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Relevant and current land use data remain critical for effective spatial layout, environmental 

stewardship, and bestow resources. This study assesses the classification accuracy of machine 

learning classifiers developed for land use/ classification (LUC) and how effective are they when 

combined with feature engineering and augmentation strategies on a benchmark dataset. The 

processing pipeline uses a Convolutional Neural Network (CNN) model called ResNet-50 for 

image feature extraction, which captures spatial patterns and also performs well in classification 

tasks. Model performance is enhanced by using a combination of the pre-trained ResNet-50 as 

an input for self-compiled image classifiers and applying Principal Component Analysis (PCA) 

for dimensionality reduction. Advanced-Data augmentation(ADA) techniques further improve 

the generalization of the models. Of all tested classifiers (Logistic Regression, Random Forest, 

SVM, Gradient Boosting and XGBoost), SVM outperformed the rest with AUC-ROC at 0.993 and 

MCC at 0.843. In addition, Grad-CAM (Gradient-weighted Class Activation Mapping) 

visualizations applied to enable an understanding of the decision processes of the model, thus 

increasing its interpretability. This work demonstrates the combining of deep feature extraction 

with classical machine learning and makes land use classification scalable and robust. 

Keywords: Land Use Classification, ResNet-50, Feature Extraction, PCA, Dimensionality 

Reduction, Support Vector Machine, Advanced-Data Augmentation, AutoAugment, Machine 

Learning, AUC-ROC, Empirical Study. 

I. INTRODUCTION 

LUC information is critical for many activities, such as disaster mitigation and environmental management. 

Traditional methods of LUC mapping are useful, but they have many limitations, such as being labor-intensive, 

subjective, and difficult to scale. Ground surveys and aerial images are both time-consuming methods of collecting 

data. Automated LUC mapping has recently come into the picture due to advancements in remote technology and 

machine learning, allowing for LUC mapping methods that are more accurate, efficient, and easy to scale [1- 4].  

The benefits of automation may pose overwhelming challenges, but it can provide solutions in areas such as 

agriculture, urban development, and social activity in any region. However, utilizing deep learning systems poses a 

different challenge as many requirements need to be considered. Among other things, the selection of methods and 

tools for feature extraction, data augmentation, and dimensionality reduction are crucial when trying to optimize 

deep learning-based LUC systems [5-9]. 

This research delved into assessing the rendition of machine learning algorithms for land use classification tasks, 

about the state-of-the-art feature engineering and data augmentation. In particular,  a pre-trained ResNet-50 was 
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applied as it is a high-level, discriminative feature extractor from the imagery. In doing so,  all the pre-trained layers 

were freezed, but the last fully connected layer was replaced with an identity mapping. Thereby, the architecture of 

the ResNet-50 is slightly modified to serve as a feature extractor. This allowed us to gain access to deeply embedded 

spatial and contextual features of the land use data. To further curtail the chances of overfitting while optimizing 

computational resources, PCA [10] was applied to eliminate the less informative dimensions in the extracted feature 

space. 

Additionally, several crucial data augmentation strategies were employed, such as AutoAugment (ImageNet policy) 

[11], Random Affine transformations, Color Jittering, Random Horizontal and Vertical Flipping, Random Cropping 

with paddings too, which all assist in augmenting the model's expectation and accuracy toward changes of the images. 

The efficacy of five widely used machine learning models, namely Logistic Regression (LR) [12], Random Forests 

(RF) [13], Gradient Boosted Trees (GBst) [14], Support Vector Machine (SVM) [15], and eXtreme Gradient Boosted 

(XGBst)[16] classifiers was thoroughly assessed using a comprehensive suite of metrics. This study is set out to meet 

the following objectives: 

• Make scholarly investigations, to assess the readily available ResNet-50 model in terms of its performance 

in the LUC. 

• Test the influence of ADAs on the efficiency and robustness of the classifiers. 

• Compare the performance of various machine learning classifiers, using features extracted through overhead 

methods, and recognize the model with the best performance focused only on the given task. 

• Apply feature engineering, dimensionality reduction, and data augmentation to have a balanced impact on 

the overall accuracy and sustainability of the model.  

 

II. RELATED WORK 

This section expounds on the history of the LUC classification techniques from the conventional methods, through 

statistical learning, the rise of deep learning, big data and cloud computing, and their ethical implications. 

The initial LUC classification was based greatly on manual photointerpretation by skilled personnel. While 

informative, it was a subjective process that was very slow and inconsistent in its application. More objective 

approaches became possible with the introduction of statistical classifiers such as Maximum Likelihood Classification 

and clustering algorithms like K-means and ISODATA, which allowed for automated image processing. However, 

these methods had limitations on spectral variability, mixed pixels, and complicated spatial patterns that confounded 

efficient classification of landscapes with high heterogeneity. 

The incorporation of ML for LUC classification was revolutionary since it was more efficient in the classification of 

high-dimensional data. The use of  SVM [17] and RF [18] algorithms resolved class imbalance and noise problems 

with AutoML frameworks. Further improvement of the classification was achieved by GBst through iterative 

prediction adjustments. 

GBst has refined classification by improving the predictions in each subsequent iteration. Nevertheless, these models 

relied on handcrafted features, which limited their ability to capture sophisticated spatial and contextual 

relationships available in high-resolution imagery. 

The development of deep learning models, especially CNNs, changed the face of LULC classification through 

automated feature extraction and hierarchical learning from raw images. Higher-order models like AlexNet, VGGNet, 

ResNet, and EfficientNet pinpointed complex spatial arrangements and relationships at unprecedented accuracy [19-

21]. For example: Alem and Kumar focus on the effectiveness of the pre-trained and fine-tuned CNNs for the UCMLU 

dataset with great classification efficiency [22]. Hamza et al. blended deep learning with Bayesian Optimization to 

reach the highest accuracy levels on many benchmark datasets [23]. Papoutsis et al. created a comparative 

benchmark of CNNs, Vision Transformers, and EfficientNets on BigEarthNet to find suitable architectures for large-

scale LULC tasks [24]. Ma et al. developed and took a look at the Feature Enhancement Network, which was capable 

of capturing fine granular features such as spatial buildings and water [25]. These studies highlight the promise deep 

learning holds for the challenges posed by high-resolution remote sensing images. 
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The introduction of high-resolution remote sensors like Landsat, Sentinel, and LiDAR has significantly increased the 

scale and intricacy of remote sensing data. The availability of cloud-based platforms such as Google Earth Engine 

and Amazon Web Services offers new possibilities for fast processing of massive datasets and minimization of 

computing constraints [26].  There have also been attempts to achieve improved classification with 

AutoAugment(Cubuk), including Aljebreen et al. [27], who expounded deep learned optimized River Formation 

Dynamics Algorithm, and Huang et al. [28], who used a modified ResNet-50 with K-mean clustering for rural land-

use classification. This research expands from what the earlier learning methods provided while filling the gaps 

caused by deep learning and classical problem-solving techniques. Key contributions of this study are:  

• Using a ResNet-50 model already trained for other contexts, employing it as a feature extractor enabled the 

capturing of complex spatial and contextual relationships in the imagery.  

• Implementing a broad range set of advanced data augmentation methods to include AutoAugment in order 

to improve model performance and generalization. 

• Using PCA-based dimensionality reduction to reduce overfitting, thus improving computation efficiency and 

pointing out the most discriminative features to classify. 

• Evaluating several ML classifiers with a rigorous evaluation, thereby giving an exhaustive assessment of how 

these classifiers would perform on the extracted features. 

This research fills the gap between traditional approaches and deep learning by providing a robust and scalable 

solution for LUC classification that results in overcoming data scarcity, computational complexity, as well as 

responsible AI needs.   

III. METHODS 

A. Dataset  

UCMerced LandUse (UCMLU) Dataset [29] was utilized in the study, encompassing 2,100 images grouped into 21 

land classes. Each category comprises 100 images, thus resulting in a balanced dataset. The collection includes a 

variety of land cover types, namely, agricultural areas, urban buildings, roads, natural environments - forests and 

chaparral, and water bodies-The National Map Urban Area Imagery comprises high-resolution images, which enable 

investigation of the land surface over the smallest and finest details, thus favoring the superior isolation of land cover 

types. 

B. Data Preprocessing  

Comprehensive data preprocessing pipeline were applied for the optimization of the model performance. The data 

set was normalized in the first place to avoid variations in color or brightness. Therefore, each image was resized 

according to the size of 224x224 using bicubic interpolation to meet the pre-trained ResNet-50 model's entrance 

conditions. Second, ImageNet mean ([0.485, 0.456, 0.406]) was subtracted; subsequently, ImageNet standard 

deviation ([0.229, 0.224, 0.225]) was divided into pictures to make model training effective and help in enhancing 

good feature extraction. Fig. 1 depicts the image data augmentation techniques applied on remote sensing images 

which pertain specifically to agriculture and riverine landscapes. The transformations include cropping, flipping the 

image both ways, changing the colors, and normalizing the image which improves the model by adding different 

spatial and spectral properties while maintaining the core properties. 

To achieve enhanced generalization and robustness of the model, data augmentations were gradually applied to all 

the labeled data along with some jittering, such as random horizontal and vertical shifts, random rotations within 

±15 degrees, random cropping having 4-pixel padding, and color jittering to adjust brightness, contrast, saturation, 

and hue. Moreover, AutoAugment, a policy pre-trained using ImageNet, was utilized to dynamically learn and 

perform a sequence of complicated augmentation operations providing diverse visual representations to 

immeasurably enrich the training data.  

Stratified sampling was applied to divide the dataset into training (80%) and testing (20%) sets, ensure  proper 

distribution of data in both the sets, and thereby minimize bias during evaluation. Random seed, 42, was used to 

assure the reproducibility of the data split in experiments.   
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Figure 1:  Illustration of Image Data Augmentation Techniques Applied to Remote Sensing 

Imagery 

C. Feature Extraction and Dimensionality Reduction  

The pretrained ResNet-50 CNN was used to extract high-level feature representations from the preprocessed images. 

The convolutional layers of the pretrained model were held frozen, and the penultimate convolutional layer's output 

was used as the feature vector. This approach capitalizes on the ability of that model to capture detailed spatial and 

contextual information in images. The PCA was applied to reduce the dimensions of the extracted features and avoid 

overfitting. It finds principal components or linear combinations of the original features that capture the maximum 

variance. By projecting the data onto these principal components, the most salient information is retained while the 

dimensionality is reduced. ResNet-50 Architecture is used for feature extraction is illustrated in Fig.2. 

The first step directly involved reducing dimension representative of the extracted features through PCA, with the 

retained variance amounting to 95%. In the PCA implementation, a seed was utilized (random_state=42) to ascertain 

at a later time the consistency of the dimension reduction in different experimental replications. The process flow of 

the proposed model is illustrated in Fig. 3. 

 
Figure 2 : Modified Resnet50 architecture for Feature Extraction in LUC 
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Figure 3: Process flow of the Proposed model 

 

D. Model Selection 

The aim in this study was to bridge the gap between deep feature extraction and ML (LR, RF, GB, SVM, and XGBst) 

approaches based on their capability to cope with the complexity and heterogeneity of aerial imagery. For this 

purpose, five different models were chosen.   

LR is a simple and highly interpretable model used here as a baseline: From its essential encumbrance of linear 

condition results derived benchmark performance from which the more complicated models could be compared. 

Finally, here the solver parameters were set to ‘lbfgs’—specifically useful for high-dimensional spaces—and iteration 

was extended to 1000 to ensure convergence.  

The ensemble-based RF constructs multiple decision trees and then aggregates their outcomes to improve 

classification accuracy. It effectively helps with the high dimensionality data through inherent feature selection 

capabilities. Key parameters considered were 100 estimators, max_features='sqrt', criterion='gini'. 

The most important feature in SVM is the kernel whose job is to handle these decision boundaries. For effective 

performance of selections of land use at multiple scales and rapid land-use classification, we used the RBF kernel, 

with C = 1.0 for an appropriate level of regularization and gamma set to 'scale' for automatic adaptation to the data. 

They were used instead for modeling XGBst, an improved version of the boosting process that had improved 

computational efficiency and strong regularizing potential to some extent, key to translating complex patterns from 

aerial imagery. The model was trained with 100 estimators, a learning rate of 0.1, and a maximum tree depth of 3. 

The penalty terms — alpha (L1) and lambda (L2) — were fine-tuned to improve the regularization, with an eye on 

generalizing well. Stopping was implemented in cross-validation in order to ensure that no change in performance 

was brought about while the overall performance condition was still being met. 

The selection of these models now turns to fulfilling the purpose in hand, i.e., managing issues related to high 

dimensions, spatial heterogeneity, and different landscape classes, typical of all aerial imagery. The ensembling 

methods (RF, GB, XGBst) had been chosen for unleashing their strengths in reducing both variance and bias, in 

making these models complement and justify themselves well. In combination, kernel-based (SVM) and linear 

models significantly contribute to the interdisciplinary dynamics regarding the connection of the deep-forged 

features with the leveraging methods of the various models.  

The current method of model selection was well based on previous studies: with those profitably applied in diverse 

remote sensing tasks, matching paradigm of algorithms have to face thorough scrutiny. The discussion in-detail adds 
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a deeper grasp to the way that classical machine learning models support deep-features-extraction techniques in 

aerial-image classification. 

The hyperparameter tuning settings of the examined models are contained in table 1. Each model adjusted the most 

important hyperparameters with the aim of achieving optimal results. For example, Regularization (C) and Iteration 

limits (max_iter) were set for tuning LR models. RF and GBst models were tuned using tree depth (max_depth), 

number of estimators (n_estimators), and the algorithm for splitting. SVM models were evaluated using different 

kernel types, regularization (C), and gamma parameters. XGBst was tuned using n_estimators, learning_rate, 

max_depth, and subsample. 

This tuning process made sure that the evaluation of the model was done for varying hyperparameter values. 

Table.1. Explored Hyperparameter Configurations for Model Optimization 

Model Hyperparameter Explored Values 
LR max_iter 100, 1000, 2000 

C (Regularization) 0.01, 1, 10 

RF n_estimators 50, 100, 200 
max_depth 10, None, 50 

min_samples_split 2, 5, 10 

GBst n_estimators 50, 100, 200 
learning_rate 0.01, 0.1, 0.2 

max_depth 3, 5, 7 

SVM kernel linear, rbf, poly 
C (Regularization) 0.1, 1, 10 

gamma scale, auto, 0.01 

XGBst n_estimators 50, 100, 200 

learning_rate 0.01, 0.1, 0.2 

max_depth 3, 6, 9 

subsample 0.5, 1.0 

 

IV. MODEL EVALAUTION METRICS 

The performance of these classification models was analyzed with a variety of parameters that provide holistic 

understanding of the capability of these models to discriminate between different classes of aerial images. 

Accuracy( Refer Eqn.1) gives a measure of number of instances correctly classified: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(TP+TN)

(TP+TN+FP+FN)
          (1) 

In the above expression, TP and TN indicate the number of true positives and true negatives while FP and FN are the 

false positives and false negatives counts respectively. 

Precision( Refer Eqn.2) is the percentage of positive predictions that are correct: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(TP+FP)
                      (2) 

High precision means high confidence on real positive instances and low false positives which is highly desired in the 

domain where classifying specific types of instances wrongly is detrimental. 

Recall( Refer Eqn.3) is the percentage of positive instances that were predicted as positive by the model: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                              (3) 

Lastly, recall is important in aerial image classification because it maintains that if critical land-use classes are 

overlooked, it will create bias and ultimately paint inaccurate picture. 

The F1-score( Refer Eqn.4)is one such metric that considers both precision and recall, thus being a neutral parameter 

to judge the model’s performance: 
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F1Score = 2 ∗
Precision×Recall

Precision+Recall
              (4) 

This is more informative than evaluating only precision or recall, considering the fact that many real-world datasets 

contain classes with different number of instances. 

 

The formula for Cohen's Kappa( Refer Eqn.5)seeks to evaluate the degree of correlation between predictions and 

actual labels whilst also allowing for chance agreement:  

k =
observed accuracy−expected accuracy

1−expected accuracy
           (5) 

This formula entails observed accuracy as the actual model accuracy while expected accuracy is the agreement 

expected by chance. For the performance of the model especially with imbalanced sets, kappa gives a more reliable 

evaluation of the model.  

By evaluating all elements of the confusion matrix, especially the four, MCC ( Refer Eqn.6) can also be derived from 

a much simpler piece of information.  

𝑀𝐶𝐶 =  
(𝑇𝑃.𝑇𝑁)−(𝐹𝑃.𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
      (6) 

Such alterations make monitoring model performance particularly simple since the description is MCC of +1 is perfect 

prediction, while 0 suggests random prediction.  

In its most basic form AUC-ROC ( Refer Eqn.7) captures the ability of a machines model to differentiate between 

classes. It analyzes the TPR and FPR for diverse classification processes as a function of a specific classification 

mechanism.  

AUC_ROC=∫ TPR(FPR)d(FPR)
1

0
      (7) 

Where: 

𝑇𝑃𝑅 =  
TP

TP + FN
,   𝐹𝑃𝑅 =  

FP

FP + TN
 

 

Notice that AUC-ROC is particularly great for tasks that have to do with comparison of model performance with 

different types of operating thresholds.  

The performance of all the models was analyzed in a more rigorous with this particular metric suite and it’s ensured 

that the metrics generated are robust and reliable. Such evaluation gives multi-dimensional understanding for model 

behavior towards different, preserving their relevancy for the classification of aerial images. 

V. RESULTS AND IMPLEMENTATIONS 

The present study discusses the relative performance of the selected classification models working in a competitive 

atmosphere on the dataset with layer-wise performance criteria.  

A. Overall Model Performance 

Given the dissimilar accuracies, models also performed with different performance metrics. SVM yielded the highest 

accuracy of 85.00%, immediately followed by 80.71% of LR. Although Logistic Regression performed better in the 

measures of Precision, Recall, F1, and AUC-ROC, its accuracy score was slightly lower than that of SVM. The overall 

model performance across different metrics is illustrated in Table.2. 

SVM had remarkable results with 85.46% Precision and 85.00% Recall. This gives heart to the model's balanced skill 

between Precision and Recall, with its F1-score at 84.89%. Internally, the AUC-ROC value is stratospheric at 0.993, 

meaning the model does incredibly well separating the classes.  
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Meanwhile, the LR model showed Precision (81.11%), Recall (80.71%), and F1 (80.61%) with a performance close to 

the SVM model. Its Cohen Value Kappa (0.7975) and MCC (0.7978) were indicative of a strong agreement between 

predicted and the true class labels. Metric wise comparison of all the models are shown in Fig.4. 

RF and XGBst posted closely similar overall accuracy scores of 74.05%; now the big difference here is that RF edged 

out (73.82%) on Precision and Recall at 74.05%. Although always dependable performance-wise, RF and XGBst were 

not able to generalize well across all classes, unlike SVM and LR. 

GBst had the lowest accuracy of 68.57%, but although it showed reasonable Precision, Recall, and F1 for particular 

classes, all were nullified by those opposite tendencies in others, leading to mixed result performances. The confusion 

matrix for LR, GBst, RF, SVM, XGBst, are given in Fig. 5-9. And the Roc-curve of the comparative models are given 

Fig. 10. 

Table.2. Overall Performance Comparison 

Model Accuracy Precision Recall F1-Score AUC-ROC Cohen Kappa MCC 

Logistic Regression 0.807143 0.811134 0.807143 0.806110 0.991642 0.7975 0.797818 

Random Forest 0.740476 0.738186 0.740476 0.735046 0.977258 0.7275 0.727946 

Gradient Boosting 0.685714 0.708677 0.685714 0.688619 0.968370 0.6700 0.670947 

SVM 0.850000 0.854606 0.850000 0.848904 0.993463 0.8425 0.842821 

XGBoost 0.740476 0.743204 0.740476 0.738354 0.982736 0.7275 0.727868 

 

Figure 4. Comparison of Model performance across Metrics 

 

Figure 5. Confusion Matrix for LR 

 

Figure 6. Confusion Matrix for GBst 
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Figure 7. Confusion Matrix for RF 

 

Figure 8. Confusion Matrix for RF 

 

Figure 9. Confusion Matrix for XGBst 
Figure 10. RoC Curve comparison of all the 

comparative models  

B. Class_specific preformance  

A close monitoring of class-specific performance metrics exposes some of the model behaviors across the class-wise 

categories as shown in Fig. 11. In this study, LR seemed to produce very good results in the classes of agriculture, 

airplane, and chaparral, indicating a 100% precision and very high recalls within these categories. Such results give 

us an indication that the model is likely to focus in some particular land use types due to clear separability of the 

classes in the feature space. 

In contrast, for RF, high precision and recalls in the agricultural, airplane, and chaparral classes could be seen as 

indications that the model efficiently identifies these land-use patterns, although problems arise in terms of poor 

performance in denseresidential and mediumresidential categories where it showed low precision and recall. This 

reflects general statistics in this model that are lower than those in SVM and LR models. 

GBst, on the other hand, shows relatively weaker performance, with good precision 94.4% and 85% recall respectable 

in agricultural and airplane classes but obviously very poorly with the assemblages of buildings and sparseresidential, 

where such F1 scores are remarkably lower. It is shown that GBst excels at specific instances due to this limitation of 

generalization occurring for class imbalance as well as feature heterogeneity.  
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Figure 11: Class- wise performance metrics of comparative models 

VI. DISCUSSION 

The study reflects that SVM and LR models are better performing models in classification tasks of land use. 

Particularly, SVM's remarkable performance can be linked back to its proficiency in dealing with high dimensional 

data. Despite everything, which is a good way to handle complex class boundary datasets like UCMLU. 

Despite weaknesses known to be present in some limited numbers, the RF and XGBst methods, well-proven, 

appeared to demonstrate weaknesses in modeling complex class distributions. The ability of these algorithms to 

perform well in the presence of any class may be illustrative of the great difficulty they have submitting intricate 

patterns found in aerial imagery data. 

GBst's performance was less compared to the other ensembles, possibly due to overfitting and hyperparameters' 

sensitivity. Further work could therefore be directed to enhance its performance on difficult to classify instances by 

cross-dwelling upon optimization of such parameters as the learning rate, depth of the trees, etc. 

To conclude, though RF, XGBst, and GBst ensemble methods are powerful means with various kinds of classification 

tasks, straightforward models, such as SVM and LR, might be better suited for some tasks, especially those in which 

the classes are well distinguished and balanced. The insights provided by the study could prove to be quite important 

for the future research that is needed in helping to guide the importance of the appropriate model selection for a 

given land-use classification task. Further studies, for instance, parameter tuning or feature selection, both of which 

would ideally enhance model performance, could follow to refine our results in aerial image classification. 

VII. GRAD-CAM VISUALIZATION AND INTERPRETATION 

The Grad-CAM is an important technique for XAI used in understanding the machine learning model decision-

making process. It highlights the regions on the image that are most informative with regard to its prediction by the 

model. For the current study, Grad-CAM was applied to a pre-trained model ResNet50 in order to visualize the focus 

of a model on specific features in aerial images from the dataset. A custom Grad model was created to simultaneously 

output the model's final predictions and feature maps from the last convolutional layer (conv5_block3_out). 
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Sample images in each class were resized to 224x224 pixels pre-processed according standard practices and fed into 

the Grad model for prediction. The corresponding feature maps were extracted for Grad-CAM using the 

corresponding features. 

Gradients of predicted class score for the feature mapping with respect to the class score were computed using 

Tenskeleton' s gradient tape. This gradient captures the importance of each feature map element in influencing the 

prediction. A weighted heatmap was constructed by multiplying the feature map by the gradient values and 

performing global average pooling. This heatmap highlights the image regions that contributed most significantly to 

the model’s classification decision. 

The Grad-CAM heatmap was overlayed on the original image to visually represent the regions of the image the model 

focused on for its prediction. In land-use classification,  heatmaps for buildings were strongly activated the rooftop 

regions suggesting the model relied on this feature for its classification. 

The visual analysis revealed differences in the way the model focused on land-use classes with well-defined features 

versus more ambiguous classes. For example buildings showed a more localized heatmap while chaparral exhibited 

wider activations across the image. Fig. 11 emphasizes the use of Grad-CAM for CNN-based feature interpretation in 

aerial image analysis.  

 

 

 

 

 

 

 

 

 

Figure 11: Comparison of Original Aerial Images and their Corresponding Grad-CAM Heatmaps for Different Terrain 

Types 

VIII. CONCLUSION 

This study presented a complete analysis of various machine learning classifiers applied to the dataset for aerial image 

classification using a database of 2100 images. Through an optimized data preprocessing pipeline incorporating 

advanced data augmentation techniques the models were trained and evaluated to assess their performance across 

several metrics including accuracy, precision recall F1-score AUC-ROC Cohen's Kappa and MCC. Our results 

highlighted the superior performance of the SVM model which achieved the highest accuracy (85%) and AUC-ROC 

score (0.99), demonstrating its robustness and ability to generalize well across the dataset. LR, RF and GBst followed 

with notable performance in terms of precision and recall but slightly lower overall classification accuracy than SVM. 

Furthermore the incorporation of Grad-CAM enabled us to visually interpret the decision making processes in the 

models. By overlaying class-specific heatmaps on the images,    the key regions focused by the models focused upon 

such as rooftops, agricultural areas and roads. These visualizations provided insight into the spatial reasoning of the 

models, demonstrating their ability to focus on semantically meaningful areas and in particular in the case of deep 

learning models. 

IX. RESEARCH DIRECTIONS 

While this study discerned model performance and interpretability, there are several scope for further exploration 

that could better enhance both the accuracy of the models in aerial image classification tasks: 

• Exploring ensemble methods such as stacking voting bagging and stacked can leverage individual classifiers' 

strengths to potentially improve overall classification performance. 



101  

 
 

J INFORM SYSTEMS ENG, 10 (12s) 

• Investigating the performance of deep learning models including CNNs and Vision Transformers, on this 

dataset can unlock the potential for more sophisticated feature extraction and representation 

• Fine-tuning prerained models like ResNet and optimizing hyperparameters can significantly enhance model 

performance and generalization. 

• Beyond Grad-CAM exploring explainability methods like SHAP and LIME can provide deeper insights into 

the model decision-making, building trust and ensuring the reliability of AI systems in critical applications. 

• Leveraging transfer learning on models prepre-trained on similar datasets can improve performance 

especially with limited data. 

• Combining aerial imagery with other data sources, such as GIS data and environmental sensor readings can 

enhance classification accuracy and enable more thorough analyses. 

• Incorporating temporal features of aerial imagery such as seasonal changes and urban growth can provide 

valuable insights into land use dynamics and support applications like land management and urban 

development planning. 

By pursuing these research directions, further research can be explored to advance the development of precision and 

interpretable AI systems for remote sensing applications. 
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