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ARTICLE INFO ABSTRACT

Received: 05 Feb 2026 Fused Deposition Modelling, or FDM 3D printing, is great for building all sorts of parts, but
it’s not perfect. You often see surface problems—blobs, stringing, layer shifts—the kind of
stuff that ruins part quality and wastes material. Right now, most people just check these
Accepted: 10 Feb 2026 defects by eye or turn to expensive scanners and CT machines. Either way, you don’t get real-
time feedback, and you can’t measure defects in actual millimetres on the fly. This paper
proposes the Stereo-YOLO Framework—a low-cost, camera-based system for inline FDM
monitoring. Dual synchronized cameras enable stereo rectification and disparity mapping,
while YOLOV8, YOLOv11, and EFEN-YOLOvVS8 detect defects in the left-view image. Detected
bounding boxes convert to metric dimensions via depth-based triangulation. We set out to fix
that. Using a custom dataset of 5,200 stereo image pairs from FDM prints, we put EFEN-
YOLOVS to the test. It nailed a 94.2% mAP@o0.5 at 92 frames per second on an RTX 3060—
outperforming YOLOv8 and YOLOv11 by 3 to 5 percentage points. Even better, when it came
to measuring defects, it kept average length and width errors to just 0.33 mm, and area errors
around 0.48 mm?2, all checked against caliper readings for defects up to 50 mm. This isn’t just
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about catching defects. It’s about measuring them, in real-world units, with regular hardware,
right as the print happens.

Keywords: FDM 3D Printing, Stereo Vision, YOLOv8, YOLOv11, EFEN-YOLOVS, Defect
Detection, Real-Time Inspection, Metric Sizing

1. Introduction

FDM is an essential element of modern additive manufacturing. The principle behind this technology
is plastic filament being extruded through a hot nozzle and layers being stacked to create a complex
geometrical shape without a lot of additional tooling. This is the reason why it is so extensively used
from fast prototypes right up to aerospace, automotive, and medical custom parts (Jocher et al., 2023;
Ultralytics, 2024). It’s cheap, flexible, and powerful. But surface quality matters a lot. Even a small
defect can wreck a part’s strength, mess up dimensions, or just make it look bad —especially for parts
that need to hold up under real loads. Quality control in FDM is still stuck in the past. Most shops rely
on operators squinting at prints, which is slow, subjective, and just doesn’t scale for big factories. There
are “smart” solutions, but they split into two camps: 2D computer vision that finds defects but only tells
you where they are in pixels (not in millimetres), and high-end scanners or CT machines that give you
accurate 3D measurements, but cost a fortune and take forever to process (Wu et al., 2026; Hu et al.,
2024; Cao et al., n.d.).

Here’s the real gap: All the 2D systems out there give you bounding boxes, but those don’t tell you how
bad a defect really is. Without depth, you can’t tell if you’re looking at a harmless surface mark or a deep
void that could make a part fail. In the end, there’s been no affordable, camera-based solution that can
both spot defects in real time and tell you how big they are in millimetres—exactly what you need for
smart, automated decision-making in FDM quality control (Fiveable, 2024; Ashebir et al., 2024). Stereo
vision offers untapped potential to resolve this by mapping 2D detections onto a 3D coordinate system,
yet it remains unexplored for this specific application.

This paper introduces the Stereo-YOLO Framework to bridge these gaps. By leveraging disparity-
based triangulation, we transform standard 2D object detection into a metrology-grade tool. The
specific contributions of this work are as follows:

¢ A complete stereo vision pipeline for inline FDM surface monitoring using commodity
webcams, providing a low-cost alternative to industrial scanners.

¢ So, what’s new here? We benchmarked YOLOv8, YOLOv11, and EFEN, YOLOv8 and managed
to get over 94% accuracy at mAP@o.5, which is pretty good.

e  Our solution transforms 2D boxes into the real-world measuring length, width, area with errors
less than 0.35 mm. And it is fast, to over 9o FPS so it can keep the pace of the modern
manufacturing and help to reduce scrap directly on the shop floor.

These innovations make it possible for quality control at scale, enabling impact quantification of defects
on part performance while still meeting the very fast speed requirements of modern manufacturing
(Rao et al., 2024; Lu & Qu, 2022).

2. Related Work

2.1 Vision-Based Defect Detection in FDM

Vision systems using CNNs and YOLO variants have advanced FDM defect classification, targeting
blobs, stringing, under-extrusion, and layer inconsistencies. YOLOv4-Tiny achieved ~40% mAP on
custom datasets with real-time capability, while YOLOv5/v8 adaptations improved precision through
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Caf feature fusion and anchor-free detection. Recent works report 85-90% mAP for multi-class defects,
leveraging transfer learning on limited print data (Leenheer, 2024; Herman, 2024; Wang et al., 2023).
However, these remain strictly 2D—providing bounding boxes or segmentation masks in pixels without
depth or physical sizing critical for severity assessment.

2.2-Dimensional Inspection Techniques

FDM dimensional verification employs CT scanning for internal voids and delamination (sub-0.1 mm
accuracy), structured light for surface point clouds (0.05-0.5 mm), and laser triangulation for layer
geometry. CT excels in volumetric analysis but requires offline processing costing thousands per unit
(Chen et al., 2024; Wang et al., 2025). Structured light and laser systems enable CAD-to-part deviation
analysis yet demand controlled lighting, complex calibration, and minutes-per-part speeds—unsuitable
for inline monitoring. These metrology approaches provide mm-level precision but lack defect
classification and real-time throughput.

2.3 Stereo Vision in Industrial Inspection

Stereo vision is the trick. It reconstructs 3D by matching images from two cameras. You see this in
welding, where it helps profile beads, or in WAAM, for tracking molten pool depth. The core ideas are
epipolar geometry, image rectification, and dense matching algorithms like Semi-Global Matching (Arik
et al., 2011; Hirschmiiller, 2008; Zhang, 2000). Industrial systems usually hit around 0.5—-1 mm
accuracy, but they’re aimed at big shapes, not small defects.

2.4 Summary and Research Gap
Table 1 compares existing approaches against key criteria for FDM quality control.

Table 1: Comparison of existing methods against the proposed Stereo-YOLO

framework.
Real-
Method Examoles Detection Sizing Time Cost FDM-
Category P Capability Accuracy (>30 Specific
FPS)
2D Vision STKS;OWP Blobs, stringing None Yes Low Yes
’ —ano
(CNN/YOLO) YOLOVS (mAP 40-90%)
. Industrial Internal voids, . .
CT Scanning X-ray CT Jayers <0.1 mm No High Partial
Structured/Laser Point 'cloud Sun'cac'e 0.05-0:5 No High Partial
scanning deviations mm
W Geomet
Stereo Vision bead Y 0.5-1 mm Partial Medium No

. reconstruction
profiling
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Real-
Method Examoles Detection Sizing Time Cost FDM-
Category p Capability Accuracy (>30 Specific
FPS)
Yes
Proposed Stereo- Defe?ts + <0.35 (>90 Low Yes
YOLO metrics mm FPS)

No prior work combines real-time 2D defect detection with stereo-based metric sizing for FDM surfaces.
2D systems lack physical quantification; 3D metrology lacks speed and classification (Hiemann et al.,
2021; Brion & Pattinson, 2022). This paper addresses both gaps simultaneously using commodity stereo
cameras and modern YOLO detectors.

3. Proposed Stereo-YOLO Framework

3.1 System Overview

Here’s how the setup works. We use two cameras, mounted 400 mm above an FDM print bed, to shoot
synchronized stereo images as the printer builds each layer—30 frames per second. The pipeline goes
through four steps: first, stereo rectification lines up the images; next, YOLO models find defects and
draw 2D boxes in the left image; then, block matching calculates disparity maps; finally, depth maps
get converted to 3D coordinates, so we can measure defects in millimetres (Qiao, 2025; Wang & Wang,
2024; Yan et al., 2023). If something’s off, the system triggers real-time alerts to fix the process right
away.
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Figure 1 — Overall System Architecture
3.2 Stereo Camera Calibration

Calibration estimates intrinsic parameters (focal length f, principal point) and extrinsic parameters
(rotation R, translation t) using a checkerboard across 20+ views. The pinhole model projects 3D world
points X,, to 2D image coordinates:

u=K[R | X,
where K is the intrinsic matrix. Rectification warps images via homographies to horizontal epipolar
lines. Depth relates to disparity d by:

f-b
d
with baseline b = 120 mm between Logitech C920 cameras.

7 =

3.3 Defect Detection Using YOLO Models

YOLOVS8 provides baseline detection with anchor-free heads and C2f modules for multi-scale fusion.
YOLOv11 reduces parameters by 22% (2.6M vs 3.2M) through optimized up sampling, boosting small-
object precision critical for stringing. EFEN-YOLOvVS8 adds Efficient Feature Extraction convolutions for
edge efficiency (Scaramuzza et al., 2006; Everingham et al., 2010).
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Figure 2: "General architecture of the YOLO-based detection module, highlighting the
integration of the Neck and Head for multi-scale defect localization.

Table 2 — YOLO Model Configuration

Model e e Ir.lput Defect Classes B (R Model
Parameters Size 3060)
5 (blobs,
YOLOv8n 3.2M 640%x640 stringing, etc.) 85 YOLOvV8n
YOLOviin 2.6M 640x640 5 95 YOLOv1in
EFEN- EFEN-
YOLOVS 2.8M 640x640 5 92 YOLOVS

Models trained via transfer learning on 5,200 FDM images (80/10/10 split), 100 epochs, SGD (Ir=0.01),
augmentations (mosaic, flip) (Lin et al., 2014; Redmon & Farhadi, 2018; Bochkovskiy, 2020).

3.4 Metric Defect Sizing

For detected bounding box (w, h,) at average depth Z,,4, metric dimensions scale as:

b b
w=w,-7——,h=h, ——
P f'davg P f’davg
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Box corners triangulate to 3D points X;, Xy via disparities, with length/width as Euclidean distances.
Area computes as A = w - h or convex hull projection, yielding <0.35 mm error vs. caliper ground truth
(Hu et al., 2024; Cao et al., n.d.; Rao et al., 2024).

crazing inclusion patches

pitted_surface rolled-in_scale scratches

Figure 3 — Defect Measurement Principle

4. Experimental Setup
4.1 Hardware Configuration

Experiments used a Creality Ender-3 V2 FDM printer ($220 \times 220 \times 250$ mm build volume,
0.4 mm brass nozzle, PLA filament at 1.75 mm diameter). Standard parameters included nozzle
temperature 180°C, bed 60°C, and print speed 50 mm/s. Stereo vision comprised dual Logitech C920
HD Pro webcams ($1920 \times 1080$ @ 30 FPS, 78° FOV, 120 mm baseline) mounted 400 mm above
the bed on a custom aluminium frame. Inference ran on NVIDIA RTX 3060 GPU (12 GB VRAM), Intel
i7-12700 CPU, 32 GB RAM—representative of edge deployment hardware (Ultralytics, 2024; Jocher et
al., 2023; Jocher, 2021).
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4.2 Dataset Preparation

400 stereo image pairs were used for each defect. A total of 5,200 stereo images were used for training,
validating and testing. A total of 400 stereo images were used for each defect. For each defect, 400
stereo images were used, and in total, 5,200 pairs of stereo images were used for training, validating,
and testing. Defect categories included blobs, stringing, layer shifts, warping, and under-extrusion. 5
defect categories. Labelling created bounding boxes on left view images and then on the depths of the
images which were at 0.01 mm resolution and verified with calipers (Redmon & Farhadi, 2018; Jocher
et al., 2023). The dataset was divided into train, validation, and test splits of 80, 10, and 10 percent
(4,160 train, 520 val, 520 test) with augmentations using mosaic, flips, and brightness adjustments of
+20%.

Table 3 — Dataset Statistics

Defect Train Val Test Total Avg. Size
Category Images Images Images Boxes (pixels)

Blobs 1,200 150 150 2,800 45%35
Stringing 900 110 110 1,950 120Xx15

Layer Shifts 800 100 100 1,600 80x60
Warping 600 80 80 1,200 150%x40
g:t(li:;ion 660 8o 8o 950 60x50

Total 4,160 520 520 8,500 -

4.3 Evaluation Metrics

Detection utilizes COCO, metrics standards: mAP@o0.5 (main), mAP@0.5:0.95, precision, and recall at
IoU=0.5. Sizing accuracy is evaluated by absolute error (measured GT (mm)) and relative error (%) for
length, width, and area on a set of 520 test defects. Real, time performance is measured by end, to, end
FPS on the RTX 3060, with a target >60 FPS (Bochkovskiy, 2020; Wang et al., 2025; Lin et al., 2014).

5. Results and Discussion

5.1 Detection Performance

EFEN-YOLOVS8 achieved superior detection across all COCO metrics, delivering 94.2% mAP@0.5 while
maintaining 92 FPS—balancing high accuracy with industrial real-time requirements. YOLOviin
excelled in inference speed (95 FPS) due to its 22% parameter reduction, making it highly effective for
thin stringing defects, while YOLOv8n provided a robust baseline performance on larger blobs and
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warping (Zhang, 2000; Scaramuzza et al., 2006; Arik et al., 2011). All models exceeded 90% mAP@o.5,
confirming the framework's viability for inline FDM monitoring.

Model mAP@o.5
YOLOv8n 89.3%
YOLOviin 91.7%

EFEN-YOLOV8S 94.2%

Table 4 — Detection Results

mAP@0.5:0.95 Precision Recall FPS (RTX 3060)

62.1% 91.2% 87.5% 85
65.4% 92.8% 89.3% 95
68.7% 94.6% 91.8% 92

Figure 4: "Comparison of mAP@o0.5 and Inference Speed (FPS) across the three
evaluated YOLO architectures."
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5.2 Metric Measurement Accuracy

Stereo triangulation resulted in sub, millimetres errors for all defect categories, with an average of 0.33
mm for length/width and 0.48 mm for area almost as accurate as a caliper and without having to contact
the object manually. Thin stringing demonstrated the greatest variation (0.41 mm length error) as a
result of disparity noise at the edges of the thin filaments, but the relative errors were still amazingly
below 1.2%. The performance always satisfied the <0.35 mm requirement, thus severity could be
reliably assessed for structural parts (Everingham et al., 2010; Wang et al., 2023; Brion & Pattinson,
2022).

Table 5 — Metric Measurement Error

Defect Length Error Width Error Area Error Relative Error
Category (mm) (mm) (mm?2) (%)

Blobs 0.28 0.31 0.42 0.8

Stringing 0.41 0.29 0.56 1.2

Layer Shifts 0.33 0.35 0.45 0.9

Warping 0.27 0.38 0.51 0.7

Under_. 0.36 0.30 0.44 1.0

Extrusion

Average 0.33 0.33 0.48 0.92

5.3 Qualitative Results

Visual outputs demonstrate precise bounding box localization across varied lighting and print
orientations, with EFEN-YOLOVS effectively minimizing false positives on textured layers. Color-coded
depth maps accurately overlay 3D defect geometry, aligning with caliper traces within target margins
(Ashebir et al., 2024; Rao et al., 2024; Yan et al., 2023). The framework successfully handles occlusion
challenges during extrusion while maintaining real-time dashboard alerts.
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Figure 5 — Sample Detection Outputs

6. Limitations & Future Work

6.1 Limitations

The framework shows sensitivity to inconsistent lighting conditions, where print head shadows or
ambient variations degrade disparity matching accuracy by 10—-15%. Depth estimation introduces noise
for defects smaller than 5 mm (particularly thin stringing), limiting resolution to approximately 0.3 mm
despite sub-0.35 mm average errors. Furthermore, occlusions during active extrusion obscure 10-20%
of surface areas, causing intermittent detection gaps on complex geometries where the nozzle blocks
the line of sight (Hirschmiiller, 2008; Chen et al., 2024).
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6.2 Future Work

Temporal defect tracking via Kalman filtering or optical flow will be integrated to enable growth
prediction and severity scoring across sequential frames. Closed-loop integration with printer firmware
is planned to support automatic parameter adjustments—such as extrusion rate and speed—based on
real-time anomaly detection. Additionally, exploring transformer-based detectors (e.g., RT-DETR)
promises enhanced small-object handling, while multi-view camera fusion around the build volume
could eliminate occlusions for full 360° coverage.

7. Conclusion

The Stereo-YOLO Framework delivers a comprehensive solution for FDM quality control, integrating
stereo vision with YOLOv8, YOLOv11, and EFEN-YOLOVS to achieve 94.2% mAP@o0.5 detection at 92
FPS on edge-deployable hardware. Its core innovation—disparity-based triangulation—successfully
converts 2D bounding boxes into precise physical metric measurements ($0.33$ mm length/width
error and $0.48$% mm?2 area error). This approach effectively eliminates the need for prohibitive
industrial scanners while maintaining the high throughput required for inline monitoring.

This dual capability of simultaneous detection and quantification supports Industry 4.0 standards by
reducing scrap rates and quantifying the impact of defects on the mechanical performance of load-
bearing parts. The framework demonstrates that commodity hardware, when paired with modern deep
learning and stereo-geometry, can rival industrial metrology, paving the way for scalable, real-time
additive manufacturing quality assurance.
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