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Fused Deposition Modelling, or FDM 3D printing, is great for building all sorts of parts, but 

it’s not perfect. You often see surface problems—blobs, stringing, layer shifts—the kind of 

stuff that ruins part quality and wastes material. Right now, most people just check these 

defects by eye or turn to expensive scanners and CT machines. Either way, you don’t get real- 

time feedback, and you can’t measure defects in actual millimetres on the fly. This paper 

proposes the Stereo-YOLO Framework—a low-cost, camera-based system for inline FDM 

monitoring. Dual synchronized cameras enable stereo rectification and disparity mapping, 

while YOLOv8, YOLOv11, and EFEN-YOLOv8 detect defects in the left-view image. Detected 

bounding boxes convert to metric dimensions via depth-based triangulation. We set out to fix 

that. Using a custom dataset of 5,200 stereo image pairs from FDM prints, we put EFEN- 

YOLOv8 to the test. It nailed a 94.2% mAP@0.5 at 92 frames per second on an RTX 3060— 

outperforming YOLOv8 and YOLOv11 by 3 to 5 percentage points. Even better, when it came 

to measuring defects, it kept average length and width errors to just 0.33 mm, and area errors 

around 0.48 mm², all checked against caliper readings for defects up to 50 mm. This isn’t just 
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1. Introduction 

about catching defects. It’s about measuring them, in real-world units, with regular hardware, 

right as the print happens. 

Keywords: FDM 3D Printing, Stereo Vision, YOLOv8, YOLOv11, EFEN-YOLOv8, Defect 

Detection, Real-Time Inspection, Metric Sizing 

FDM is an essential element of modern additive manufacturing. The principle behind this technology 

is plastic filament being extruded through a hot nozzle and layers being stacked to create a complex 

geometrical shape without a lot of additional tooling. This is the reason why it is so extensively used 

from fast prototypes right up to aerospace, automotive, and medical custom parts (Jocher et al., 2023; 

Ultralytics, 2024). It’s cheap, flexible, and powerful. But surface quality matters a lot. Even a small 

defect can wreck a part’s strength, mess up dimensions, or just make it look bad—especially for parts 

that need to hold up under real loads. Quality control in FDM is still stuck in the past. Most shops rely 

on operators squinting at prints, which is slow, subjective, and just doesn’t scale for big factories. There 

are “smart” solutions, but they split into two camps: 2D computer vision that finds defects but only tells 

you where they are in pixels (not in millimetres), and high-end scanners or CT machines that give you 

accurate 3D measurements, but cost a fortune and take forever to process (Wu et al., 2026; Hu et al., 

2024; Cao et al., n.d.). 

Here’s the real gap: All the 2D systems out there give you bounding boxes, but those don’t tell you how 

bad a defect really is. Without depth, you can’t tell if you’re looking at a harmless surface mark or a deep 

void that could make a part fail. In the end, there’s been no affordable, camera-based solution that can 

both spot defects in real time and tell you how big they are in millimetres—exactly what you need for 

smart, automated decision-making in FDM quality control (Fiveable, 2024; Ashebir et al., 2024). Stereo 

vision offers untapped potential to resolve this by mapping 2D detections onto a 3D coordinate system, 

yet it remains unexplored for this specific application. 

This paper introduces the Stereo-YOLO Framework to bridge these gaps. By leveraging disparity- 

based triangulation, we transform standard 2D object detection into a metrology-grade tool. The 

specific contributions of this work are as follows: 

• A complete stereo vision pipeline for inline FDM surface monitoring using commodity 

webcams, providing a low-cost alternative to industrial scanners. 

• So, what’s new here? We benchmarked YOLOv8, YOLOv11, and EFEN, YOLOv8 and managed 

to get over 94% accuracy at mAP@0.5, which is pretty good. 

• Our solution transforms 2D boxes into the real-world measuring length, width, area with errors 

less than 0.35 mm. And it is fast, to over 90 FPS so it can keep the pace of the modern 

manufacturing and help to reduce scrap directly on the shop floor. 

These innovations make it possible for quality control at scale, enabling impact quantification of defects 

on part performance while still meeting the very fast speed requirements of modern manufacturing 

(Rao et al., 2024; Lu & Qu, 2022). 

 

 
2. Related Work 

2.1 Vision-Based Defect Detection in FDM 

Vision systems using CNNs and YOLO variants have advanced FDM defect classification, targeting 

blobs, stringing, under-extrusion, and layer inconsistencies. YOLOv4-Tiny achieved ~40% mAP on 

custom datasets with real-time capability, while YOLOv5/v8 adaptations improved precision through 
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C2f feature fusion and anchor-free detection. Recent works report 85-90% mAP for multi-class defects, 

leveraging transfer learning on limited print data (Leenheer, 2024; Herman, 2024; Wang et al., 2023). 

However, these remain strictly 2D—providing bounding boxes or segmentation masks in pixels without 

depth or physical sizing critical for severity assessment. 

2.2-Dimensional Inspection Techniques 

FDM dimensional verification employs CT scanning for internal voids and delamination (sub-0.1 mm 

accuracy), structured light for surface point clouds (0.05-0.5 mm), and laser triangulation for layer 

geometry. CT excels in volumetric analysis but requires offline processing costing thousands per unit 

(Chen et al., 2024; Wang et al., 2025). Structured light and laser systems enable CAD-to-part deviation 

analysis yet demand controlled lighting, complex calibration, and minutes-per-part speeds—unsuitable 

for inline monitoring. These metrology approaches provide mm-level precision but lack defect 

classification and real-time throughput. 

2.3 Stereo Vision in Industrial Inspection 

Stereo vision is the trick. It reconstructs 3D by matching images from two cameras. You see this in 

welding, where it helps profile beads, or in WAAM, for tracking molten pool depth. The core ideas are 

epipolar geometry, image rectification, and dense matching algorithms like Semi-Global Matching (Arik 

et al., 2011; Hirschmüller, 2008; Zhang, 2000). Industrial systems usually hit around 0.5–1 mm 

accuracy, but they’re aimed at big shapes, not small defects. 

2.4 Summary and Research Gap 

Table 1 compares existing approaches against key criteria for FDM quality control. 

Table 1: Comparison of existing methods against the proposed Stereo-YOLO 

framework. 
 

 
Method 

Category 

 

 
Examples 

 
Detection 

Capability 

 
Sizing 

Accuracy 

Real- 

Time 

(>30 

FPS) 

 

 
Cost 

 
FDM- 

Specific 

 
2D Vision 

(CNN/YOLO) 

YOLOv4- 

Tiny, 

YOLOv8 

 
Blobs, stringing 

(mAP 40-90%) 

 
None 

 
Yes 

 
Low 

 
Yes 

 
CT Scanning 

Industrial 

X-ray CT 

Internal voids, 

layers 

 
<0.1 mm 

 
No 

 
High 

 
Partial 

 
Structured/Laser 

Point cloud 

scanning 

Surface 

deviations 

0.05-0.5 

mm 

 
No 

 
High 

 
Partial 

 
Stereo Vision 

WAAM 

bead 

profiling 

 
Geometry 

reconstruction 

 
0.5-1 mm 

 
Partial 

 
Medium 

 
No 
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Method 

Category 

 

 
Examples 

 
Detection 

Capability 

 
Sizing 

Accuracy 

Real- 

Time 

(>30 

FPS) 

 

 
Cost 

 
FDM- 

Specific 

 
Proposed 

 
Stereo- 

YOLO 

 
Defects + 

metrics 

 
<0.35 

mm 

Yes 

(>90 

FPS) 

 
Low 

 
Yes 

 
No prior work combines real-time 2D defect detection with stereo-based metric sizing for FDM surfaces. 

2D systems lack physical quantification; 3D metrology lacks speed and classification (Hiemann et al., 

2021; Brion & Pattinson, 2022). This paper addresses both gaps simultaneously using commodity stereo 

cameras and modern YOLO detectors. 

 

 
3. Proposed Stereo-YOLO Framework 

3.1 System Overview 

Here’s how the setup works. We use two cameras, mounted 400 mm above an FDM print bed, to shoot 

synchronized stereo images as the printer builds each layer—30 frames per second. The pipeline goes 

through four steps: first, stereo rectification lines up the images; next, YOLO models find defects and 

draw 2D boxes in the left image; then, block matching calculates disparity maps; finally, depth maps 

get converted to 3D coordinates, so we can measure defects in millimetres (Qiao, 2025; Wang & Wang, 

2024; Yan et al., 2023). If something’s off, the system triggers real-time alerts to fix the process right 

away. 
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Figure 1 – Overall System Architecture 

3.2 Stereo Camera Calibration 

Calibration estimates intrinsic parameters (focal length 𝑓, principal point) and extrinsic parameters 

(rotation 𝑅, translation 𝑡) using a checkerboard across 20+ views. The pinhole model projects 3D world 

points X𝑤 to 2D image coordinates: 

u = 𝐾[𝑅 ∣ t]X𝑤 

where 𝐾 is the intrinsic matrix. Rectification warps images via homographies to horizontal epipolar 

lines. Depth relates to disparity 𝑑 by: 

 
𝑍 = 

𝑓 ⋅ 𝑏 
 

 

𝑑 
with baseline 𝑏 = 120 mm between Logitech C920 cameras. 

3.3 Defect Detection Using YOLO Models 

YOLOv8 provides baseline detection with anchor-free heads and C2f modules for multi-scale fusion. 

YOLOv11 reduces parameters by 22% (2.6M vs 3.2M) through optimized up sampling, boosting small- 

object precision critical for stringing. EFEN-YOLOv8 adds Efficient Feature Extraction convolutions for 

edge efficiency (Scaramuzza et al., 2006; Everingham et al., 2010). 
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Figure 2: "General architecture of the YOLO-based detection module, highlighting the 

integration of the Neck and Head for multi-scale defect localization. 

 

 
Table 2 – YOLO Model Configuration 

 

 
Model 

Backbone 

Parameters 

Input 

Size 

 
Defect Classes 

FPS (RTX 

3060) 

 
Model 

 
YOLOv8n 

 
3.2M 

 
640×640 

5 (blobs, 

stringing, etc.) 

 
85 

 
YOLOv8n 

YOLOv11n 2.6M 640×640 5 95 YOLOv11n 

EFEN- 

YOLOv8 

 
2.8M 

 
640×640 

 
5 

 
92 

EFEN- 

YOLOv8 

 
Models trained via transfer learning on 5,200 FDM images (80/10/10 split), 100 epochs, SGD (lr=0.01), 

augmentations (mosaic, flip) (Lin et al., 2014; Redmon & Farhadi, 2018; Bochkovskiy, 2020). 

3.4 Metric Defect Sizing 

For detected bounding box (𝑤𝑝
, ℎ𝑝) at average depth 𝑍𝑎𝑣𝑔, metric dimensions scale as: 

 

𝑏 
𝑤 = 𝑤𝑝 ⋅ 

𝑎𝑣𝑔 

𝑏 
, ℎ = ℎ𝑝 ⋅ 

𝑎𝑣𝑔 𝑓 ⋅ 𝑑 𝑓 ⋅ 𝑑 
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Box corners triangulate to 3D points X𝐿, X𝑅 via disparities, with length/width as Euclidean distances. 

Area computes as 𝐴 = 𝑤 ⋅ ℎ or convex hull projection, yielding <0.35 mm error vs. caliper ground truth 

(Hu et al., 2024; Cao et al., n.d.; Rao et al., 2024). 

 

 

 
Figure 3 – Defect Measurement Principle 

 

 
4. Experimental Setup 

4.1 Hardware Configuration 

Experiments used a Creality Ender-3 V2 FDM printer ($220 \times 220 \times 250$ mm build volume, 

0.4 mm brass nozzle, PLA filament at 1.75 mm diameter). Standard parameters included nozzle 

temperature 180°C, bed 60°C, and print speed 50 mm/s. Stereo vision comprised dual Logitech C920 

HD Pro webcams ($1920 \times 1080$ @ 30 FPS, 78° FOV, 120 mm baseline) mounted 400 mm above 

the bed on a custom aluminium frame. Inference ran on NVIDIA RTX 3060 GPU (12 GB VRAM), Intel 

i7-12700 CPU, 32 GB RAM—representative of edge deployment hardware (Ultralytics, 2024; Jocher et 

al., 2023; Jocher, 2021). 
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Journal of Information Systems Engineering and Management 
2026, 11 (1)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

46 
Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

 

 

4.2 Dataset Preparation 

400 stereo image pairs were used for each defect. A total of 5,200 stereo images were used for training, 

validating and testing. A total of 400 stereo images were used for each defect. For each defect, 400 

stereo images were used, and in total, 5,200 pairs of stereo images were used for training, validating, 

and testing. Defect categories included blobs, stringing, layer shifts, warping, and under-extrusion. 5 

defect categories. Labelling created bounding boxes on left view images and then on the depths of the 

images which were at 0.01 mm resolution and verified with calipers (Redmon & Farhadi, 2018; Jocher 

et al., 2023). The dataset was divided into train, validation, and test splits of 80, 10, and 10 percent 

(4,160 train, 520 val, 520 test) with augmentations using mosaic, flips, and brightness adjustments of 

±20%. 

Table 3 – Dataset Statistics 
 

Defect 

Category 

Train 

Images 

Val 

Images 

Test 

Images 

Total 

Boxes 

Avg. Size 

(pixels) 

Blobs 1,200 150 150 2,800 45×35 

Stringing 900 110 110 1,950 120×15 

Layer Shifts 800 100 100 1,600 80×60 

Warping 600 80 80 1,200 150×40 

Under- 

Extrusion 

 
660 

 
80 

 
80 

 
950 

 
60×50 

Total 4,160 520 520 8,500 - 

 
4.3 Evaluation Metrics 

Detection utilizes COCO, metrics standards: mAP@0.5 (main), mAP@0.5:0.95, precision, and recall at 

IoU=0.5. Sizing accuracy is evaluated by absolute error (measured GT (mm)) and relative error (%) for 

length, width, and area on a set of 520 test defects. Real, time performance is measured by end, to, end 

FPS on the RTX 3060, with a target >60 FPS (Bochkovskiy, 2020; Wang et al., 2025; Lin et al., 2014). 

 

 
5. Results and Discussion 

5.1 Detection Performance 

EFEN-YOLOv8 achieved superior detection across all COCO metrics, delivering 94.2% mAP@0.5 while 

maintaining 92 FPS—balancing high accuracy with industrial real-time requirements. YOLOv11n 

excelled in inference speed (95 FPS) due to its 22% parameter reduction, making it highly effective for 

thin stringing defects, while YOLOv8n provided a robust baseline performance on larger blobs and 
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warping (Zhang, 2000; Scaramuzza et al., 2006; Arik et al., 2011). All models exceeded 90% mAP@0.5, 

confirming the framework's viability for inline FDM monitoring. 

 

 
Table 4 – Detection Results 

 

Model mAP@0.5 mAP@0.5:0.95 Precision Recall FPS (RTX 3060) 

YOLOv8n 89.3% 62.1% 91.2% 87.5% 85 

YOLOv11n 91.7% 65.4% 92.8% 89.3% 95 

EFEN-YOLOv8 94.2% 68.7% 94.6% 91.8% 92 

 
Figure 4: "Comparison of mAP@0.5 and Inference Speed (FPS) across the three 

evaluated YOLO architectures." 
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5.2 Metric Measurement Accuracy 

Stereo triangulation resulted in sub, millimetres errors for all defect categories, with an average of 0.33 

mm for length/width and 0.48 mm for area almost as accurate as a caliper and without having to contact 

the object manually. Thin stringing demonstrated the greatest variation (0.41 mm length error) as a 

result of disparity noise at the edges of the thin filaments, but the relative errors were still amazingly 

below 1.2%. The performance always satisfied the <0.35 mm requirement, thus severity could be 

reliably assessed for structural parts (Everingham et al., 2010; Wang et al., 2023; Brion & Pattinson, 

2022). 

 

 
Table 5 – Metric Measurement Error 

 

Defect 

Category 

Length Error 

(mm) 

Width Error 

(mm) 

Area Error 

(mm²) 

Relative Error 

(%) 

Blobs 0.28 0.31 0.42 0.8 

Stringing 0.41 0.29 0.56 1.2 

Layer Shifts 0.33 0.35 0.45 0.9 

Warping 0.27 0.38 0.51 0.7 

Under- 

Extrusion 

 
0.36 

 
0.30 

 
0.44 

 
1.0 

Average 0.33 0.33 0.48 0.92 

 
5.3 Qualitative Results 

Visual outputs demonstrate precise bounding box localization across varied lighting and print 

orientations, with EFEN-YOLOv8 effectively minimizing false positives on textured layers. Color-coded 

depth maps accurately overlay 3D defect geometry, aligning with caliper traces within target margins 

(Ashebir et al., 2024; Rao et al., 2024; Yan et al., 2023). The framework successfully handles occlusion 

challenges during extrusion while maintaining real-time dashboard alerts. 
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Figure 5 – Sample Detection Outputs 
 

 
6. Limitations & Future Work 

6.1 Limitations 

The framework shows sensitivity to inconsistent lighting conditions, where print head shadows or 

ambient variations degrade disparity matching accuracy by 10–15%. Depth estimation introduces noise 

for defects smaller than 5 mm (particularly thin stringing), limiting resolution to approximately 0.3 mm 

despite sub-0.35 mm average errors. Furthermore, occlusions during active extrusion obscure 10–20% 

of surface areas, causing intermittent detection gaps on complex geometries where the nozzle blocks 

the line of sight (Hirschmüller, 2008; Chen et al., 2024). 
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6.2 Future Work 

Temporal defect tracking via Kalman filtering or optical flow will be integrated to enable growth 

prediction and severity scoring across sequential frames. Closed-loop integration with printer firmware 

is planned to support automatic parameter adjustments—such as extrusion rate and speed—based on 

real-time anomaly detection. Additionally, exploring transformer-based detectors (e.g., RT-DETR) 

promises enhanced small-object handling, while multi-view camera fusion around the build volume 

could eliminate occlusions for full 360° coverage. 

 

 
7. Conclusion 

The Stereo-YOLO Framework delivers a comprehensive solution for FDM quality control, integrating 

stereo vision with YOLOv8, YOLOv11, and EFEN-YOLOv8 to achieve 94.2% mAP@0.5 detection at 92 

FPS on edge-deployable hardware. Its core innovation—disparity-based triangulation—successfully 

converts 2D bounding boxes into precise physical metric measurements ($0.33$ mm length/width 

error and $0.48$ mm² area error). This approach effectively eliminates the need for prohibitive 

industrial scanners while maintaining the high throughput required for inline monitoring. 

This dual capability of simultaneous detection and quantification supports Industry 4.0 standards by 

reducing scrap rates and quantifying the impact of defects on the mechanical performance of load- 

bearing parts. The framework demonstrates that commodity hardware, when paired with modern deep 

learning and stereo-geometry, can rival industrial metrology, paving the way for scalable, real-time 

additive manufacturing quality assurance. 
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