
Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1278

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

Natural-Language-to-SQL Systems with Safe Guardrailing

Mechanisms: Architecture, Challenges, and Future

Directions

Rahul Jain

Cisco Systems Inc., USA

ARTICLE INFO ABSTRACT

Received: 05 Dec 2025

Revised: 17 Jan 2026

Accepted: 27 Jan 2026

Natural-Language-to-SQL (NL2SQL) systems have become revolutionary in the process of

democratizing access to data stored in databases, allowing users without formal SQL

knowledge to work with structured data via conversational interfaces. Transformer-based

architectures and large language models have greatly enlarged the potential and availability

of database querying interfaces due to the development of parsers of rules into more useful

or enhanced structures. Enterprise implementation, however, poses significant problems

such as the complexity of schema grounding, the need for optimization of queries,

multilingual support, and the need for high security governance. Best practices of NL2SQL

need to be designed with a hybrid architecture that provides flexibility of neural generation

and limited flexibility of decoding that would guarantee syntactic consistency and schema

conformity. Guardrail mechanisms are imperative elements that offer levels of protection by

sanitizing SQL, disambiguating intent, implementing prompting strategies, and

implementing role access control. The current architectures are based on decomposed

processing pipelines, which separate schema linking and query generation to allow the

architecture to be more robust on more complex enterprise schemas. Multi-agent

collaborative architectures and lakehouse data platforms are also promising future advances

in the development of NL2SQL functionality, which can be used to support iterative

reasoning, self-correction, integration of querying different data types, and ensure that

metadata governance and security protection are maintained throughout the analytical

processes.

Keywords: Text-To-SQL, Query Generation, Database Interfaces, Safety Guardrails,

Lakehouse Architecture

1. Introduction

The natural-language interface has become a revolutionary feature within contemporary data

ecosystems and allows individuals to query structured databases using conversational commands

instead of the standard SQL language. The recent, more extensive surveys on Text-to-SQL parsing

have recorded the history of these systems, starting with early rule-based systems, through neural

sequence-to-sequence models, to modern large language models implementations, and the history of

each paradigm shift has increased the accessibility and performance of database querying interfaces

[1]. Such Natural-Language-to-SQL (NL2SQL) systems transform human linguistic expression into

the accuracy needed to operate a relational database system to provide an opportunity to analysts,

business users, and operational personnel who may not have formal SQL training to extract insights

out of organizational data resources.

Nonetheless, the installation of NL2SQL systems in the business world creates a lot of complications

despite these developments. The organizations need severe control over the access to the data,

deterministic execution of queries, and integrity of distributed data sources. Natural language is also

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1279

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

fundamentally ambiguous, and even large language models can produce syntactically correct but

semantically erroneous queries, computationally inefficient queries, or even queries that are security-

threatening. The Spider benchmark has provided a baseline of cross-domain semantic parsing and has

provided a large human-labeled scale dataset specifically tailored to evaluate more complex and cross-

domain text-to-SQL capabilities, providing a systematic way of comparing the performance of systems

across a wide range of database schemas and depths of query complexity [2]. This paper explores the

underlying design concepts, architectural designs, guardrail designs, and research designs that form

the basis of safe and robust NL2SQL systems on an enterprise scale, and outlines new directions in

multi-agent AI systems and self-refining query pipelines that are likely to push the field further.

2. Fundamentals of Natural-Language Query Systems

The working principle of NL2SQL systems is: the unstructured natural-language queries are converted

to a structured SQL query that correctly reflects the user intent. This metamorphosis needs numerous

strata of semantic interpretation, such as linguistic parsing, named entity recognition, schema

mapping, and intent recognition. Not only does the system have to decode the surface meaning of a

query, but it also has to be able to decode the nuanced dependencies between conditions, temporal

predicates, aggregate functions, and contextual predicates that affect query processing. The key here is

schema encoding, which is database organization in a form that can be effectively processed by the

brain.

RAT-SQL framework came up with relation-aware schema encoding and linking schemes, which

greatly improved the method used in the field of relating natural language to the database structure

[3]. In this architecture, it is acknowledged that good NL2SQL parsing needs explicit modelling of

relationships between schema components, such as relationships between tables by using foreign

keys, by membership of columns to tables, and relationships between question tokens and schema

components. Representing the database schema as a graph structure with nodes and relationships

defined by edges, RAT-SQL revealed that the relationship-aware encoding is much more effective in

the ability of the model to produce the right SQL, especially when using complex queries with multiple

table joins and nested subqueries.

Schema grounding refers to the correspondence between the user language and the database schema

that forms one of the most difficult parts of NL2SQL systems. Enterprise database design is often very

complex, with the production environment containing many tables, nested relationships in the form

of foreign keys, and domain-related naming conventions that do not always conform to the language

of everyday life. It is not only a lexical matching problem; systems have to realize that when a user

types in customer purchases, he may be referring to a table called transactions that has an association

with a table called clients using an intermediate table called orders.

The BIRD benchmark extended the assessment framework by establishing a large-scale database-

based text-to-SQL dataset that directly fills the gap between academic benchmarking and the

complexity of real-world databases [4]. Contrary to previous benchmarks, which tended to use

simplified schemas and clean data, BIRD uses databases with problematic properties such as

ambiguous column names, noisy or incomplete data values, domain-specific terminology, and more

complex multi-table relationships that resemble production database environments. This benchmark

demonstrated that even advanced large language models can do much worse when they are faced with

the realistic conditions of databases, which makes the robustness of schema understanding and

external knowledge incorporation crucial to deploy the NL2SQL in practice.

In the absence of stable schema grounding, models can give false column mappings, produce

incomplete result sets, or produce queries that are in violation of relational constraints like referential

integrity or domain constraints. Contemporary methods solve the problem by means of retrieval-

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1280

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

augmented generation, in which the relevant schema components are retrieved dynamically according

to the input query and given as context to the language model. The BIRD benchmark in particular

showed that external knowledge sources and understanding of database content to enhance model

performance on realistic queries is, in fact, a requirement for future systems, where pure schema

structure should be replaced with semantic knowledge of actual data values and domain conventions.

Approach Encoding Method Key Strength

RAT-SQL Relation-aware graph Multi-table join handling

BIRD Database-grounded Real-world schema complexity

Embedding-based Vector similarity Dynamic retrieval

Template-based Structured patterns Deterministic mapping

Table 1: Schema Encoding Approaches [3, 4]

The difficulty of disambiguation is another important aspect of the fundamental design of NL2SQL. In

cases where the user uses ambiguous terminology that might correspond to more than one element of

the schema, the system needs to either clarify the ambiguity by using context or have the user clarify

the ambiguity in a dialogue. Complex systems keep records of conversation history and user profiles to

guide such disambiguation choices, based on the experience of earlier interactions, of which

interpretations are compatible with particular user roles and analysis patterns.

3. Architectures for NL2SQL Systems

Various paradigms have been developed over the years, with the latest systems shifting more to a

hybrid paradigm that combines the flexibility of neural generation with high-level constraints to

guarantee syntactic validity and compliance with the schema. The structural issue in question is the

necessity to strike the right balance between the open-ended generative abilities of language models

and the demands of a specific SQL syntax, as well as the limitations of a target database schema.

Proposed by the PICARD framework, is a paradigm-shifting framework on constrained auto-

regressive decoding, which resolves one of the fundamental reliability issues of neural text-to-SQL

systems [5]. Instead of letting language models freely generate SQL tokens and then verifying

generated outputs afterward, PICARD also uses incremental parsing as part of the generation process.

Each decoding step has a system that checks candidate tokens against SQL grammar rules and schema

constraints and rejects those that would result in syntactically invalid queries or schema-inconsistent

queries before becoming part of the output. This strategy will guarantee that no invalid SQL will ever

be generated and will only refer to tables and columns that exist in the target database, significantly

lowering the errors that are common with unconstrained generation strategies.

The incremental parsing algorithm that PICARD uses is based on the idea that it maintains a partial

state of the parsing that establishes the grammatical context of the SQL query being built. Upon the

language model proposing a next token, the parser tries to continue the partial parse, and if the

extension fails due to the token either being inappropriate according to the rules of the SQL syntax or

by pointing to a non-existent schema element, the token is masked, and the model must propose

instead. This limited decoding strategy showed substantial gains on the benchmark tests by removing

complete classes of errors pertaining to syntax errors and schema hallucination, which afflict

unconstrained generation systems.

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1281

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

The study carried out on the premises of constrained generation developed the DIN-SQL framework,

proposed decomposed in-context learning with self-correction facilities to further enhance

architectural refinement [6]. This strategy acknowledges that intricate text-to-SQL translation can be

gained through partitioning the task into solvable subtasks instead of end-to-end generation. DIN-

SQL splits the translation process into separate stages, such as schema linking, query classification,

SQL generation, and self-correction, and each stage is addressed by more specialized prompting

strategies that direct the attention of the language model to a particular part of the problem.

Fig 1: NL2SQL Architecture Pipeline [5, 6]

The self-correction mechanism of DIN-SQL is one such innovation in architecture that is of particular

significance. Following initial SQL generation, the system asks the language model to check its own

output for possible errors, taking into account whether all the entities mentioned are well-

represented, whether the join conditions are properly defined, and whether the logic of the query

reflects the original semantics of the question. This self-criticism model allows the model to detect and

fix errors that otherwise could be transmitted to an execution to enhance the overall system reliability,

without the need to have an external validation infrastructure.

The modern production systems are generally designed with Multi-stage pipelines that break the

NL2SQL task down into smaller parts: natural-language interpretation, schema retrieval and linking,

SQL generation, and validation. This breakdown enables every step to be optimized independently of

both accuracy and robustness, as well as computational performance. The schema retrieval phase can

use embedding-based similarity search to find the relevant tables and columns, and the generation

phase will involve the assembly of syntactically sound SQL that includes the schema elements that

were retrieved. Validation phases undertake syntax verification, semantic verification, and safety

verification, and then the queries are sent to execution.

Another architectural factor that implies performance and security is the execution environment.

Deployments of many execute generated SQL in sandboxed database connections, which impose

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1282

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

constraints on resource access and accessibility. Connection pooling, limit of query time, and result

set size give further protection at the infrastructure layer. Observability and monitoring abilities

record telemetry information on query latency, metrics on accuracy, based on user feedback, and error

rates, which guide continuous improvement.

4. Guardrail and Safety Mechanisms

Guardrails are the key feature of enterprise NL2SQL systems, which offer many levels of safeguarding

against misplaced, unprotected, or even harmful query generation. The history of natural language

database interface offers valuable background to the knowledge of the present safety requirements.

Initial studies into habilitation in natural language interfaces provided the principles underpinning

the limitations of system ability and the significance of effective communication with users on what

the system can and cannot process [7]. Recognition of this groundbreaking work was that natural

language interfaces have to consider the expectations of the user and gracefully handle queries that

are beyond the ability of the system to handle, a principle that still drives the design of guardrails

today.

Habitability is a term used to describe how easily users can become educated to formulate queries

using the limitations of a natural language interface. Early systems learned that users soon form

mental models of system capabilities and adjust their language to those capabilities; however, only

happens when the system can respond consistently and understandably to them. This understanding

guides the contemporary guardrail design which cannot just avoid the detrimental queries, but also

inform the users when their requests cannot be answered and refer them to the effective

reformulations. The systems that deny the queries and do not provide reasons or act in a way that is

not consistent are a contravention of user trust and uptake.

SQL sanitization layers are a major type of guardrail in modern applications that check the generated

queries against suspicious operations and then run them. This layer detects potentially dangerous

patterns such as Cartesian products caused by omission of join conditions, full table scans on large

tables not properly filtered by appropriate predicates, unlimited time windows that might fetch too

much historical data, and writes in environments that are set to read-only access. Some models that

estimate query cost can examine generated SQL to forecast resource usage, block, or need approval of

a query that exceeds set limits.

The C3 exemplified the way zero-shot text-to-SQL applications via ChatGPT might be improved with

the help of a carefully thought-out prompting strategy, which takes into account the aspect of safety

[8]. This work proposed Clear Prompting, Calibration with Hints, and Consistent Output mechanisms

that all enhance the accuracy and reliability of the generated SQL. Calibration strategy is specifically

applicable to guardrailing, since it entails giving the model clear instructions on how it should not be

constrained by the schema and data type, and the scope of queries that are not supposed to be

violated. C3 exemplified that the incorporation of safety constraints into the prompting strategy

directly aimed at ensuring safety constraints could be enforced at the generation stage, not just by

means of post-generation validation.

Another important safety issue that is considered in the consistent output mechanism in C3 is that it

guarantees deterministic behavior in repeated queries. Enterprise usage requires the ability to

generate a semantically equivalent query, on a semantically identical query, with a few word variations

in phrasing. Unpredictable output not only serves to confuse the users, but it also generates problems

of data integrity, where varying query formulations give slightly different results. The output

consistency approach of the C3 framework gives a template or a framework of guardrail mechanisms

that offer predictability of behavior as well as its correctness.

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1283

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

Mechanism Function Implementation Layer

SQL Sanitization Block risky operations Post-generation

RBAC Enforcement Access control validation Query layer

C3 Calibration Schema constraint hints Prompt design

Intent Disambiguation User clarification Pre-generation

Audit Logging Activity tracking Execution layer

Table 2: Guardrail Mechanisms [7, 8]

Another guardrail strategy is intent disambiguation workflows, which are especially useful in

situations where user input does not give enough specificity to create a specific query. Instead of

giving assumptions that might yield wrong answers, advanced systems have the user involved in a

clarification conversation and give a choice of the ambiguous terms or demand further information

before acting. This human-in-the-loop solution accepts the natural shortcomings of automated

interpretation but keeps the user in control of query semantics.

Authorization of data policies assigned to a requesting user is maintained through role-based access

control at the query layer to ensure that the generated SQL complies with data authorization policy.

The system can also block queries that involve tables or columns to which the user is not authorized to

access and may error out the query or will automatically impose row-level or column-level security

filters. Audit logging and compliance monitoring give retrospective access to the activity of NL2SQL

systems, including the original natural language input, generated SQL, and execution output and the

corresponding user identity of every interaction, facilitating security investigation and compliance

needs.

5. Key Challenges in Enterprise Environments

The real-world deployment of NL2SQL systems is more complex than the complexity involved during

benchmarking or limited scope systems. The real-world environments have heterogeneity in several

aspects, such as a multitude of database management systems, various SQL flavors, distributed data

sources, varying data quality characteristics, and intricate data access control requirements.

Benchmarks of text-to-SQL models leveraging large language models showed substantial differences

in performance when compared from a research environment to a real-world corporate setup [9]. This

study systematically analyzed a host of state-of-the-art models on a variety of benchmarks and

introduced insights on how aspects such as schema complexity, query difficulty, and domain influence

text-to-SQL model performance. From these results, it is clear that large language models are highly

proficient at evaluating easy queries and handling a neatly designed schema, but fare poorly when

facing the unclear vocabulary terminology, complex JOINS, and domain-specific notation found in

corporate databases.

It’s also worth noting that the benchmark test showed the value of using accuracy measures based on

execution, rather than measures based on a comparison of matches alone. In the enterprise domain,

the best measure of success is getting the correct result sets from the executed SQL, rather than just

matching the executed SQL with a comparison string. Various SQL queries can yield the same result,

and measures should be designed with this consideration in mind. Similarly, queries with a

comparable structure can still generate incorrect results because of slight logical mistakes.

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1284

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

Query optimization is an area that is highly challenging when the SQL generated from the models may

be grammatically correct and semantically correct, but inefficient from a performance perspective,

specifically when the enterprise data may contain numerous rows and naive query patterns may

perform well on smaller data but may time out or use too many resources when run on enterprise data

sizes. Query optimization stacks need to examine the generated SQL to look for inefficient patterns

and rewrite the SQL to utilize available indexes, remove redundancies, move predicates closer to the

data sources, and stabilize the execution plans.

RESDSQL framework handled the problem of text-to-SQL at an enterprise level by proposing a

decoupled framework where schema linking is handled separately from skeleton parsing [10]. It is

assumed in the framework design that the error in schema linking affects the whole process of SQL

generation. Therefore, by ranking schema components before predicting the SQL structure of the

problem question, the RESDSQL framework handled questions more robustly, requiring a correct link

to schema tables and columns.

The decoupling approach used in the RESDSQL system will be especially beneficial in the context of

enterprise systems, which often involve schemas with many tables. In this scenario, the number of

possible combinations of tables and columns grows combinatorially and becomes too cumbersome to

efficiently explore from an end-to-end modeling point of view. By first focusing the context of the

schema search on a set of very informative points, the SQL search space also shrinks, making the

search more accurate and efficient. Additionally, this method also allows the updating of the schema

in phases while retraining the ranking function to include a new table.

An environment of multiple languages and industry-related vocabularies makes semantic

interpretation even more difficult for enterprise applications. Enterprises functioning across multiple

global locations will get queries in several languages, and the NL2SQL model may require multiple

language support or translation processes before querying. The industry-related taxonomies face

semantic interpretation challenges when industry-specific vocabularies are not present in the general

training dataset or when different industry contexts have different meanings for the same term. The

ongoing change management of the base schemas is a serious operational issue that requires constant

enterprise database updates with new tables, renamed columns, and modified relationships.

6. Future Research Directions: Autonomous Agents and Secure Querying

Newer NL2SQL systems are now incorporating autonomous agent architectures with iterative

reasoning, self-correction, and multi-step query-planning that goes beyond single-turn question

answering. These agents break down the complex analytical problems into sets of simpler questions,

combine intermediate answers, and optimize interpretations based on the results of executions. The

development of agentic AI systems is a fundamental change from reactive query translation to

proactive analytical support.

The MetaGPT architecture proposed new paradigms of meta programming of multi-agent

collaborative systems that provide captivating architectural designs of next-generation NL2SQL

platforms [11]. This framework illustrates how various specialized agents may collaborate via well-

organized communication protocols to undertake the complex tasks that cannot be achieved by

individual models. Within the framework of NL2SQL, these architectures may include intent

interpretation, schema analysis, query generation, optimization, and safety validation agents, the

output of which is then specialized with specialized knowledge to the overall system output.

The multi-agent design overcomes a number of limitations of monolithic NL2SQL designs.

Multifaceted analytical questions can involve the ability to cut across multiple areas: linguistic skills to

deconstruct user intent, database skills to traverse schema structures, optimization skills to execute

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1285

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

efficiently, and security knowledge to impose access control. There is no effective model that is

successful on all of these dimensions, yet agent systems can combine specialized capabilities by means

of organized coordination. The strategy of encoding standard operating procedures and

communication protocols designed in MetaGPT is a model of how to organize these types of

collaborations in enterprise NL2SQL scenarios.

Another research direction that is currently underway is the integration of NL2SQL-based

components with wider data platform elements. The systems include natural language querying with

data catalog exploration, automated visualization generation, and insight summarization, which offer

more comprehensive analytical processes. Users can start with exploratory inquiries, navigate down

into the particular data units with follow-up inquiries, and demand visualization or a narrative

summary of the results, without changing tools or circumstances. These combined experiences

demand synchronization among a variety of AI functions and control in data interpretation and access

control enforcement across the workflow.

Lakehouse architecture paradigm provides a base on which single data platform supports higher

NL2SQL capability in various data formats and processing trends [12]. This architectural vision is an

integrated solution that brings together the data warehousing and advanced analytics on open

platforms that provide direct access to data that is stored in cloud object store with the reliability and

performance features that were only available on traditional data warehouses. The lakehouse model is

a solution to long-term conflict between data warehouse governance and data lake flexibility and

offers a common base of NL2SQL systems, able to query structured transactional data as well as semi-

structured analytical data.

The architecture of lakehouses implements features that are specifically useful in the development of

NL2SQL, such as ACID transaction processing, schema enforcement, schema evolution, and time-

travel queries, which can be used to analyse historical data. These allow the set of questions that can

be answered using the NL2SQL systems to increase in the number of questions that require answers

about the data as it was at a particular point in time, comparisons of how the data was in the past and

the present, and analysis of changes that can help track how a metric changed over a specific time. A

convergence of architectures toward lakehouse platforms indicates that future NL2SQL systems will

be used on more and more integrated data landscapes where metadata and governance models are

similar.

Framework Core Innovation Primary Benefit

PICARD Incremental parsing Syntax guarantee

DIN-SQL Decomposed learning Self-correction

RESDSQL Decoupled linking Schema robustness

C3 Zero-shot prompting No fine-tuning

MetaGPT Multi-agent coordination Task specialization

 Table 3: NL2SQL Framework Comparison [4, 5, 7, 8]

The secure querying system is still advancing with the innovations of a policy-driven AI system.

Attribute-level access control. Fine-grained attribute-level access control allows systems to allow

queries that access some of the columns and automatically redact or aggregate any sensitive attributes

according to the level of user authorization. Differential privacy integration adds noise to query

outcomes, so that it is possible to perform an aggregate analysis, but not possible to identify the

individual records. Self-learning guardrails are a future direction of research in which safety controls

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1286

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

automatically determine new schemas, user behavior patterns, and new security risks, and can adjust

their rules accordingly without rules being updated manually.

Conclusion

Natural-Language-to-SQL systems have become an important contribution to the idea of

conversational access to enterprise databases, the intersection between human language and

structured query execution. To perform well at scale needs careful architectural design that includes

strong schema encoding schemes, multi-phase generation schemes with limited decoding, and

extensive validation layers that are syntactically correct and semantically accurate. The safety

mechanisms should respond to various risk dimensions such as query correctness, enforcement of

access control, and protection of computational resources via layered guardrails such as SQL

sanitization, intent disambiguation, and role-based security integration. Enterprise deployment is not

limited to the conditions of academic benchmarks, where schema heterogeneity, large-scale data

optimization, and constant response to changes in database structure need to be considered.

Architectures that decouple these two functions, schema comprehension and query skeleton

production, could provide a viable solution to the challenge of dealing with the complexity inherent in

enterprise-scale models and remain accurate. The combination of NL2SQL functionality with

autonomous multi-agent systems and integrated lakehouse solutions puts natural language as a more

practical universal interface to organizational data access and allows more people to be involved in

data-driven decision-making processes without losing the governance requirements and security

limits fundamental to business functions.

References

[1] Panos Ipeirotis and Haotian Zheng, "Natural Language Interfaces for Databases: What Do Users

Think?," arXiv:2511.14718v1, 2025. [Online]. Available: https://arxiv.org/html/2511.14718v1

[2] Tao Yu et al., "Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain

Semantic Parsing and Text-to-SQL Task," arXiv:1809.08887, 2019. [Online]. Available:

https://arxiv.org/abs/1809.08887

[3] Bailin Wang et al., "RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL

Parsers," arXiv:1911.04942, 2021. [Online]. Available: https://arxiv.org/abs/1911.04942

[4] Jinyang Li et al., "Can LLM Already Serve as A Database Interface? A Big Bench for Large-Scale

Database Grounded Text-to-SQLs," arXiv:2305.03111, 2023. [Online]. Available:

https://arxiv.org/abs/2305.03111

[5] Torsten Scholak et al., "PICARD: Parsing Incrementally for Constrained Auto-Regressive Decoding

from Language Models," arXiv:2109.05093, 2021. [Online]. Available:

https://arxiv.org/abs/2109.05093

[6] Mohammadreza Pourreza and Davood Rafiei, "DIN-SQL: Decomposed In-Context Learning of

Text-to-SQL with Self-Correction," arXiv:2304.11015, 2023. [Online]. Available:

https://arxiv.org/abs/2304.11015

[7] Androutsopoulos et al., "Natural Language Interfaces to Databases – An Introduction,"

arXiv:cmp-lg/9503016, 1995. [Online]. Available: https://arxiv.org/abs/cmp-lg/9503016v2

[8] Xuemei Dong et al., "C3: Zero-shot Text-to-SQL with ChatGPT," arXiv:2307.07306, 2023.

[Online]. Available: https://arxiv.org/abs/2307.07306

https://arxiv.org/html/2511.14718v1
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1911.04942
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/cmp-lg/9503016v2
https://arxiv.org/abs/2307.07306

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1287

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

[9] Dawei Gao et al., "Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation,"

arXiv:2308.15363, 2023. [Online]. Available: https://arxiv.org/abs/2308.15363

[10] Haoyang Li et al., "RESDSQL: Decoupling Schema Linking and Skeleton Parsing for Text-to-

SQL," arXiv:2302.05965, 2023. [Online]. Available: https://arxiv.org/abs/2302.05965

[11] Sirui Hong et al., "MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework,"

arXiv:2308.00352, 2024. [Online]. Available: https://arxiv.org/abs/2308.00352

[12] Michael Armbrust et al., "Lakehouse: A New Generation of Open Platforms that Unify Data

Warehousing and Advanced Analytics," CIDR, 2021. [Online]. Available:

https://people.eecs.berkeley.edu/~matei/papers/2021/cidr_lakehouse.pdf

https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2302.05965
https://arxiv.org/abs/2308.00352
https://people.eecs.berkeley.edu/~matei/papers/2021/cidr_lakehouse.pdf

