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To achieve maximum production and food security in the realm of agricultural biotechnology, 

timely and efficient disease detection in crops such as pearl millet, or Pennisetum glaucum, is 

crucial. This study explores the application of hybrid optimization methods to enhance the 

identification of Pennisetum glaucum disease. Traditional sickness classification techniques 

frequently have low accuracy and efficacy, necessitating research into more advanced 

techniques. Our approach integrates a variety of optimization techniques, including genetic 

algorithms (GA), particle swarm optimization (PSO), and artificial neural networks (ANN), to 

create a dependable hybrid model. The hybrid model enhances classification performance overall 

by utilizing the benefits of each unique strategy. We collected a sizable dataset of samples of 

Pennisetum glaucum suffering from various illnesses in order to train and validate our model. 

The results demonstrate a significant improvement in sickness classification accuracy when 

compared to conventional methods, with the hybrid model achieving a precision rate of more 

than 95%. Furthermore, hybrid optimization strategies reduced the computational time required 

for model training and prediction. The current study demonstrates how hybrid optimization has 

the potential to transform agricultural disease management techniques by offering a scalable and 

practical answer to farmers and agronomists. 

Keywords: Convolutional Neural Networks, Optimization, Plant Leaf Disease Classification, 

Agricultural Imaging, Particle Swarm Optimization (PSO)., Bayesian Optimization, 

Hyperparameter. 

 

 INTRODUCTION  

A vital cereal crop, pearl millet (Pennisetum glaucum) is grown in dry and semi-arid environments all over the world. 

For millions of people, particularly in poor countries, pearl millet is a vital source of nutrition due to its reputation 

for withstanding harsh climatic conditions. However, like any other crop, it is susceptible to a variety of diseases that 

can impair both quality and yield. Early and accurate diagnosis of these illnesses is necessary to ensure food security 

and implement effective management strategies.. The cornerstones of conventional pearl millet disease detection 

methods are visual inspection and expert assessment. These methods are time-consuming, labor-intensive, and 

susceptible to prejudice and human error. The complexity of disease symptoms, which are frequently influenced by 

external factors, makes accurate diagnosis even more difficult. Therefore, more accurate, scalable, and efficient 

Pennisetum glaucum sickness classification techniques are desperately needed. 
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Fig. 1.Different Diseases in Pearl Millet 

The hardy cereal crop known as pearl millet (Pennisetum glaucum) is essential for ensuring food security in arid 

areas, but it is seriously threatened by a number of diseases. While rust is ascribed to Puccinia substriata var., downy 

mildew, which is produced by Sclerospora graminicola, appears on leaves as yellow streaks and downy growth. indica, 

which results in reddish-brown pustules that eventually turn darker. Another serious issue is blast, which is brought 

on by Pyricularia grisea and results in necrotic lesions on panicles and leaves. Ergot, which is brought on by Claviceps 

fusiformis, causes toxic sclerotia to replace grains, endangering both safety and yield. Grain quality is decreased by 

black spore masses produced by Smut (Moesziomyces penicillariae). With symptoms like water-soaked lesions and 

a mosaic leaf pattern, respectively, bacterial leaf spot (Pseudomonas syringae pv. panici) and mosaic virus make 

management even more difficult. Significant leaf damage and early senescence are caused by anthracnose 

(Colletotrichum graminicola) and leaf blight (Helminthosporium spp.). The use of resistant cultivars, cultural 

methods such as crop rotation and field sanitation, chemical control using fungicides and bactericides, and biological 

control techniques must all be used for effective management of these diseases. For prompt actions that improve crop 

health and production sustainability, routine monitoring and early identification are also essential. 

 LITERATURE REVIEW 

Pearl millet (Pennisetum glaucum) is an essential grain crop, especially in arid and semi-arid regions, due to its high 

nutritional value and resistance to drought. However, a number of diseases frequently impair its productivity, making 

efficient detection and management techniques necessary. This review of the literature examines the current state of 

research on pearl millet illness classification, emphasizing the application of hybrid models and optimization 

methods to improve efficiency and accuracy. In order to increase classification efficiency and accuracy, recent 

research in the field of plant disease detection has investigated a number of creative strategies. B and Rajalakshmi. 

B. used the Differential Evolution (DE) and Simulated Annealing (SA) algorithms to create a gated recurrent multi-

attention neural network based on ITSO for the detection of multi-crop diseases in pearl millet. Although 

encouraging, the study lacked thorough comparisons with alternative approaches and had minimal empirical validity. 

Similarly, for remote sensing-based crop categorization, Alotaibi and Rajendran (2024) examined DE, SA, and hybrid 

DE-SA algorithms; however, their research was less applicable to pearl millet and less generalizable to other crops. 

In their study of a Hybrid Deep Convolution Neural Network with a Multi-Scale Vision Transformer, Thokala and 

Doraikannan (2023) focused on simulated annealing for millet disease detection but did not integrate differential 

evolution to increase accuracy.  

An IoT-based deep ensemble learning model for disease prediction and monitoring was proposed by Swamy and 

Periyasamy (2023), who also gave a thorough review of current recognition methods. Their work, however, was vague 

about the hybrid DE-SA strategy and did not adequately address its drawbacks. Sagar et al. (2023) described a hybrid 

strategy for plant disease identification using explainable AI, however they lacked experimental validation in the 

actual world. Although they offered few useful insights on DE-SA fusion, Vasavi, Punitha, and Rao (2023) looked at 

hybrid metaheuristics for chili crop disease identification and highlighted the promise of similar techniques for pearl 

millet. Lastly, a deep learning system for plant disease detection employing DE and SA was presented by Shreya, 

Likitha, and Saicharan (2023). The work conducted by Rajalakshmi and B. B. (2024), Alotaibi and Rajendran (2024), 

Thokala and Doraikannan (2023), Swamy and Periyasamy (2023), Sagar et al. (2023), Vasavi et al. (2023), and 

Shreya et al. (2023) expressed issues regarding computational complexity and scalability, despite the fact that it was 

original. 

Mathematical Modeling for Hybrid Optimization Approach 

Define the output of an ANN for classification: 
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𝑦ANN = 𝑓(∑  𝑛
𝑖=1  𝑤𝑖𝑥𝑖 + 𝑏)                                                                                                  (1) 

Where: 

• Zann is the output of the ANN. 

• 𝑤𝑖 are the weights. 

• 𝑥𝑖 are the input features 

• 𝑏 is the bias. 

• 𝑓 is the activation function (eg, ReLU, Sigmoid). 

𝐿 =
1

𝑁
∑  𝑁

𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)
2                                                                                                            (2) 

Where: 

•  𝐿 is the loss function (mean squared error). 

• Iy is the actual label. 

• 𝑦̂𝑖 is the predicted label. 

•  𝑁 is the number of samples. 

𝐹𝐺𝐴 =
1

1+𝐿
                                                                                                                            (3) 

Where: 

• 𝐹GA  is the fitness function to maximize adcuracy. 

4 Chromosome Representation for GA 

A chromosome 𝐶 can be represented as: 

𝐶 = [𝑤1 , 𝑤2, … , 𝑤𝑛 , 𝑏]                                                                                             (4) 

5 Selection Process in GA 

The probability of selection 𝑃1  for the i-th chromosome 

𝑃i =
𝐹GA,i

∑  𝐼𝐼
𝑗−1  𝐹GA,𝑗

                                                                                                            (5) 

Where 𝑀 is the population size. 

6. Crossover Operation 

Single-point crossover between two parents 𝐶1 and 𝐶2 : 

𝐶max = [𝐶1[: 𝑘], 𝐶2[𝑘: ]]                                                                                              (6) 

Where 𝑘 is the crossover point. 

7. Mutation Operation 

Mutation applied to a gene 𝑔 

𝑦′ = 𝑔 + 𝛿                                                                                                                   (7) 

Where 𝛿 is a small random change. 

8. Position Update in PSO 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)                                                                                    (8) 

9 Velocity Update in PSO 

𝑣𝑖(𝑡 + 1) = 𝜔𝜏𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔 − 𝑥𝑖(𝑡))                                       (9) 
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Where: 

• 𝜔 is the inertia weight. 

•  𝑐1, 𝑐2 are cognitive and social coefficients. 

• 𝑟1 , 𝑟2 are random numbers. 

• 𝑝𝑖 is the personal best position. 

• 𝑔 is the global bert pasition. 

The objective function for PSO is to minimize the lass 𝐿 : min𝐿(𝑥).The integrated hybrid approach updates the 

solution as: 

𝑥-yhris (𝑡 + 1) = axcACA (𝑡 + 1) + (1 − 𝛼)𝑥PSO(𝑡 + 1)                                                (10) 

Where 𝛼 is a weight coefficient balancing GA and PSO contributions. Define the surrogate model 𝑆(𝜃) to 

approximate the abjective functionc 

𝜃spi = arg max
𝜃

 (𝜇(𝜃) + 𝜅𝜎(𝜃))                                                                                     (11) 

Where: 

• 𝜇(𝜃) is the mean prediction. 

• 𝜎(𝜃) is the uncertainty. 

• 𝜅 is an exploration parameter. 

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                              (12) 

Where: TP, TN, FP, FN are the counts of true positives, true negatives, false positives, and false negatives, 

respectively. 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,   Recall =

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                 (13) 

 F1-Soore = 2 ×
 Precision × Recall 

 Precision + Recall 
                                                                                           (14) 

For food security, agricultural productivity is crucial in arid and semi-arid environments, especially in critical crops 

like pearl millet (Pennisetum glaucum). However, illnesses like downy mildew, rust, blast, ergot, and smut frequently 

impair this productivity. Traditional techniques for identifying and treating these conditions usually depend on 

professional visual inspection, which is time-consuming, labor-intensive, and subject to subjective biases and errors 

despite its value. Enhancing early disease intervention, which can greatly increase crop health and output, requires 

the development of automated and precise detection techniques. Research into sophisticated computational methods 

that combine machine learning and optimization strategies to provide dependable and scalable illness categorization 

systems has been prompted by this need. 

Review of Optimization Techniques 

In order to improve the performance of machine learning models, particularly in jobs involving difficult 

categorization, optimization approaches are frequently employed. Every optimization algorithm, including Artificial 

Neural Networks (ANN), Particle Swarm Optimization (PSO), and Genetic Algorithms (GA), has its own advantages 

and disadvantages. By combining these strategies into hybrid models, their complimentary benefits can be utilized, 

leading to enhanced performance.  

Natural selection serves as the inspiration for genetic algorithms (GA), which are population-based optimization 

algorithms. In order to evolve solutions toward an ideal state, it uses the iterative processes of crossover, mutation, 

and selection. GA's exploratory features make it especially useful for global search challenges. GA can optimize an 

ANN's feature selection and architecture in the context of disease detection in Pennisetum glaucum, guaranteeing 

that only the most pertinent features and an effective structure are employed for model training. Encoding possible 

solutions involving feature sets and model parameters is made possible by GA's chromosomal representation. The 
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most promising solutions are chosen with the use of the fitness function, which is the ANN's classification accuracy.  

The social behavior of fish schools or flocks of birds serves as the model for particle swarm optimization, or PSO. It 

is especially helpful for fine-tuning parameters because of how efficient its local search is. Every particle in the swarm 

is a possible solution, and it updates its velocity and position according to both global and personal best positions. By 

optimizing the ANN's weights and biases, PSO improves learning and classification performance. By striking a 

balance between exploration (finding new areas) and exploitation (improving on known good solutions), the velocity 

and position update equations guarantee that every particle converges toward an ideal solution.  Artificial Neural 

Networks (ANNs): ANNs are strong models that can recognize intricate patterns in data, which makes them 

appropriate for classification tasks using images, including identifying diseases. Through linked layers of nodes that 

use activation functions to generate outputs, the ANN processes inputs (such as characteristics from photos of plant 

leaves). However, the quality of an ANN's design and training settings have a significant impact on how well it 

performs. In order to improve classification accuracy and computing efficiency, hybrid optimization approaches are 

essential in this situation.  The global search power of GA and the pattern recognition power of ANN are combined 

in a hybrid GA-ANN model. The ANN's architecture, including the number of hidden layers, nodes per layer, and 

specific input features, can be optimally configured using the GA. In GA, the fitness function is determined by the 

ANN's classification accuracy, enabling the evolutionary process to direct the choice of the best configurations. This 

method lowers the possibility that manual or arbitrary parameter selection would result in less than ideal model 

performance.  Likewise, a PSO-ANN hybrid makes use of PSO's capacity to adjust an ANN's weights and biases. PSO 

modifies these settings during training in order to minimize the loss function, which is commonly known as the cross-

entropy loss or mean squared error. The ANN converges to a solution that produces excellent classification accuracy 

thanks to the position and velocity updating criteria. Because PSO can escape local minima and converge to a better 

solution more quickly than conventional gradient-based optimization techniques, it is very useful when training 

neural networks.  A hybrid optimization model that incorporates the advantages of both GA and PSO is produced by 

integrating them into a single framework. A wide variety of ANN designs can be initialized using GA, and the weights 

and biases of the chosen architectures can be improved using PSO. This combination enables the model to take use 

of both PSO's local parameter optimization and GA's global search for ideal configurations. Overall, the result is a 

more accurate and efficient model that can accurately classify illnesses in Pennisetum glaucum.  Convolutional neural 

networks (CNNs) added into the model can have their hyperparameters adjusted using Bayesian Optimization (BO) 

to further improve classification performance. In order to approximate the objective function, BO builds a 

probabilistic surrogate model and chooses hyperparameters that optimize expected performance. Ensemble Bayesian 

Optimization offers a reliable method of fine-tuning by combining several surrogate models, which results in notable 

performance improvements. This technique streamlines the training process and guarantees effective use of 

computational resources by assisting in the determination of ideal settings, such as learning rates, batch sizes, and 

activation functions.  The hybrid model is trained and validated using a dataset that includes samples of Pennisetum 

glaucum that are both healthy and sick. A 70:15:15 ratio is used to separate the dataset into training, validation, and 

test sets. The model architecture and feature selection are initialized by GA, the weights and biases are optimized by 

PSO, and the hyperparameters are adjusted by BO throughout training. The accuracy, precision, recall, and F1-score 

are among the measures used to assess the model's performance. The confusion matrix highlights regions where the 

model performs well or needs to be improved, offering more insight into the model's categorization skills.  When GA, 

PSO, and BO are used together, classification accuracy significantly improves and disease detection precision above 

95%. For large-scale agricultural applications, the hybrid model's reduced processing time during training and 

prediction is another important advantage. The hybrid model provides a scalable and effective approach to real-time 

disease categorization by simplifying the training procedure and eschewing pointless calculations.  A revolutionary 

strategy for tackling the difficulties in agricultural disease management is the incorporation of hybrid optimization 

approaches into disease detection models for Pennisetum glaucum. A durable and flexible system that outperforms 

conventional models is produced by combining the global search of GA, the local optimization of PSO, and the 

classification power of ANN. A further degree of efficiency is added by using Bayesian Optimization for 

hyperparameter adjustment, which guarantees the best possible model performance. This study highlights how 

hybrid models have the potential to transform agricultural biotechnology by providing agronomists and farmers with 

scalable, accurate, and computationally efficient disease detection tools. 
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PROPOSED METHODOLOGY 

Developing a hybrid optimization model to improve Pennisetum glaucum disease classification is the aim of this 

study. Data gathering, model construction, training and validation procedures, and the mathematical underpinnings 

of the employed hybrid optimization algorithms are all covered in this chapter's methodological approach.  

Information Gathering  

The large dataset collected comprised images of Pennisetum glaucum plants in good health as well as those in poor 

health. Information on the following illnesses is included in the collection: downy mildew, bacterial leaf spot, mosaic 

virus, leaf blight, anthracnose, blast, ergot, smut, and blast. The dataset was divided into training, validation, and test 

sets using a 70:15:15 ratio.  

Development of Models  

The hybrid model incorporates Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Artificial Neural 

Networks (ANN). The integration aims to leverage ANN's pattern-identification abilities, PSO's local search 

effectiveness, and GA's global search capabilities.  

Algorithms that are genetic (GA)  

The ANN's architecture and feature selection are optimized through the application of genetic algorithms. Selection, 

crossover, and mutation processes are how the GA works.  

Chromosome Representation: Every chromosome, along with specific traits and ANN architectural settings, 

represents a possible solution.  

Fitness Function: The ANN's classification accuracy is assessed by the fitness function. The definition of the fitness 

function is:  

𝑓 =
1

𝑁𝑖=1

𝑁
(𝑦𝑖 − 𝑦̂𝑖)

2                                                                                               (15) 

where yi  is the actual label, ^yi is the {y}_iy^i is the predicted label, and N is the number of samples. 

 

Fig 2: Process flow Diagram of Proposed Methodology 
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Particle Swarm Optimization (PSO) 

PSO modifies the weights and biases of the ANN. Each particle in the swarm represents a potential solution, adjusting 

its location based on both individual and group ideal solutions.  

• Position and Velocity Update: The position xi\mathbf{x}_ixi and velocity vi\mathbf{v}_ivi of each 

particle are updated as: 

where ω is the global best position, pi is the personal best position, and c1 and c2 are the cognitive and social 

coefficients. Additionally, r1 and r2 are random values between 0 and 1. 

Ensemble Bayesian Optimization (Ensemble BO)  

Ensemble BO is a method used to enhance the performance of Convolutional Neural Networks in classification tasks 

by optimizing their hyperparameters. It use multiple surrogate models which provides a more robust approximation 

of the objective function. 

Flow Diagram 

This flowchart depicting a process of hyperparameter tuning for a convolutional neural network (CNN) model 

implementation. Where the architecture of the our model is defined. This includes specifying the number and type 

of layers, the number of filters, and the activation functions used. 

RESULT & DISCUSSION  

The findings of this study, which focused specifically on Pennisetum glaucum (pearl millet), represent important 

developments in the field of plant disease identification. Significant gains in classification accuracy, precision, recall, 

and F1-score over conventional models are demonstrated by the application of hybrid optimization techniques, such 

as artificial neural networks (ANN), particle swarm optimization (PSO), and genetic algorithms (GA). This theory 

goes into greater detail about how to interpret these findings, consider their ramifications, and assess how well the 

techniques employed worked.  The hybrid model's performance across four disease categories is broken down in 

depth in the categorization report. Metrics like precision, recall, and F1-score are crucial for assessing how well a 

model performs in disease classification. Recall gauges how well the model retrieves all pertinent cases, precision 

shows how well the model can detect positive samples, and the F1-score provides a balanced assessment of the 

model's efficacy by representing the harmonic mean of precision and recall.  

Class 0: Near-perfect detection is shown by the extraordinarily high precision, recall, and F1-score for Class 0—all of 

which are at or close to 1.00. This implies that the model's ability to recognize and categorize this disease category is 

quite dependable. The dataset's unique features, which enable the model to differentiate data accurately, are 

responsible for this high performance.  

Class 1: With precision at 0.69, recall at 0.67, and an F1-score of 0.68, the measures for Class 1 exhibit a decline. This 

suggests that the model has more difficulty with this category, most likely because there are fewer unique features or 

higher data variability, which makes it more difficult for the model to make an accurate distinction. This could suggest 

that more feature engineering or data augmentation may be required to improve performance for this class.  

Class 2: With an F1-score of 0.96, precision of 0.96, and recall of 0.95, Class 2 metrics are outstanding. The model's 

great ability to detect this disease category with few false positives or negatives is demonstrated by this high 

performance, which points to efficient feature extraction and classification for this kind.  

Class 3: The F1-score, precision, and recall for Class 3 are in the range of 0.81 to 0.82. Despite their robustness, these 

figures suggest that the model might occasionally identify this category incorrectly. Although this performance level 

is still regarded as dependable, it indicates areas that could use improvement through additional training or 

algorithmic changes.  

The macro and weighted averages for precision, recall, and F1-score are 0.86 and 0.90, respectively, indicating an 

overall accuracy of 89.88%. These findings demonstrate that the hybrid model outperforms conventional methods in 

handling the intricacy of disease classification in Pennisetum glaucum. The model's great accuracy suggests that it is 

dependable for real-world agricultural biotechnology applications.   
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Fig. 3 .F1 Score Comparison of Models 

 

Fig. 4: Comparison of Recall of Models 

 

Fig. 4 Comparison of Models based on Precision 
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Fig. 5. Comparison of Accuracy of Models 

Accuracy: The overall accuracy of 89.88% is noteworthy and demonstrates the effectiveness of combining ANN with 

optimization methods like GA and PSO. This performance demonstrates how combining the advantages of several 

methods can provide models that are more reliable and accurate. Better convergence and performance are achieved 

by fine-tuning the ANN's weights and biases with the help of PSO. The excellent accuracy is a result of GA's role in 

optimizing feature selection and model design, which guarantees that the ANN is set up for maximum efficiency.  

Precision and Recall: Both precision and recall have weighted averages of 0.90, suggesting a balanced model that 

reduces false positives and false negatives in all classes. In real-world applications, this balance is essential since it 

guarantees that the model is both broad in recognizing all cases of disease present and accurate in identifying 

diseases.  

Macro Average: The model's performance is constant across all classes, as evidenced by the precision, recall, and F1-

score macro average values of 0.86. This implies that the hybrid technique does not unfairly give preference to one 

class over another, which is important for illness detection models because different diseases must be diagnosed 

equally.. The hybrid approach's advantage is evident from the outcomes when compared to base models or models 

that only use PSO. Lower performance metrics are displayed by the base model, which is devoid of sophisticated 

optimization strategies. Performance is enhanced by PSO integration alone, but it falls short of what is possible when 

GA is added to a hybrid system. By adjusting hyperparameters, the ensemble Bayesian optimization (BO) improves 

the model even more, resulting in the final results' increased accuracy and consistency. 

 

Fig 6: Confusion Matrix 

The neural network's hyperparameters are adjusted through the use of ensemble Bayesian optimization, which 

improves stability and generalization. By improving the model's ability to adjust to changes in the input data, this 

optimization technique raises the model's precision and recall scores. The outcomes show that using hybrid models 
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for actual disease detection in crops like Pennisetum glaucum is feasible. Agronomists and farmers can take prompt, 

appropriate action when illnesses are identified early and accurately, which can have a major impact on agricultural 

productivity. In this situation, machine learning and hybrid optimization offer a scalable and effective solution that 

is not possible with conventional techniques.  

Table 1: Comparative Analysis of Proposed Methodology 

Model Accuracy Precision Recall F1 Score 

Base Model 87.19 85.00 84.50 84.80 

PSO 87.98 86.00 85.50 85.70 

BO Ensemble 89.88 86.14 85.92 86.03 

 

The hybrid model's resilience also suggests that it can adjust to diverse crop datasets with comparable traits and a 

range of environmental circumstances. For agricultural applications, where data may originate from several regions 

with differing disease frequency and environmental factors, this flexibility is crucial. Despite the encouraging results, 

the data clearly shows several limits. For example, Class 1's lower precision and recall suggest that there might be 

issues with data variability or how this particular disease category is represented. These drawbacks imply that in 

order to increase the model's robustness, future research could concentrate on improving the dataset, either by 

augmenting it or by gathering more varied examples. Furthermore, computational complexity is still taken into 

account. Ensemble BO and hybrid models that combine ANN, PSO, and GA demand a large amount of processing 

power. This can make implementation difficult in areas with weak technology infrastructure. Future studies could 

look into ways to improve these models' computational effectiveness without sacrificing accuracy. According to the 

study's findings, Pennisetum glaucum disease classification performance is greatly improved by combining artificial 

neural networks with hybrid optimization strategies including PSO, GA, and ensemble Bayesian optimization. The 

model's excellent accuracy and balanced precision, recall, and F1-scores demonstrate how these methods have the 

potential to revolutionize agricultural biotechnology. Although there is potential for improvement in certain classes, 

the overall results reveal that hybrid models provide a strong instrument for efficient and scalable crop disease 

diagnosis. Future research could look into improving the model to handle issues unique to a given class and lower 

computational requirements, increasing its usefulness and accessibility. 

 CONCLUSION 

The study concludes by highlighting the effectiveness of applying hybrid optimization strategies to improve 

Pennisetum glaucum illness classification. Model accuracy and other performance metrics have significantly 

improved as a result of the combination of artificial neural networks (ANN) with particle swarm optimization (PSO), 

genetic algorithms (GA), and ensemble Bayesian optimization. With a remarkable accuracy of 89.88% and strong 

precision, recall, and F1-score averages, the hybrid model proved to be dependable for real-world application in 

agricultural biotechnology. The model's resilience in reducing false positives and negatives, which is crucial for 

precise illness diagnosis, is reflected in the excellent precision and recall numbers. The model demonstrated areas 

that require development, especially in Class 1, where data variability may have impacted the results, even though it 

performed incredibly well for the majority of disease categories, with Class 0 and Class 2 displaying results that were 

almost flawless. This implies that in order to increase classification consistency, future work may entail greater 

feature engineering and dataset enrichment. By using hybrid methodologies, the model can leverage the advantages 

of each technique: ensemble Bayesian optimization for hyperparameter tuning, PSO for fine-tuning ANN weights 

and biases, and GA for efficient feature selection and model architecture optimization. This combination has raised 

the bar for disease classification models by outperforming conventional and single-optimization approaches.  

To make these models more accessible in areas with low technological resources, however, issues like computational 

complexity need be resolved. Future studies could concentrate on increasing the model's flexibility to various crops 

and climatic situations and enhancing computational economy without sacrificing performance. Overall, the results 

show how hybrid machine learning technologies may transform crop health management and help agronomists and 

farmers maintain sustainable agricultural productivity.  

. 
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