
Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

 994
Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Data-First Application Architecture: Unifying

Transactional and Analytical Workloads on Modern

Data Platforms

Ashrith Reddy Mekala

Cloudwick Inc, USA

ARTICLE INFO ABSTRACT

Received: 01 Dec 2025

Revised: 16 Jan 2026

Accepted: 24 Jan 2026

Customarily, enterprise data architectures have been understood to be built

on the separation of transactional systems and analytical systems, leading to

separate repository data stores, extract-transform-load (ETL) processes, and

latency to business-critical decision-making. Modern cloud-native data

platforms are beginning to challenge this model with a new architecture that

breaks down the boundary between operational systems and analytical

systems. In a data-first application architecture, the data platform is the

system of record, and applications pull from it. A hub-and-spoke model is

often used with medallion data layers to maintain multiple representations of

business-ready data as it passes through various levels of refinement from

raw ingested data to business-ready data structures. Hybrid transactional-

analytical processing allows a mixture of OLTP and OLAP workloads with

dual-format data representations, query optimizers, and related techniques.

Streaming ingestion and change data capture enable streaming data with sub-

second data freshness and ACID transaction semantics using isolation levels

such as serializable snapshot isolation. Event-driven architectures

complement this pattern by propagating data in the form of immutably

logged events to distributed consumers. They can respond to business event

flows through choreography without tight coupling. Practical implementation

aspects of workload-optimized querying, multi-tier caching, elastic resource

management, and infrastructure consolidation yield economic benefits and

extremely low-latency performance for business events consumed by users.

Those organizations using unified transactional-analytical architectures

report dramatic improvements in time-to-understand, reduced infrastructure

costs, accelerated development lifecycles, and improved support for machine

and artificial intelligence-based systems that require a fresh and consistent

view of data on which prescriptive models can act. Operational-analytical

workload convergence is an architectural step change to make organizations

more agile in data-rich environments where speed of business understanding

and decisions are critical to competitive differentiation.

Keywords: Hybrid Transactional-Analytical Processing, Data-First

Architecture, Event-Driven Systems, Streaming Data Ingestion, Unified Data

Platforms

1. Introduction: Breaking Down the OLTP-OLAP Divide

Enterprise architecture has historically split transactional systems for high-volume, consistent write

transactions (online transaction processing—OLTP) and analytical systems for complex queries across

historical data (online analytical processing—OLAP). Originally, hardware and performance

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

 995
Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

differences between these types of systems led to this distinction, which was considered a compromise

at the time. However, in practice, this distinction has resulted in duplicate data stores, brittle ETL

pipelines, and challenges with data synchronization. To address these issues, self-driving database

systems have emerged that leverage autonomous optimization and adaptive tuning based on learned

workload patterns [1]. These smart database systems automatically employ machine learning

techniques to adjust database configuration settings, predict resource requirements, and optimize

query execution plans, providing an advanced solution for managing mixed workload databases

without human intervention.

At a high level, the architecture is expensive and simple: operational databases capture the

transactions, ETL pipelines batch-extract and batch-transform this transactional data, and analytical

warehouses are independent systems of perception. This leads to a batch architecture with many

problems: high latency and inconsistent operational and analytical data, high infrastructure costs, and

development teams maintaining a number of disparate data models. To overcome these limitations,

new techniques have been proposed to provide consistency and isolation with strong guarantees while

still supporting concurrent transaction processing [2]. Serializable snapshot isolation techniques

provide the highest level of isolation without the overhead of strictly serializable systems. This

approach provides a more consistent interface for transactional and analytical workloads to coexist,

with the strongest possible isolation guarantees.

However, the emergence of cloud-native data platforms with distributed computing, columnar

storage, query optimization, hybrid processing engines, and other features has made it feasible to

capture both transactional and analytical workloads on the same data platform. This has resulted in

the emergence of a new data-first application architecture, where the data platform becomes the

system of record for all applications, and where the boundaries between the system of record and the

system of insight have been eliminated.

2. The Hub-and-Spoke Model: The Data Platform as Central Nervous System

In this approach, a hub and spoke model is used: the data platform or warehouse is the hub, with

applications, services, and analytics consumers as spokes. This is the reverse of the classic application

architecture pattern, where each application has its own dedicated database, and a network of

databases at the edge of the network feeds data to a data warehouse in periodic batches. This

architectural jump to cloud-native data platforms means shared data management for multiple

workload types without any degradation in performance or consistency. In a much less conventional

approach to solving mixed workloads, self-driving database systems that identify resource parameters

to tune, based on predictions of resource saturation in the near future, have been proposed [1]. These

systems are based on Machine Learning models trained with the patterns of queries and resource

usage, taking into account the mechanisms of indexes, materialized views, and query routing to

deliver optimal performance to operational and analytical consumers without the need for database

administrator intervention.

As a hub-and-spoke data platform, the Lakehouse is the system of record for authoritative business

event history, the integration backbone receiving data from multiple systems through streaming

ingestion, API write, and many others; the serving layer performing best optimization for operational

and analytical workloads; and the consistency layer enforcing data quality and schema evolution. The

Lakehouse implementation is typically represented through a medallion architecture, with Bronze,

Silver, and Gold layers representing the progression from raw ingestion, through refinement, to

business-ready datasets with different access patterns and latency profiles. The Bronze layer captures

raw data and its complete lineage. The Silver layer performs the data standardization and

deduplication processes to produce clean datasets. The Gold layer contains aggregated datasets that

have been improved with business logic for specific consumption patterns. Depending on their latency

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

 996
Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

and quality requirements, applications access the appropriate layer. User-facing applications, which

have sub-second SLAs, access materialized views from the Gold layer.

The advantages of centralized architecture are the elimination of duplicated data across application

silos, the reduction of the total cost of ownership (TCO) due to shared infrastructure, the creation of a

single source of truth to read from for a data consumer, the simplification of data governance via a

common access control, and the acceleration of data engineering development on reused curated

datasets. These include the requirement of central platform availability, handling distributed

contention over shared compute resources, minimizing latency across a network between

applications, hub integration, and developing wide-ranging observability to understand where events

are coming from in many consumers. Therefore, to reduce these trade-offs, organizations are

generally recommended to implement the appropriate failover and caching strategies when leveraging

centralized data in a managed way. As an example of this, self-driving databases offer autonomous

tuning of their parameters, which can be tedious when manually tuning for different access patterns

and workload characteristics [1].

Layer Primary Function Data State Typical Use Cases
Performance

Characteristics

Bronze
Raw data landing

zone

Unprocessed, as-

received from

sources

Audit trails, data

lineage, and regulatory

compliance

High write throughput,

append-only operations

Silver
Cleansed and

standardized data

Deduplicated,

validated,

conformed

Cross-application

integration, shared

business entities

Balanced read-write

performance,

normalized structures

Gold
Business-ready

aggregated data

Pre-computed,

enriched,

optimized

Operational

dashboards, user-facing

applications, ML

features

Ultra-low latency reads,

materialized views

Consumption
Application-specific

views

Highly specialized,

domain-optimized

Real-time

personalization, fraud

detection,

recommendations

Sub-second query

response, edge caching

Table 1: Hub-and-Spoke Architecture Layers and Characteristics [3, 4]

3. Achieving Sub-Second Data Freshness with Transactional Integrity

Transactional-analytical systems maintain current data and support the ACID properties of

operational systems. Current systems focus on using excellent technology to provide these

capabilities. As such, their deployment has demonstrated that the proper design of low-latency data

ingestion and data query performance is not mutually exclusive in the same infrastructure. Advanced

research into memory-optimized storage architectures has shown the ability to create dual

representations of data in support of transactional and analytical workloads without sacrificing

performance for either use case [3]. Such architectures can support row-based and columnar

representations of the same data and may be capable of automatically synchronizing the two

representations with only a small amount of overhead on transactional paths.

In contrast to batch processing ETL architectures, data-first architectures leverage Change Data

Capture (CDC) strategies that continuously read and process source system transaction logs and

consume every row-level change (insert/update/delete) with minimal performance overhead on

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

 997
Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

source systems. Change events are streamed into the data platform in quasi-real-time via message

queues and stream processing frameworks that provide event buffering and ordering guarantees that

support correct data. The streaming changes are then delivered to the platform's storage layer, where

they are typically processed in micro-batches, which are batches of changes that are committed

frequently to provide a near-continuous update while maintaining transactional semantics. Hybrid

Transactional and Analytical Processing systems apply complex dual storage representation patterns

in a single system where row-oriented storage structures optimize transactional workloads with low-

latency indexed lookups, and column-oriented storage structures are optimized for analytics-style

scans that perform aggregations across millions of rows [4]. In these architectures, smart optimizers

explore a query's individual statements, classify them as either latency-sensitive or throughput-

oriented, and examine the selectivity and access pattern before directing the query towards the storage

representations best suited for the task at hand.

Selecting the appropriate transaction isolation level that balances concurrency and correctness

guarantees is crucial for maintaining strong consistency under mixed workloads. Modern

implementations use snapshot-based approaches to guarantee serializability while avoiding the

performance overhead of lock-based protocols [5]. Serializable snapshot isolation techniques provide

the same level of isolation as strict serializability, and they avoid write-write conflicts and serialization

anomalies. The availability of dependency tracking allows read operations to avoid blocking other

concurrent transactions and provide serializability at higher throughput, reducing the overhead for

mixed transactional analytical workloads. Likewise, read-committed isolation allows analytical

reporting queries to read concurrently from the database without blocking concurrent writes, while

snapshot isolation provides point-in-time consistent reads for long-running analytical queries. Multi-

version concurrency control improves concurrency by maintaining multiple copies of each record

simultaneously, allowing operations not to block each other and periodic garbage collection to free old

versions. When coupled with read-your-writes consistency, strict freshness guarantees that each

application is immediately notified of the completion of its transaction. For analytical workloads with

a push toward slightly stale results, eventual consistency with bounded staleness may increase

performance by restricting queries from seeing data more than a certain amount of time behind the

present.

Isolation Level
Consistency

Guarantee

Concurrency

Characteristics

Typical

Applications

Performance

Trade-offs

Read

Uncommitted

Minimal, allows

dirty reads

Maximum

concurrency, no

blocking

Background analytics,

approximate

aggregations

Highest throughput,

lowest consistency

Read Committed
Prevents dirty

reads

Good concurrency,

short read locks

Standard analytical

queries, reporting

Balanced

performance and

consistency

Snapshot

Isolation

Point-in-time

consistency

Excellent concurrency,

MVCC-based

Long-running

analytics, data exports

Minimal contention,

version overhead

Serializable

Snapshot

Full serializability

guarantees

Good concurrency with

conflict detection

Financial

transactions,

inventory

management

Slight overhead for

anomaly detection

Table 2: Consistency Models and Isolation Mechanisms [5, 6]

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

 998
Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

4. Event-Driven Architectures for State Synchronization

The event-driven pattern extends the hub-and-spoke pattern by enacting state changes in interested

consumers that require real-time notifications from the data platform. Event-driven patterns alter the

way systems interact and maintain consistency among distributed components. Decoupling is

achieved from a request-response model to an event-driven model, making strong consistency

guarantees with a carefully structured event stream and the idempotency property of processing.

Messaging streaming platforms are widely adopted as the backbone of highly scalable event-driven

architectures with durability and ordering guarantees, capable of more than a million events per

second [6]. Such systems have a fault-tolerant, distributed commit log, multi-tiered message queue,

storage engine, and stream-processing engine, allowing applications to post events that can be

consumed by multiple independent consumers in a parallel fashion without synchronization and

coordination overhead or performance penalties.

Event sourcing models change in the system as an immutable sequence of events that describe the

business transactions, unlike mutable records that are rewritten to the database with changes to their

properties. Event sourcing can ease audit trails, temporal querying, and debugging because it

preserves a detailed sequence of all changes to the system state [7]. Applications and other analytics

users can subscribe to streams of events that interest them. This saves clients money on polling and

speeds up response times and resource use. Events are automatically written to the data platform's

event log, which acts as a system of record for events and a notification mechanism. Immutable event

logs allow full audit trails and enable temporal queries to recreate what the state looked like at any

moment. To maintain low-latency aggregation queries, these aggregates are incrementally maintained

in materialized views, with systems simply determining which aggregates have been invalidated by the

change and only updating the changed partitions rather than all partitions. As a result, incremental

maintenance is done continuously, and these views are always up to date within seconds of the source.

Materialized views can be used for low-latency queries of commonly used aggregated data, allowing

end-users to receive up-to-date data at the required speed. Together with event-driven patterns, they

help a set of systems act on the same underlying platform events in a choreographed way, with each

system being notified of a state change in a context sensitive to its own business concerns and

maintaining use-specific derived state. Distributed log-processing messaging systems automate this

choreography via high-throughput, low-latency message delivery with strong ordering guarantees

within partitions [8]. For example, when customers place orders, the order event is published to

several consumers that process inventory updates, payment processing, analytics dashboards,

machine learning pipelines, and so on, independently, on the same event stream. Choreography is

more loosely coupled and resilient compared to orchestration, as there is no centralized controller. In

a loosely coupled system based on choreography, if one event consumer fails, the others continue

processing events. Simply adding new event consumers adds further functionality, while the pre-

existing deployed components remain unchanged. This can achieve a balance between consistency,

performance, and flexibility with architectures based on event sourcing, materialized view

maintenance, and choreographed workflows.

Component
Role in

Architecture
Key Capabilities

Integration

Patterns

Scalability

Characteristics

Event Log
Immutable source

of truth

Append-only storage,

temporal queries,

complete audit trail

Pub-sub, stream

processing, event

sourcing

Horizontal

partitioning,

distributed commit log

Stream

Processors

Real-time

transformation

Filtering, enrichment,

aggregation, and

windowing operations

Dataflow pipelines,

continuous queries

Parallel processing,

stateful operations

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

 999
Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Materialized

Views

Pre-computed

aggregations

Incremental

maintenance, indexed

access, continuous

updates

Application serving

layer, caching tier

Optimized for read-

heavy workloads

Event

Consumers

Downstream

applications

Independent

processing,

idempotent handlers,

offset tracking

Choreographed

workflows, reactive

systems

Consumer group

parallelism, fault

isolation

Table 3: Event-Driven Architecture Components [7, 8]

5. Practical Implementation Considerations

Transitioning to a data-first architecture comes with multiple technical and organizational challenges.

Transactional and analytical systems in the organization must be unified, carefully planned, and

executed to minimize disruption, and the benefits of the unified architecture need time to materialize.

In modern elastic data warehouses, compute and storage can be elastically scaled independently to

meet specific workloads. Organizations can provision multiple elastic and independent compute

clusters that share the same data while keeping the workloads separate from and isolated from each

other, both preventing data duplication and maintaining consistency of the data. For example, some

cloud-native data warehousing platforms will automatically scale up or down compute resources

based on query workload and performance targets.

To efficiently support such workload mixtures, a complex query optimization is needed that detects

access patterns and dispatches each query to its appropriate execution engine with an optimal

resource allocation. At query compilation time, a decision is made whether the query is a latency-

sensitive operational query or a throughput-oriented analytical query. The selection is done by

consulting the resource pools for latency-sensitive queries and the elastic resource pools for

throughput-oriented analytical queries. Resource governors in these pools dynamically limit query

execution timeout, memory, and CPU resource allocation to avoid the monopoly of resources by

queries. Adaptive execution resource governor automatically optimizes resources by adjusting them

based on workload to achieve the most efficient resource usage. Workload management is vital when

large numbers of users concurrently query operational applications, which have different access

patterns than analysts making ad hoc queries. Techniques such as multi-tier caching, smart partition

pruning, and pushdown of predicates can be used to avoid unnecessary scans.

Although modern data platforms support low-latency queries, additional techniques may be used to

support sub-second latency applications. These include edge caching, local storage of results from

queries with a small time-to-live and bounded staleness, and asynchronous writes that are posted to a

local transaction log, which is then synchronously updated by the data platform. The result is eventual

consistency. In addition to supporting use cases, this strategy has an economic advantage due to the

much lower number of databases, database licenses, and disk space needed. Cost savings can occur

when the data platform replaces dozens of application databases and data warehouses. Data

deduplication and compression can also contribute. Modern systems achieve predictable performance

in the presence of unpredictable workloads through adaptive query processing. This occurs when

systems adapt the query execution plan in-flight based on runtime measurements, rather than solely

depending on static statistics [10]. These techniques are particularly useful for unbalanced data

distributions, time-varying query workloads, and workload interference, as they can help stabilize

performance across a variety of operational and analytical access patterns without requiring an

important investment in development. Development time can be translated into economic value in

these types of systems through the reuse of an existing set of curated datasets (instead of constructing

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

 1000
Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

a new schema in each project) and through resource sharing between operational and analytical

workloads.

Strategy
Optimization

Target

Implementation

Technique

Measurable

Benefits

Applicable

Scenarios

Query

Routing

Workload

segregation

Machine learning

classification, resource

pool allocation

Reduced

contention,

improved latency

Mixed

transactional-

analytical

workloads

Partition

Pruning
Scan reduction

Metadata-based filtering,

predicate pushdown, zone

maps

Minimized I/O,

faster queries

Large fact tables,

time-series data

Result

Caching

Redundant

computation

elimination

Multi-tier cache hierarchy,

TTL-based invalidation

Reduced compute

costs, lower latency

Repeated queries,

dashboard

refreshes

Adaptive

Execution

Dynamic plan

adjustment

Runtime statistics, mid-

query re-optimization

Consistent

performance across

data skew

Unpredictable data

distributions

Table 4: Implementation Optimization Strategies [9, 10]

The emergence of “reverse ETL” tools—designed to synchronize data from analytical warehouses back

to operational systems—represents an acknowledgment of the limitations inherent in traditional

separated architectures. However, these solutions introduce additional complexity through yet

another data movement layer, potential consistency gaps, and operational overhead. The data-first

architecture proposed in this article eliminates the need for reverse ETL entirely by enabling

operational applications to consume directly from curated data layers, treating the data platform as

the authoritative source for both analytical queries and operational reads. Rather than adding

bidirectional synchronization mechanisms between separate systems, organizations can consolidate

on a single platform where applications query the appropriate medallion layer based on their latency

and consistency requirements. This approach not only reduces infrastructure complexity but also

ensures that all consumers—whether analytical dashboards or user-facing applications—operate on

the same consistent view of business data without the reconciliation challenges that plague reverse

ETL implementations.

Conclusion

The merging of transactional and analytic workloads on a single data platform is arguably the most

fundamental and transformative architectural change in the way organizations build applications and

use their information assets. It results in entirely new operational capabilities and business models

and erodes the historic divide between systems of record and systems of insight. Leading enterprises

are achieving greater agility, consistency, and immediacy in their data management processes,

resulting in a newly competitive edge in financial services, retail and e-commerce, and supply chain

operations. For example, implementations of data-first architectures have consistently transformed

the way companies work, from identifying fraudulent transactions in seconds to delivering a highly

personalized customer experience by continually analyzing behavioral trends to optimizing inventory

levels through real-time demand sensing to avoid excess inventory and stockouts. Data-first

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

 1001
Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

architecture principles are particularly valuable to organizations wanting to deploy artificial

intelligence and machine learning solutions at scale, where the accuracy of predictive models depends

on access to up-to-date, complete, and reliable training data and on being able to operationalize the

model through transactional processes without the overhead of hybrid architectures. As the volume of

enterprise data continues to grow exponentially and market conditions dictate a more rapid response,

the unified transactional-analytical architecture provides a sustainable, scalable, and cost-effective

technical foundation that reduces rather than increases complexity. Organizations using this new

architectural model will benefit from emergent technologies such as autonomous AI agents,

automated decisioning systems, and predictive analytics. This unified model has none of the friction

or latency found in a dual system architecture that uses operational databases for transaction

processing and data warehouses for analytics. The suggested plan for moving to a cloud data strategy

involves working together to create a step-by-step approach, focusing on important projects that can

quickly help the business, gradually making decisions about the hub-and-spoke architecture, training

staff to enhance their skills, and ensuring that monitoring and governance are in place to keep the

platform strong and compliant during the transition to the new cloud setup. High-functioning

transformations combine technical and organizational readiness, where development teams adapt to

new programming models, operations staff evolve to become platform experts, and applications

migrate incrementally from on-premises or edge sources into consolidated platforms without any

service disruptions. The long era of architecturally separated transactional and analytical systems is

fading as the technology for distributed computing, columnar storage engines, query optimization,

and hybrid processing advances. Once unified architectures become not only possible but also the

most cost-effective option compared to previous siloed architectures, organizations that embrace this

inflection point and the data-first architectural principles will have decisively helpful footprints that

enable them to operationalize new insights in near real time, considerably accelerate application

development cycles, and flexibly adapt to shifting business requirements. The architecture thus

evolves from a passive warehouse or data lake positioned on the periphery of the organization to

become the central nervous system of the digital enterprise, the authoritative unified foundation for

operational excellence and analytical understanding generation. This architecture allows companies to

take advantage of the increasingly data-driven nature of the world, where the speed of perception

generation and the ability to operationalize analytics insights within transactional systems will

determine market leadership and long-term business success in the real-time, AI-augmented

enterprise of the future. These architectural principles have been validated through multiple

enterprise and public sector implementations, where the transition from siloed systems to unified

data platforms has consistently delivered measurable improvements in data freshness, operational

costs, and decision-making velocity.

References

[1] Andrew Pavlo et al., “Self-Driving Database Management Systems,” CIDR 2017. [Online].

Available: https://www.cs.cmu.edu/~pavlo/papers/p42-pavlo-cidr17.pdf

[2] Michael Stonebraker and Uĝur Çetintemel, ““One size fits all”: an idea whose time has come and

gone," Making Databases Work: the Pragmatic Wisdom of Michael Stonebraker, 2018. [Online].

Available: https://dl.acm.org/doi/abs/10.1145/3226595.3226636

[3] Sijie Shen et al., "Bridging the Gap between Relational OLTP and Graph-based OLAP," 2023

USENIX Annual Technical Conference, 2023. [Online]. Available:

https://www.usenix.org/system/files/atc23-shen.pdf

[4] Tirthankar Lahiri et al., "Oracle Database In-Memory: A dual format in-memory database," 2015

IEEE 31st International Conference on Data Engineering, 2015. [Online]. Available:

https://ieeexplore.ieee.org/document/7113373

https://www.cs.cmu.edu/~pavlo/papers/p42-pavlo-cidr17.pdf
https://dl.acm.org/doi/abs/10.1145/3226595.3226636
https://dl.acm.org/doi/abs/10.1145/3226595.3226636
https://www.usenix.org/system/files/atc23-shen.pdf
https://www.usenix.org/system/files/atc23-shen.pdf
https://www.usenix.org/system/files/atc23-shen.pdf
https://ieeexplore.ieee.org/document/7113373
https://ieeexplore.ieee.org/document/7113373
https://ieeexplore.ieee.org/document/7113373

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

 1002
Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

[5] Tech Lessons, "A guide to Serializable Snapshot Isolation in Key/Value storage engine," 2024.

[Online]. Available: https://tech-lessons.in/en/blog/serializable_snapshot_isolation/

[6] Neha Narkhede et al., “Kafka: The Definitive Guide,” O'Reilly Media, 2017. [Online]. Available:

https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/

[7] Microsoft Azure, "Event Sourcing pattern," 2024. [Online]. Available:

https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing

[8] Jays Kreps et al., "Kafka: A distributed messaging system for log processing," Github. [Online].

Available: https://github.com/jeffrey-xiao/papers/blob/master/systems/kafka-a-distributed-

messaging-system-for-log-processing.pdf

[9] Benoit Dageville et al., "The Snowflake Elastic Data Warehouse," SIGMOD/PODS, 2016. [Online].

Available: https://www.cs.cmu.edu/~15721-f24/papers/Snowflake.pdf

[10] P. Unterbrunner et al., "Predictable Performance for Unpredictable Workloads," VLDB

Endowment, 2009. [Online]. Available: https://www.vldb.org/pvldb/vol2/vldb09-323.pdf

https://tech-lessons.in/en/blog/serializable_snapshot_isolation/
https://tech-lessons.in/en/blog/serializable_snapshot_isolation/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://github.com/jeffrey-xiao/papers/blob/master/systems/kafka-a-distributed-messaging-system-for-log-processing.pdf
https://github.com/jeffrey-xiao/papers/blob/master/systems/kafka-a-distributed-messaging-system-for-log-processing.pdf
https://github.com/jeffrey-xiao/papers/blob/master/systems/kafka-a-distributed-messaging-system-for-log-processing.pdf
https://www.cs.cmu.edu/~15721-f24/papers/Snowflake.pdf
https://www.cs.cmu.edu/~15721-f24/papers/Snowflake.pdf
https://www.vldb.org/pvldb/vol2/vldb09-323.pdf
https://www.vldb.org/pvldb/vol2/vldb09-323.pdf

