment processing, analytics dashboards, 

machine learning pipelines, and so on, independently, on the same event stream. Choreography is 

more loosely coupled and resilient compared to orchestration, as there is no centralized controller. In 

a loosely coupled system based on choreography, if one event consumer fails, the others continue 

processing events. Simply adding new event consumers adds further functionality, while the pre-

existing deployed components remain unchanged. This can achieve a balance between consistency, 

performance, and flexibility with architectures based on event sourcing, materialized view 

maintenance, and choreographed workflows. 

Component 
Role in 

Architecture 
Key Capabilities 

Integration 

Patterns 

Scalability 

Characteristics 

Event Log 
Immutable source 

of truth 

Append-only storage, 

temporal queries, 

complete audit trail 

Pub-sub, stream 

processing, event 

sourcing 

Horizontal 

partitioning, 

distributed commit log 

Stream 

Processors 

Real-time 

transformation 

Filtering, enrichment, 

aggregation, and 

windowing operations 

Dataflow pipelines, 

continuous queries 

Parallel processing, 

stateful operations 
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Materialized 

Views 

Pre-computed 

aggregations 

Incremental 

maintenance, indexed 

access, continuous 

updates 

Application serving 

layer, caching tier 

Optimized for read-

heavy workloads 

Event 

Consumers 

Downstream 

applications 

Independent 

processing, 

idempotent handlers, 

offset tracking 

Choreographed 

workflows, reactive 

systems 

Consumer group 

parallelism, fault 

isolation 

Table 3: Event-Driven Architecture Components [7, 8] 

 

5. Practical Implementation Considerations 

Transitioning to a data-first architecture comes with multiple technical and organizational challenges. 

Transactional and analytical systems in the organization must be unified, carefully planned, and 

executed to minimize disruption, and the benefits of the unified architecture need time to materialize. 

In modern elastic data warehouses, compute and storage can be elastically scaled independently to 

meet specific workloads. Organizations can provision multiple elastic and independent compute 

clusters that share the same data while keeping the workloads separate from and isolated from each 

other, both preventing data duplication and maintaining consistency of the data. For example, some 

cloud-native data warehousing platforms will automatically scale up or down compute resources 

based on query workload and performance targets. 

To efficiently support such workload mixtures, a complex query optimization is needed that detects 

access patterns and dispatches each query to its appropriate execution engine with an optimal 

resource allocation. At query compilation time, a decision is made whether the query is a latency-

sensitive operational query or a throughput-oriented analytical query. The selection is done by 

consulting the resource pools for latency-sensitive queries and the elastic resource pools for 

throughput-oriented analytical queries. Resource governors in these pools dynamically limit query 

execution timeout, memory, and CPU resource allocation to avoid the monopoly of resources by 

queries. Adaptive execution resource governor automatically optimizes resources by adjusting them 

based on workload to achieve the most efficient resource usage. Workload management is vital when 

large numbers of users concurrently query operational applications, which have different access 

patterns than analysts making ad hoc queries. Techniques such as multi-tier caching, smart partition 

pruning, and pushdown of predicates can be used to avoid unnecessary scans. 

Although modern data platforms support low-latency queries, additional techniques may be used to 

support sub-second latency applications. These include edge caching, local storage of results from 

queries with a small time-to-live and bounded staleness, and asynchronous writes that are posted to a 

local transaction log, which is then synchronously updated by the data platform. The result is eventual 

consistency. In addition to supporting use cases, this strategy has an economic advantage due to the 

much lower number of databases, database licenses, and disk space needed. Cost savings can occur 

when the data platform replaces dozens of application databases and data warehouses. Data 

deduplication and compression can also contribute. Modern systems achieve predictable performance 

in the presence of unpredictable workloads through adaptive query processing. This occurs when 

systems adapt the query execution plan in-flight based on runtime measurements, rather than solely 

depending on static statistics [10]. These techniques are particularly useful for unbalanced data 

distributions, time-varying query workloads, and workload interference, as they can help stabilize 

performance across a variety of operational and analytical access patterns without requiring an 

important investment in development. Development time can be translated into economic value in 

these types of systems through the reuse of an existing set of curated datasets (instead of constructing 



Journal of Information Systems Engineering and Management 
2026, 11(1s) 

e-ISSN: 2468-4376 
https://www.jisem-journal.com/ Research Article  

 

 1000 
Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

a new schema in each project) and through resource sharing between operational and analytical 

workloads. 

 

Strategy 
Optimization 

Target 

Implementation 

Technique 

Measurable 

Benefits 

Applicable 

Scenarios 

Query 

Routing 

Workload 

segregation 

Machine learning 

classification, resource 

pool allocation 

Reduced 

contention, 

improved latency 

Mixed 

transactional-

analytical 

workloads 

Partition 

Pruning 
Scan reduction 

Metadata-based filtering, 

predicate pushdown, zone 

maps 

Minimized I/O, 

faster queries 

Large fact tables, 

time-series data 

Result 

Caching 

Redundant 

computation 

elimination 

Multi-tier cache hierarchy, 

TTL-based invalidation 

Reduced compute 

costs, lower latency 

Repeated queries, 

dashboard 

refreshes 

Adaptive 

Execution 

Dynamic plan 

adjustment 

Runtime statistics, mid-

query re-optimization 

Consistent 

performance across 

data skew 

Unpredictable data 

distributions 

Table 4: Implementation Optimization Strategies [9, 10] 

 

The emergence of “reverse ETL” tools—designed to synchronize data from analytical warehouses back 

to operational systems—represents an acknowledgment of the limitations inherent in traditional 

separated architectures. However, these solutions introduce additional complexity through yet 

another data movement layer, potential consistency gaps, and operational overhead. The data-first 

architecture proposed in this article eliminates the need for reverse ETL entirely by enabling 

operational applications to consume directly from curated data layers, treating the data platform as 

the authoritative source for both analytical queries and operational reads. Rather than adding 

bidirectional synchronization mechanisms between separate systems, organizations can consolidate 

on a single platform where applications query the appropriate medallion layer based on their latency 

and consistency requirements. This approach not only reduces infrastructure complexity but also 

ensures that all consumers—whether analytical dashboards or user-facing applications—operate on 

the same consistent view of business data without the reconciliation challenges that plague reverse 

ETL implementations. 

 

Conclusion 

The merging of transactional and analytic workloads on a single data platform is arguably the most 

fundamental and transformative architectural change in the way organizations build applications and 

use their information assets. It results in entirely new operational capabilities and business models 

and erodes the historic divide between systems of record and systems of insight. Leading enterprises 

are achieving greater agility, consistency, and immediacy in their data management processes, 

resulting in a newly competitive edge in financial services, retail and e-commerce, and supply chain 

operations. For example, implementations of data-first architectures have consistently transformed 

the way companies work, from identifying fraudulent transactions in seconds to delivering a highly 

personalized customer experience by continually analyzing behavioral trends to optimizing inventory 

levels through real-time demand sensing to avoid excess inventory and stockouts. Data-first 
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architecture principles are particularly valuable to organizations wanting to deploy artificial 

intelligence and machine learning solutions at scale, where the accuracy of predictive models depends 

on access to up-to-date, complete, and reliable training data and on being able to operationalize the 

model through transactional processes without the overhead of hybrid architectures. As the volume of 

enterprise data continues to grow exponentially and market conditions dictate a more rapid response, 

the unified transactional-analytical architecture provides a sustainable, scalable, and cost-effective 

technical foundation that reduces rather than increases complexity. Organizations using this new 

architectural model will benefit from emergent technologies such as autonomous AI agents, 

automated decisioning systems, and predictive analytics. This unified model has none of the friction 

or latency found in a dual system architecture that uses operational databases for transaction 

processing and data warehouses for analytics. The suggested plan for moving to a cloud data strategy 

involves working together to create a step-by-step approach, focusing on important projects that can 

quickly help the business, gradually making decisions about the hub-and-spoke architecture, training 

staff to enhance their skills, and ensuring that monitoring and governance are in place to keep the 

platform strong and compliant during the transition to the new cloud setup. High-functioning 

transformations combine technical and organizational readiness, where development teams adapt to 

new programming models, operations staff evolve to become platform experts, and applications 

migrate incrementally from on-premises or edge sources into consolidated platforms without any 

service disruptions. The long era of architecturally separated transactional and analytical systems is 

fading as the technology for distributed computing, columnar storage engines, query optimization, 

and hybrid processing advances. Once unified architectures become not only possible but also the 

most cost-effective option compared to previous siloed architectures, organizations that embrace this 

inflection point and the data-first architectural principles will have decisively helpful footprints that 

enable them to operationalize new insights in near real time, considerably accelerate application 

development cycles, and flexibly adapt to shifting business requirements. The architecture thus 

evolves from a passive warehouse or data lake positioned on the periphery of the organization to 

become the central nervous system of the digital enterprise, the authoritative unified foundation for 

operational excellence and analytical understanding generation. This architecture allows companies to 

take advantage of the increasingly data-driven nature of the world, where the speed of perception 

generation and the ability to operationalize analytics insights within transactional systems will 

determine market leadership and long-term business success in the real-time, AI-augmented 

enterprise of the future. These architectural principles have been validated through multiple 

enterprise and public sector implementations, where the transition from siloed systems to unified 

data platforms has consistently delivered measurable improvements in data freshness, operational 

costs, and decision-making velocity. 
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