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Received: 01 Dec 2025 Customarily, enterprise data architectures have been understood to be built
on the separation of transactional systems and analytical systems, leading to
separate repository data stores, extract-transform-load (ETL) processes, and
latency to business-critical decision-making. Modern cloud-native data
platforms are beginning to challenge this model with a new architecture that
breaks down the boundary between operational systems and analytical
systems. In a data-first application architecture, the data platform is the
system of record, and applications pull from it. A hub-and-spoke model is
often used with medallion data layers to maintain multiple representations of
business-ready data as it passes through various levels of refinement from
raw ingested data to business-ready data structures. Hybrid transactional-
analytical processing allows a mixture of OLTP and OLAP workloads with
dual-format data representations, query optimizers, and related techniques.
Streaming ingestion and change data capture enable streaming data with sub-
second data freshness and ACID transaction semantics using isolation levels
such as serializable snapshot isolation. Event-driven architectures
complement this pattern by propagating data in the form of immutably
logged events to distributed consumers. They can respond to business event
flows through choreography without tight coupling. Practical implementation
aspects of workload-optimized querying, multi-tier caching, elastic resource
management, and infrastructure consolidation yield economic benefits and
extremely low-latency performance for business events consumed by users.
Those organizations using unified transactional-analytical architectures
report dramatic improvements in time-to-understand, reduced infrastructure
costs, accelerated development lifecycles, and improved support for machine
and artificial intelligence-based systems that require a fresh and consistent
view of data on which prescriptive models can act. Operational-analytical
workload convergence is an architectural step change to make organizations
more agile in data-rich environments where speed of business understanding
and decisions are critical to competitive differentiation.
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1. Introduction: Breaking Down the OLTP-OLAP Divide

Enterprise architecture has historically split transactional systems for high-volume, consistent write
transactions (online transaction processing—OLTP) and analytical systems for complex queries across
historical data (online analytical processing—OLAP). Originally, hardware and performance
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differences between these types of systems led to this distinction, which was considered a compromise
at the time. However, in practice, this distinction has resulted in duplicate data stores, brittle ETL
pipelines, and challenges with data synchronization. To address these issues, self-driving database
systems have emerged that leverage autonomous optimization and adaptive tuning based on learned
workload patterns [1]. These smart database systems automatically employ machine learning
techniques to adjust database configuration settings, predict resource requirements, and optimize
query execution plans, providing an advanced solution for managing mixed workload databases
without human intervention.

At a high level, the architecture is expensive and simple: operational databases capture the
transactions, ETL pipelines batch-extract and batch-transform this transactional data, and analytical
warehouses are independent systems of perception. This leads to a batch architecture with many
problems: high latency and inconsistent operational and analytical data, high infrastructure costs, and
development teams maintaining a number of disparate data models. To overcome these limitations,
new techniques have been proposed to provide consistency and isolation with strong guarantees while
still supporting concurrent transaction processing [2]. Serializable snapshot isolation techniques
provide the highest level of isolation without the overhead of strictly serializable systems. This
approach provides a more consistent interface for transactional and analytical workloads to coexist,
with the strongest possible isolation guarantees.

However, the emergence of cloud-native data platforms with distributed computing, columnar
storage, query optimization, hybrid processing engines, and other features has made it feasible to
capture both transactional and analytical workloads on the same data platform. This has resulted in
the emergence of a new data-first application architecture, where the data platform becomes the
system of record for all applications, and where the boundaries between the system of record and the
system of insight have been eliminated.

2. The Hub-and-Spoke Model: The Data Platform as Central Nervous System

In this approach, a hub and spoke model is used: the data platform or warehouse is the hub, with
applications, services, and analytics consumers as spokes. This is the reverse of the classic application
architecture pattern, where each application has its own dedicated database, and a network of
databases at the edge of the network feeds data to a data warehouse in periodic batches. This
architectural jump to cloud-native data platforms means shared data management for multiple
workload types without any degradation in performance or consistency. In a much less conventional
approach to solving mixed workloads, self-driving database systems that identify resource parameters
to tune, based on predictions of resource saturation in the near future, have been proposed [1]. These
systems are based on Machine Learning models trained with the patterns of queries and resource
usage, taking into account the mechanisms of indexes, materialized views, and query routing to
deliver optimal performance to operational and analytical consumers without the need for database
administrator intervention.

As a hub-and-spoke data platform, the Lakehouse is the system of record for authoritative business
event history, the integration backbone receiving data from multiple systems through streaming
ingestion, API write, and many others; the serving layer performing best optimization for operational
and analytical workloads; and the consistency layer enforcing data quality and schema evolution. The
Lakehouse implementation is typically represented through a medallion architecture, with Bronze,
Silver, and Gold layers representing the progression from raw ingestion, through refinement, to
business-ready datasets with different access patterns and latency profiles. The Bronze layer captures
raw data and its complete lineage. The Silver layer performs the data standardization and
deduplication processes to produce clean datasets. The Gold layer contains aggregated datasets that
have been improved with business logic for specific consumption patterns. Depending on their latency
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and quality requirements, applications access the appropriate layer. User-facing applications, which
have sub-second SLAs, access materialized views from the Gold layer.

The advantages of centralized architecture are the elimination of duplicated data across application
silos, the reduction of the total cost of ownership (TCO) due to shared infrastructure, the creation of a
single source of truth to read from for a data consumer, the simplification of data governance via a
common access control, and the acceleration of data engineering development on reused curated
datasets. These include the requirement of central platform availability, handling distributed
contention over shared compute resources, minimizing latency across a network between
applications, hub integration, and developing wide-ranging observability to understand where events
are coming from in many consumers. Therefore, to reduce these trade-offs, organizations are
generally recommended to implement the appropriate failover and caching strategies when leveraging
centralized data in a managed way. As an example of this, self-driving databases offer autonomous
tuning of their parameters, which can be tedious when manually tuning for different access patterns
and workload characteristics [1].

Performance
Layer Primary Function Data State Typical Use Cases . .
4 Ty P Characteristics
. Unprocessed, as- |Audit trails, data . .
Raw data landing P! ’ . ; High write throughput,
Bronze received from lineage, and regulatory .
zone . append-only operations
sources compliance
. Cleansed and Dec.luplicated, pross—aPplication Balanced read-write
Silver . validated, integration, shared performance,
standardized data . .. .
conformed business entities normalized structures
Pre-computed Operational
Business-ready . P ’ dashboards, user-facing|Ultra-low latency reads,
Gold enriched, . L. - .
aggregated data - applications, ML materialized views
optimized
features
Real-time
. |Application-specific [Highly specialized, [personalization, fraud [Sub-second query
Consumption | . . .. . .
views domain-optimized |detection, response, edge caching
recommendations

Table 1: Hub-and-Spoke Architecture Layers and Characteristics [3, 4]

3. Achieving Sub-Second Data Freshness with Transactional Integrity

Transactional-analytical systems maintain current data and support the ACID properties of
operational systems. Current systems focus on using excellent technology to provide these
capabilities. As such, their deployment has demonstrated that the proper design of low-latency data
ingestion and data query performance is not mutually exclusive in the same infrastructure. Advanced
research into memory-optimized storage architectures has shown the ability to create dual
representations of data in support of transactional and analytical workloads without sacrificing
performance for either use case [3]. Such architectures can support row-based and columnar
representations of the same data and may be capable of automatically synchronizing the two
representations with only a small amount of overhead on transactional paths.

In contrast to batch processing ETL architectures, data-first architectures leverage Change Data
Capture (CDC) strategies that continuously read and process source system transaction logs and
consume every row-level change (insert/update/delete) with minimal performance overhead on
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source systems. Change events are streamed into the data platform in quasi-real-time via message
queues and stream processing frameworks that provide event buffering and ordering guarantees that
support correct data. The streaming changes are then delivered to the platform's storage layer, where
they are typically processed in micro-batches, which are batches of changes that are committed
frequently to provide a near-continuous update while maintaining transactional semantics. Hybrid
Transactional and Analytical Processing systems apply complex dual storage representation patterns
in a single system where row-oriented storage structures optimize transactional workloads with low-
latency indexed lookups, and column-oriented storage structures are optimized for analytics-style
scans that perform aggregations across millions of rows [4]. In these architectures, smart optimizers
explore a query's individual statements, classify them as either latency-sensitive or throughput-
oriented, and examine the selectivity and access pattern before directing the query towards the storage
representations best suited for the task at hand.

Selecting the appropriate transaction isolation level that balances concurrency and correctness
guarantees is crucial for maintaining strong consistency under mixed workloads. Modern
implementations use snapshot-based approaches to guarantee serializability while avoiding the
performance overhead of lock-based protocols [5]. Serializable snapshot isolation techniques provide
the same level of isolation as strict serializability, and they avoid write-write conflicts and serialization
anomalies. The availability of dependency tracking allows read operations to avoid blocking other
concurrent transactions and provide serializability at higher throughput, reducing the overhead for
mixed transactional analytical workloads. Likewise, read-committed isolation allows analytical
reporting queries to read concurrently from the database without blocking concurrent writes, while
snapshot isolation provides point-in-time consistent reads for long-running analytical queries. Multi-
version concurrency control improves concurrency by maintaining multiple copies of each record
simultaneously, allowing operations not to block each other and periodic garbage collection to free old
versions. When coupled with read-your-writes consistency, strict freshness guarantees that each
application is immediately notified of the completion of its transaction. For analytical workloads with
a push toward slightly stale results, eventual consistency with bounded staleness may increase
performance by restricting queries from seeing data more than a certain amount of time behind the
present.

. Consistency Concurrency Typical Performance
Isolation Level . e o .
Guarantee Characteristics Applications Trade-offs
.. Maximum Background analytics, |. ..
Read Minimal, allows Br¢ vt Highest throughput,
. . concurrency, no approximate .
Uncommitted  [dirty reads . . lowest consistency
blocking aggregations
. . Balanced
. Prevents dirty Good concurrency, Standard analytical
Read Committed . . performance and
reads short read locks queries, reporting .
consistency
Snapshot Point-in-time Excellent concurrency, |Long-running Minimal contention,
Isolation consistency MVCC-based analytics, data exports|version overhead
Financial
Serializable Full serializability |Good concurrency with [transactions, Slight overhead for
Snapshot guarantees conflict detection inventory anomaly detection
management

Table 2: Consistency Models and Isolation Mechanisms [5, 6]

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is 997

properly cited.



Journal of Information Systems Engineering and Management
2026, 11(18)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

4. Event-Driven Architectures for State Synchronization

The event-driven pattern extends the hub-and-spoke pattern by enacting state changes in interested
consumers that require real-time notifications from the data platform. Event-driven patterns alter the
way systems interact and maintain consistency among distributed components. Decoupling is
achieved from a request-response model to an event-driven model, making strong consistency
guarantees with a carefully structured event stream and the idempotency property of processing.
Messaging streaming platforms are widely adopted as the backbone of highly scalable event-driven
architectures with durability and ordering guarantees, capable of more than a million events per
second [6]. Such systems have a fault-tolerant, distributed commit log, multi-tiered message queue,
storage engine, and stream-processing engine, allowing applications to post events that can be
consumed by multiple independent consumers in a parallel fashion without synchronization and
coordination overhead or performance penalties.

Event sourcing models change in the system as an immutable sequence of events that describe the
business transactions, unlike mutable records that are rewritten to the database with changes to their
properties. Event sourcing can ease audit trails, temporal querying, and debugging because it
preserves a detailed sequence of all changes to the system state [7]. Applications and other analytics
users can subscribe to streams of events that interest them. This saves clients money on polling and
speeds up response times and resource use. Events are automatically written to the data platform's
event log, which acts as a system of record for events and a notification mechanism. Immutable event
logs allow full audit trails and enable temporal queries to recreate what the state looked like at any
moment. To maintain low-latency aggregation queries, these aggregates are incrementally maintained
in materialized views, with systems simply determining which aggregates have been invalidated by the
change and only updating the changed partitions rather than all partitions. As a result, incremental
maintenance is done continuously, and these views are always up to date within seconds of the source.

Materialized views can be used for low-latency queries of commonly used aggregated data, allowing
end-users to receive up-to-date data at the required speed. Together with event-driven patterns, they
help a set of systems act on the same underlying platform events in a choreographed way, with each
system being notified of a state change in a context sensitive to its own business concerns and
maintaining use-specific derived state. Distributed log-processing messaging systems automate this
choreography via high-throughput, low-latency message delivery with strong ordering guarantees
within partitions [8]. For example, when customers place orders, the order event is published to
several consumers that process inventory updates, payment processing, analytics dashboards,
machine learning pipelines, and so on, independently, on the same event stream. Choreography is
more loosely coupled and resilient compared to orchestration, as there is no centralized controller. In
a loosely coupled system based on choreography, if one event consumer fails, the others continue
processing events. Simply adding new event consumers adds further functionality, while the pre-
existing deployed components remain unchanged. This can achieve a balance between consistency,
performance, and flexibility with architectures based on event sourcing, materialized view
maintenance, and choreographed workflows.

Role in Integration Scalability
Component . Key Capabilities . .
p Architecture yLap Patterns Characteristics
IAppend-only storage, [Pub-sub, stream Horizontal
Immutable source | PP d-only .0 ge, [Pub ul?, © I.Z.O .
Event Log of truth temporal queries, [processing, event partitioning,
complete audit trail  [sourcing distributed commit log
. Filtering, enrichment, .. .
Stream Real-time 5 Dataflow pipelines, [Parallel processing,
. aggregation, and . . .
Processors transformation continuous queries [stateful operations

windowing operations
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Incremental
Materialized  [Pre-computed maintenance, indexed |[Application serving [Optimized for read-
Views aggregations access, continuous layer, caching tier heavy workloads
updates
Independent
Per Choreographed Consumer group
Event Downstream processing, . .
.. . workflows, reactive  [parallelism, fault
Consumers applications idempotent handlers, . .
. systems isolation
offset tracking

Table 3: Event-Driven Architecture Components [7, 8]

5. Practical Implementation Considerations

Transitioning to a data-first architecture comes with multiple technical and organizational challenges.
Transactional and analytical systems in the organization must be unified, carefully planned, and
executed to minimize disruption, and the benefits of the unified architecture need time to materialize.
In modern elastic data warehouses, compute and storage can be elastically scaled independently to
meet specific workloads. Organizations can provision multiple elastic and independent compute
clusters that share the same data while keeping the workloads separate from and isolated from each
other, both preventing data duplication and maintaining consistency of the data. For example, some
cloud-native data warehousing platforms will automatically scale up or down compute resources
based on query workload and performance targets.

To efficiently support such workload mixtures, a complex query optimization is needed that detects
access patterns and dispatches each query to its appropriate execution engine with an optimal
resource allocation. At query compilation time, a decision is made whether the query is a latency-
sensitive operational query or a throughput-oriented analytical query. The selection is done by
consulting the resource pools for latency-sensitive queries and the elastic resource pools for
throughput-oriented analytical queries. Resource governors in these pools dynamically limit query
execution timeout, memory, and CPU resource allocation to avoid the monopoly of resources by
queries. Adaptive execution resource governor automatically optimizes resources by adjusting them
based on workload to achieve the most efficient resource usage. Workload management is vital when
large numbers of users concurrently query operational applications, which have different access
patterns than analysts making ad hoc queries. Techniques such as multi-tier caching, smart partition
pruning, and pushdown of predicates can be used to avoid unnecessary scans.

Although modern data platforms support low-latency queries, additional techniques may be used to
support sub-second latency applications. These include edge caching, local storage of results from
queries with a small time-to-live and bounded staleness, and asynchronous writes that are posted to a
local transaction log, which is then synchronously updated by the data platform. The result is eventual
consistency. In addition to supporting use cases, this strategy has an economic advantage due to the
much lower number of databases, database licenses, and disk space needed. Cost savings can occur
when the data platform replaces dozens of application databases and data warehouses. Data
deduplication and compression can also contribute. Modern systems achieve predictable performance
in the presence of unpredictable workloads through adaptive query processing. This occurs when
systems adapt the query execution plan in-flight based on runtime measurements, rather than solely
depending on static statistics [10]. These techniques are particularly useful for unbalanced data
distributions, time-varying query workloads, and workload interference, as they can help stabilize
performance across a variety of operational and analytical access patterns without requiring an
important investment in development. Development time can be translated into economic value in
these types of systems through the reuse of an existing set of curated datasets (instead of constructing
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a new schema in each project) and through resource sharing between operational and analytical

workloads.

Scan reduction

predicate pushdown, zone

Strate Optimization Implementation Measurable Applicable
8y Target Technique Benefits Scenarios
Machine learning Reduced Mixed .
Query Workload . . . transactional-
. . classification, resource contention, .
Routing segregation . . analytical
pool allocation improved latency
workloads
Partition Metadata-based filtering, Minimized 1/0, Large fact tables,

Pruning faster queries time-series data
maps

Redundant .. . Repeated queries

Result . Multi-tier cache hierarchy, |Reduced compute P d ’
. computation . 1o dashboard

Caching e [TTL-based invalidation  [costs, lower latency

elimination refreshes

. . . - . Consistent .
Adaptive Dynamic plan Runtime statistics, mid- Unpredictable data
. . .. performance across |, , .. ..

Execution adjustment query re-optimization data skew distributions

Table 4: Implementation Optimization Strategies [9, 10]

The emergence of “reverse ETL” tools—designed to synchronize data from analytical warehouses back
to operational systems—represents an acknowledgment of the limitations inherent in traditional
separated architectures. However, these solutions introduce additional complexity through yet
another data movement layer, potential consistency gaps, and operational overhead. The data-first
architecture proposed in this article eliminates the need for reverse ETL entirely by enabling
operational applications to consume directly from curated data layers, treating the data platform as
the authoritative source for both analytical queries and operational reads. Rather than adding
bidirectional synchronization mechanisms between separate systems, organizations can consolidate
on a single platform where applications query the appropriate medallion layer based on their latency
and consistency requirements. This approach not only reduces infrastructure complexity but also
ensures that all consumers—whether analytical dashboards or user-facing applications—operate on
the same consistent view of business data without the reconciliation challenges that plague reverse
ETL implementations.

Conclusion

The merging of transactional and analytic workloads on a single data platform is arguably the most
fundamental and transformative architectural change in the way organizations build applications and
use their information assets. It results in entirely new operational capabilities and business models
and erodes the historic divide between systems of record and systems of insight. Leading enterprises
are achieving greater agility, consistency, and immediacy in their data management processes,
resulting in a newly competitive edge in financial services, retail and e-commerce, and supply chain
operations. For example, implementations of data-first architectures have consistently transformed
the way companies work, from identifying fraudulent transactions in seconds to delivering a highly
personalized customer experience by continually analyzing behavioral trends to optimizing inventory
levels through real-time demand sensing to avoid excess inventory and stockouts. Data-first
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architecture principles are particularly valuable to organizations wanting to deploy artificial
intelligence and machine learning solutions at scale, where the accuracy of predictive models depends
on access to up-to-date, complete, and reliable training data and on being able to operationalize the
model through transactional processes without the overhead of hybrid architectures. As the volume of
enterprise data continues to grow exponentially and market conditions dictate a more rapid response,
the unified transactional-analytical architecture provides a sustainable, scalable, and cost-effective
technical foundation that reduces rather than increases complexity. Organizations using this new
architectural model will benefit from emergent technologies such as autonomous AI agents,
automated decisioning systems, and predictive analytics. This unified model has none of the friction
or latency found in a dual system architecture that uses operational databases for transaction
processing and data warehouses for analytics. The suggested plan for moving to a cloud data strategy
involves working together to create a step-by-step approach, focusing on important projects that can
quickly help the business, gradually making decisions about the hub-and-spoke architecture, training
staff to enhance their skills, and ensuring that monitoring and governance are in place to keep the
platform strong and compliant during the transition to the new cloud setup. High-functioning
transformations combine technical and organizational readiness, where development teams adapt to
new programming models, operations staff evolve to become platform experts, and applications
migrate incrementally from on-premises or edge sources into consolidated platforms without any
service disruptions. The long era of architecturally separated transactional and analytical systems is
fading as the technology for distributed computing, columnar storage engines, query optimization,
and hybrid processing advances. Once unified architectures become not only possible but also the
most cost-effective option compared to previous siloed architectures, organizations that embrace this
inflection point and the data-first architectural principles will have decisively helpful footprints that
enable them to operationalize new insights in near real time, considerably accelerate application
development cycles, and flexibly adapt to shifting business requirements. The architecture thus
evolves from a passive warehouse or data lake positioned on the periphery of the organization to
become the central nervous system of the digital enterprise, the authoritative unified foundation for
operational excellence and analytical understanding generation. This architecture allows companies to
take advantage of the increasingly data-driven nature of the world, where the speed of perception
generation and the ability to operationalize analytics insights within transactional systems will
determine market leadership and long-term business success in the real-time, Al-augmented
enterprise of the future. These architectural principles have been validated through multiple
enterprise and public sector implementations, where the transition from siloed systems to unified
data platforms has consistently delivered measurable improvements in data freshness, operational
costs, and decision-making velocity.
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