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Natural-Language-to-SQL (NL2SQL) systems have become revolutionary in the process of
democratizing access to data stored in databases, allowing users without formal SQL
knowledge to work with structured data via conversational interfaces. Transformer-based
architectures and large language models have greatly enlarged the potential and availability
of database querying interfaces due to the development of parsers of rules into more useful
or enhanced structures. Enterprise implementation, however, poses significant problems
such as the complexity of schema grounding, the need for optimization of queries,
multilingual support, and the need for high security governance. Best practices of NL2SQL
need to be designed with a hybrid architecture that provides flexibility of neural generation
and limited flexibility of decoding that would guarantee syntactic consistency and schema
conformity. Guardrail mechanisms are imperative elements that offer levels of protection by
sanitizing SQL, disambiguating intent, implementing prompting strategies, and
implementing role access control. The current architectures are based on decomposed
processing pipelines, which separate schema linking and query generation to allow the
architecture to be more robust on more complex enterprise schemas. Multi-agent
collaborative architectures and lakehouse data platforms are also promising future advances
in the development of NL2SQL functionality, which can be used to support iterative
reasoning, self-correction, integration of querying different data types, and ensure that
metadata governance and security protection are maintained throughout the analytical
processes.
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1. Introduction

The natural-language interface has become a revolutionary feature within contemporary data
ecosystems and allows individuals to query structured databases using conversational commands
instead of the standard SQL language. The recent, more extensive surveys on Text-to-SQL parsing
have recorded the history of these systems, starting with early rule-based systems, through neural
sequence-to-sequence models, to modern large language models implementations, and the history of
each paradigm shift has increased the accessibility and performance of database querying interfaces
[1]. Such Natural-Language-to-SQL (NL2SQL) systems transform human linguistic expression into
the accuracy needed to operate a relational database system to provide an opportunity to analysts,
business users, and operational personnel who may not have formal SQL training to extract insights
out of organizational data resources.

Nonetheless, the installation of NL2SQL systems in the business world creates a lot of complications
despite these developments. The organizations need severe control over the access to the data,
deterministic execution of queries, and integrity of distributed data sources. Natural language is also
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fundamentally ambiguous, and even large language models can produce syntactically correct but
semantically erroneous queries, computationally inefficient queries, or even queries that are security-
threatening. The Spider benchmark has provided a baseline of cross-domain semantic parsing and has
provided a large human-labeled scale dataset specifically tailored to evaluate more complex and cross-
domain text-to-SQL capabilities, providing a systematic way of comparing the performance of systems
across a wide range of database schemas and depths of query complexity [2]. This paper explores the
underlying design concepts, architectural designs, guardrail designs, and research designs that form
the basis of safe and robust NL2SQL systems on an enterprise scale, and outlines new directions in
multi-agent Al systems and self-refining query pipelines that are likely to push the field further.

2. Fundamentals of Natural-Language Query Systems

The working principle of NL2SQL systems is: the unstructured natural-language queries are converted
to a structured SQL query that correctly reflects the user intent. This metamorphosis needs numerous
strata of semantic interpretation, such as linguistic parsing, named entity recognition, schema
mapping, and intent recognition. Not only does the system have to decode the surface meaning of a
query, but it also has to be able to decode the nuanced dependencies between conditions, temporal
predicates, aggregate functions, and contextual predicates that affect query processing. The key here is
schema encoding, which is database organization in a form that can be effectively processed by the
brain.

RAT-SQL framework came up with relation-aware schema encoding and linking schemes, which
greatly improved the method used in the field of relating natural language to the database structure
[3]. In this architecture, it is acknowledged that good NL2SQL parsing needs explicit modelling of
relationships between schema components, such as relationships between tables by using foreign
keys, by membership of columns to tables, and relationships between question tokens and schema
components. Representing the database schema as a graph structure with nodes and relationships
defined by edges, RAT-SQL revealed that the relationship-aware encoding is much more effective in
the ability of the model to produce the right SQL, especially when using complex queries with multiple
table joins and nested subqueries.

Schema grounding refers to the correspondence between the user language and the database schema
that forms one of the most difficult parts of NL2SQL systems. Enterprise database design is often very
complex, with the production environment containing many tables, nested relationships in the form
of foreign keys, and domain-related naming conventions that do not always conform to the language
of everyday life. It is not only a lexical matching problem; systems have to realize that when a user
types in customer purchases, he may be referring to a table called transactions that has an association
with a table called clients using an intermediate table called orders.

The BIRD benchmark extended the assessment framework by establishing a large-scale database-
based text-to-SQL dataset that directly fills the gap between academic benchmarking and the
complexity of real-world databases [4]. Contrary to previous benchmarks, which tended to use
simplified schemas and clean data, BIRD uses databases with problematic properties such as
ambiguous column names, noisy or incomplete data values, domain-specific terminology, and more
complex multi-table relationships that resemble production database environments. This benchmark
demonstrated that even advanced large language models can do much worse when they are faced with
the realistic conditions of databases, which makes the robustness of schema understanding and
external knowledge incorporation crucial to deploy the NL2SQL in practice.

In the absence of stable schema grounding, models can give false column mappings, produce
incomplete result sets, or produce queries that are in violation of relational constraints like referential
integrity or domain constraints. Contemporary methods solve the problem by means of retrieval-
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augmented generation, in which the relevant schema components are retrieved dynamically according
to the input query and given as context to the language model. The BIRD benchmark in particular
showed that external knowledge sources and understanding of database content to enhance model
performance on realistic queries is, in fact, a requirement for future systems, where pure schema
structure should be replaced with semantic knowledge of actual data values and domain conventions.

Approach Encoding Method Key Strength
RAT-SQL Relation-aware graph | Multi-table join handling
BIRD Database-grounded Real-world schema complexity
Embedding-based Vector similarity Dynamic retrieval
Template-based Structured patterns Deterministic mapping

Table 1: Schema Encoding Approaches [3, 4]

The difficulty of disambiguation is another important aspect of the fundamental design of NL2SQL. In
cases where the user uses ambiguous terminology that might correspond to more than one element of
the schema, the system needs to either clarify the ambiguity by using context or have the user clarify
the ambiguity in a dialogue. Complex systems keep records of conversation history and user profiles to
guide such disambiguation choices, based on the experience of earlier interactions, of which
interpretations are compatible with particular user roles and analysis patterns.

3. Architectures for NL2SQL Systems

Various paradigms have been developed over the years, with the latest systems shifting more to a
hybrid paradigm that combines the flexibility of neural generation with high-level constraints to
guarantee syntactic validity and compliance with the schema. The structural issue in question is the
necessity to strike the right balance between the open-ended generative abilities of language models
and the demands of a specific SQL syntax, as well as the limitations of a target database schema.

Proposed by the PICARD framework, is a paradigm-shifting framework on constrained auto-
regressive decoding, which resolves one of the fundamental reliability issues of neural text-to-SQL
systems [5]. Instead of letting language models freely generate SQL tokens and then verifying
generated outputs afterward, PICARD also uses incremental parsing as part of the generation process.
Each decoding step has a system that checks candidate tokens against SQL grammar rules and schema
constraints and rejects those that would result in syntactically invalid queries or schema-inconsistent
queries before becoming part of the output. This strategy will guarantee that no invalid SQL will ever
be generated and will only refer to tables and columns that exist in the target database, significantly
lowering the errors that are common with unconstrained generation strategies.

The incremental parsing algorithm that PICARD uses is based on the idea that it maintains a partial
state of the parsing that establishes the grammatical context of the SQL query being built. Upon the
language model proposing a next token, the parser tries to continue the partial parse, and if the
extension fails due to the token either being inappropriate according to the rules of the SQL syntax or
by pointing to a non-existent schema element, the token is masked, and the model must propose
instead. This limited decoding strategy showed substantial gains on the benchmark tests by removing
complete classes of errors pertaining to syntax errors and schema hallucination, which afflict
unconstrained generation systems.
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The study carried out on the premises of constrained generation developed the DIN-SQL framework,
proposed decomposed in-context learning with self-correction facilities to further enhance
architectural refinement [6]. This strategy acknowledges that intricate text-to-SQL translation can be
gained through partitioning the task into solvable subtasks instead of end-to-end generation. DIN-
SQL splits the translation process into separate stages, such as schema linking, query classification,
SQL generation, and self-correction, and each stage is addressed by more specialized prompting
strategies that direct the attention of the language model to a particular part of the problem.

Matural Schema LLM Query 501
Language Input Retrieval Generation Execution

Component Details

Schema Encoding Constrained Decoding Self-Correction Safety Layer

= RAT-S50L Graph = PICARD Parser = DIN-S0L Review = SO Sanilization
* Table Refalions = Grammar Rules = Emor * RBAC Enforcementl
= Calumn Mapping = Taken Validalion = Cuery « Cost Estimaon
* Foreign Keys = Schema Checks = Join Verification « Audit Logging
* Embeddings = Incremental Parse * Logic Alipnment « Aoces= Contral
%
Feedback Loop: Usar Validation — Medel Refinement — Continuous Improvement Databass
Legend: . Irgaud . Retrneya . Generalion Validation . Execulion . Slorage

Fig 1: NL2SQL Architecture Pipeline [5, 6]

The self-correction mechanism of DIN-SQL is one such innovation in architecture that is of particular
significance. Following initial SQL generation, the system asks the language model to check its own
output for possible errors, taking into account whether all the entities mentioned are well-
represented, whether the join conditions are properly defined, and whether the logic of the query
reflects the original semantics of the question. This self-criticism model allows the model to detect and
fix errors that otherwise could be transmitted to an execution to enhance the overall system reliability,
without the need to have an external validation infrastructure.

The modern production systems are generally designed with Multi-stage pipelines that break the
NL2SQL task down into smaller parts: natural-language interpretation, schema retrieval and linking,
SQL generation, and validation. This breakdown enables every step to be optimized independently of
both accuracy and robustness, as well as computational performance. The schema retrieval phase can
use embedding-based similarity search to find the relevant tables and columns, and the generation
phase will involve the assembly of syntactically sound SQL that includes the schema elements that
were retrieved. Validation phases undertake syntax verification, semantic verification, and safety
verification, and then the queries are sent to execution.

Another architectural factor that implies performance and security is the execution environment.
Deployments of many execute generated SQL in sandboxed database connections, which impose
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constraints on resource access and accessibility. Connection pooling, limit of query time, and result
set size give further protection at the infrastructure layer. Observability and monitoring abilities
record telemetry information on query latency, metrics on accuracy, based on user feedback, and error
rates, which guide continuous improvement.

4. Guardrail and Safety Mechanisms

Guardrails are the key feature of enterprise NL2SQL systems, which offer many levels of safeguarding
against misplaced, unprotected, or even harmful query generation. The history of natural language
database interface offers valuable background to the knowledge of the present safety requirements.
Initial studies into habilitation in natural language interfaces provided the principles underpinning
the limitations of system ability and the significance of effective communication with users on what
the system can and cannot process [7]. Recognition of this groundbreaking work was that natural
language interfaces have to consider the expectations of the user and gracefully handle queries that
are beyond the ability of the system to handle, a principle that still drives the design of guardrails
today.

Habitability is a term used to describe how easily users can become educated to formulate queries
using the limitations of a natural language interface. Early systems learned that users soon form
mental models of system capabilities and adjust their language to those capabilities; however, only
happens when the system can respond consistently and understandably to them. This understanding
guides the contemporary guardrail design which cannot just avoid the detrimental queries, but also
inform the users when their requests cannot be answered and refer them to the effective
reformulations. The systems that deny the queries and do not provide reasons or act in a way that is
not consistent are a contravention of user trust and uptake.

SQL sanitization layers are a major type of guardrail in modern applications that check the generated
queries against suspicious operations and then run them. This layer detects potentially dangerous
patterns such as Cartesian products caused by omission of join conditions, full table scans on large
tables not properly filtered by appropriate predicates, unlimited time windows that might fetch too
much historical data, and writes in environments that are set to read-only access. Some models that
estimate query cost can examine generated SQL to forecast resource usage, block, or need approval of
a query that exceeds set limits.

The C3 exemplified the way zero-shot text-to-SQL applications via ChatGPT might be improved with
the help of a carefully thought-out prompting strategy, which takes into account the aspect of safety
[8]. This work proposed Clear Prompting, Calibration with Hints, and Consistent Output mechanisms
that all enhance the accuracy and reliability of the generated SQL. Calibration strategy is specifically
applicable to guardrailing, since it entails giving the model clear instructions on how it should not be
constrained by the schema and data type, and the scope of queries that are not supposed to be
violated. C3 exemplified that the incorporation of safety constraints into the prompting strategy
directly aimed at ensuring safety constraints could be enforced at the generation stage, not just by
means of post-generation validation.

Another important safety issue that is considered in the consistent output mechanism in C3 is that it
guarantees deterministic behavior in repeated queries. Enterprise usage requires the ability to
generate a semantically equivalent query, on a semantically identical query, with a few word variations
in phrasing. Unpredictable output not only serves to confuse the users, but it also generates problems
of data integrity, where varying query formulations give slightly different results. The output
consistency approach of the C3 framework gives a template or a framework of guardrail mechanisms
that offer predictability of behavior as well as its correctness.
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Mechanism Function Implementation Layer
SQL Sanitization Block risky operations Post-generation
RBAC Enforcement Access control validation Query layer
C3 Calibration Schema constraint hints Prompt design
Intent Disambiguation | User clarification Pre-generation
Audit Logging Activity tracking Execution layer

Table 2: Guardrail Mechanisms [7, 8]

Another guardrail strategy is intent disambiguation workflows, which are especially useful in
situations where user input does not give enough specificity to create a specific query. Instead of
giving assumptions that might yield wrong answers, advanced systems have the user involved in a
clarification conversation and give a choice of the ambiguous terms or demand further information
before acting. This human-in-the-loop solution accepts the natural shortcomings of automated
interpretation but keeps the user in control of query semantics.

Authorization of data policies assigned to a requesting user is maintained through role-based access
control at the query layer to ensure that the generated SQL complies with data authorization policy.
The system can also block queries that involve tables or columns to which the user is not authorized to
access and may error out the query or will automatically impose row-level or column-level security
filters. Audit logging and compliance monitoring give retrospective access to the activity of NL2SQL
systems, including the original natural language input, generated SQL, and execution output and the
corresponding user identity of every interaction, facilitating security investigation and compliance
needs.

5. Key Challenges in Enterprise Environments

The real-world deployment of NL2SQL systems is more complex than the complexity involved during
benchmarking or limited scope systems. The real-world environments have heterogeneity in several
aspects, such as a multitude of database management systems, various SQL flavors, distributed data
sources, varying data quality characteristics, and intricate data access control requirements.

Benchmarks of text-to-SQL models leveraging large language models showed substantial differences
in performance when compared from a research environment to a real-world corporate setup [9]. This
study systematically analyzed a host of state-of-the-art models on a variety of benchmarks and
introduced insights on how aspects such as schema complexity, query difficulty, and domain influence
text-to-SQL model performance. From these results, it is clear that large language models are highly
proficient at evaluating easy queries and handling a neatly designed schema, but fare poorly when
facing the unclear vocabulary terminology, complex JOINS, and domain-specific notation found in
corporate databases.

It’s also worth noting that the benchmark test showed the value of using accuracy measures based on
execution, rather than measures based on a comparison of matches alone. In the enterprise domain,
the best measure of success is getting the correct result sets from the executed SQL, rather than just
matching the executed SQL with a comparison string. Various SQL queries can yield the same result,
and measures should be designed with this consideration in mind. Similarly, queries with a
comparable structure can still generate incorrect results because of slight logical mistakes.
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Query optimization is an area that is highly challenging when the SQL generated from the models may
be grammatically correct and semantically correct, but inefficient from a performance perspective,
specifically when the enterprise data may contain numerous rows and naive query patterns may
perform well on smaller data but may time out or use too many resources when run on enterprise data
sizes. Query optimization stacks need to examine the generated SQL to look for inefficient patterns
and rewrite the SQL to utilize available indexes, remove redundancies, move predicates closer to the
data sources, and stabilize the execution plans.

RESDSQL framework handled the problem of text-to-SQL at an enterprise level by proposing a
decoupled framework where schema linking is handled separately from skeleton parsing [10]. It is
assumed in the framework design that the error in schema linking affects the whole process of SQL
generation. Therefore, by ranking schema components before predicting the SQL structure of the
problem question, the RESDSQL framework handled questions more robustly, requiring a correct link
to schema tables and columns.

The decoupling approach used in the RESDSQL system will be especially beneficial in the context of
enterprise systems, which often involve schemas with many tables. In this scenario, the number of
possible combinations of tables and columns grows combinatorially and becomes too cumbersome to
efficiently explore from an end-to-end modeling point of view. By first focusing the context of the
schema search on a set of very informative points, the SQL search space also shrinks, making the
search more accurate and efficient. Additionally, this method also allows the updating of the schema
in phases while retraining the ranking function to include a new table.

An environment of multiple languages and industry-related vocabularies makes semantic
interpretation even more difficult for enterprise applications. Enterprises functioning across multiple
global locations will get queries in several languages, and the NL2SQL model may require multiple
language support or translation processes before querying. The industry-related taxonomies face
semantic interpretation challenges when industry-specific vocabularies are not present in the general
training dataset or when different industry contexts have different meanings for the same term. The
ongoing change management of the base schemas is a serious operational issue that requires constant
enterprise database updates with new tables, renamed columns, and modified relationships.

6. Future Research Directions: Autonomous Agents and Secure Querying

Newer NL2SQL systems are now incorporating autonomous agent architectures with iterative
reasoning, self-correction, and multi-step query-planning that goes beyond single-turn question
answering. These agents break down the complex analytical problems into sets of simpler questions,
combine intermediate answers, and optimize interpretations based on the results of executions. The
development of agentic Al systems is a fundamental change from reactive query translation to
proactive analytical support.

The MetaGPT architecture proposed new paradigms of meta programming of multi-agent
collaborative systems that provide captivating architectural designs of next-generation NL2SQL
platforms [11]. This framework illustrates how various specialized agents may collaborate via well-
organized communication protocols to undertake the complex tasks that cannot be achieved by
individual models. Within the framework of NL2SQL, these architectures may include intent
interpretation, schema analysis, query generation, optimization, and safety validation agents, the
output of which is then specialized with specialized knowledge to the overall system output.

The multi-agent design overcomes a number of limitations of monolithic NL2SQL designs.
Multifaceted analytical questions can involve the ability to cut across multiple areas: linguistic skills to
deconstruct user intent, database skills to traverse schema structures, optimization skills to execute

128
Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 4

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.



Journal of Information Systems Engineering and Management
2026, 11(18)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

efficiently, and security knowledge to impose access control. There is no effective model that is
successful on all of these dimensions, yet agent systems can combine specialized capabilities by means
of organized coordination. The strategy of encoding standard operating procedures and
communication protocols designed in MetaGPT is a model of how to organize these types of
collaborations in enterprise NL2SQL scenarios.

Another research direction that is currently underway is the integration of NL2SQL-based
components with wider data platform elements. The systems include natural language querying with
data catalog exploration, automated visualization generation, and insight summarization, which offer
more comprehensive analytical processes. Users can start with exploratory inquiries, navigate down
into the particular data units with follow-up inquiries, and demand visualization or a narrative
summary of the results, without changing tools or circumstances. These combined experiences
demand synchronization among a variety of Al functions and control in data interpretation and access
control enforcement across the workflow.

Lakehouse architecture paradigm provides a base on which single data platform supports higher
NL2SQL capability in various data formats and processing trends [12]. This architectural vision is an
integrated solution that brings together the data warehousing and advanced analytics on open
platforms that provide direct access to data that is stored in cloud object store with the reliability and
performance features that were only available on traditional data warehouses. The lakehouse model is
a solution to long-term conflict between data warehouse governance and data lake flexibility and
offers a common base of NL2SQL systems, able to query structured transactional data as well as semi-
structured analytical data.

The architecture of lakehouses implements features that are specifically useful in the development of
NL2SQL, such as ACID transaction processing, schema enforcement, schema evolution, and time-
travel queries, which can be used to analyse historical data. These allow the set of questions that can
be answered using the NL2SQL systems to increase in the number of questions that require answers
about the data as it was at a particular point in time, comparisons of how the data was in the past and
the present, and analysis of changes that can help track how a metric changed over a specific time. A
convergence of architectures toward lakehouse platforms indicates that future NL2SQL systems will
be used on more and more integrated data landscapes where metadata and governance models are
similar.

Framework Core Innovation Primary Benefit
PICARD Incremental parsing Syntax guarantee
DIN-SQL Decomposed learning Self-correction
RESDSQL Decoupled linking Schema robustness
C3 Zero-shot prompting No fine-tuning
MetaGPT Multi-agent coordination Task specialization

Table 3: NL2SQL Framework Comparison [4, 5, 7, 8]

The secure querying system is still advancing with the innovations of a policy-driven Al system.
Attribute-level access control. Fine-grained attribute-level access control allows systems to allow
queries that access some of the columns and automatically redact or aggregate any sensitive attributes
according to the level of user authorization. Differential privacy integration adds noise to query
outcomes, so that it is possible to perform an aggregate analysis, but not possible to identify the
individual records. Self-learning guardrails are a future direction of research in which safety controls
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automatically determine new schemas, user behavior patterns, and new security risks, and can adjust
their rules accordingly without rules being updated manually.

Conclusion

Natural-Language-to-SQL systems have become an important contribution to the idea of
conversational access to enterprise databases, the intersection between human language and
structured query execution. To perform well at scale needs careful architectural design that includes
strong schema encoding schemes, multi-phase generation schemes with limited decoding, and
extensive validation layers that are syntactically correct and semantically accurate. The safety
mechanisms should respond to various risk dimensions such as query correctness, enforcement of
access control, and protection of computational resources via layered guardrails such as SQL
sanitization, intent disambiguation, and role-based security integration. Enterprise deployment is not
limited to the conditions of academic benchmarks, where schema heterogeneity, large-scale data
optimization, and constant response to changes in database structure need to be considered.
Architectures that decouple these two functions, schema comprehension and query skeleton
production, could provide a viable solution to the challenge of dealing with the complexity inherent in
enterprise-scale models and remain accurate. The combination of NL2SQL functionality with
autonomous multi-agent systems and integrated lakehouse solutions puts natural language as a more
practical universal interface to organizational data access and allows more people to be involved in
data-driven decision-making processes without losing the governance requirements and security
limits fundamental to business functions.
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