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The application of Cloud Computing (CC) has increased popularity in recent years. This 

technology allows for resource sharing and extensive capabilities, making it feasible to store 

and analyze data remotely on the cloud. However, it is not secured, some parties can access to a 

network like the internet and read or alter data, making this cloud untrustworthy. 

Consequently, one of the issues that must be resolved while utilizing CC involves preserving 

data security and privacy. Several strategies based on various Encryption (Enc) systems have 

been explored to address data privacy and integrity. Cloud-related risks include data loss and 

leakage, malware attacks, and exploited vulnerabilities. In order to prevent attacks and to 

preserve privacy when keeping data in the cloud, it is crucial to make sure that a foolproof 

protecting system is in operation. In order to entirely understand the value of Medical Data 

(MD) and realize data collaborative sharing,  a Deep Learning (DL) architecture that uses 

Homomorphic Encryption (HE) technology was established in this work to protect training 

parameters and created a MD security sharing scheme based on the communication mode. 

 In this case, the training parameters are protected by using the Paillier HE (PHE) to achieve 

additive homomorphism. This article offers a Privacy-Preserving (PP) hybrid Convolutional 

Recurrent Neural Network (CRNN) based on Swallow swarm optimization technique (SSO) to 

address the issue of privacy leaking. By combining DL with HE, a knowledge transfer strategy 

with PP is created. Researchers may infer from the simulation results that Learning Rate (LR), 

batch size, and other factors are connected to the model prediction accuracy. The outcomes 

demonstrate that this method has good performance, completes the accurate disease 

prediction, and accomplishes Data Sharing (DS) while maintaining data privacy. 

Keywords: Cloud Computing (CC), Paillier Homomorphic Encryption (PHE), Privacy 

Preservation (PP), Enhanced Recurrent Neural Network (ERNN) based Swallow Swarm 

Optimization algorithm (SSO). 

 

1. Introduction 

 In current era of modern and digital communications, cloud models and cloud services (CS) are becoming 

extremely crucial. Furthermore, infrastructure and software issues are provided by the cloud model. A few cloud 

services that employ user location, identity, and private data are Cloud Sae, Amazon's basic storage service, and 

others [1]. The most significant issue in recent cloud services has been the way cloud models handle various data 

security and privacy issues. Customers and cloud users are the ones whose primary entitlement to data security is 

to save their private information, such as bank account details, health information, and so forth. Secure protocols, 

signature schema, and unknown user authentication methods are a few examples of cryptography devices and 

models. 

 Critical information is protected against unauthorized access using User Authentication (UA). For instance, User 

B's sensitive information is not accessible to User A, who only has relevant information. If UA is not secure, hackers 

can hack a system and access data [2]. A secure protocol that permits two networked peers to communicate safely is 

provided by Secure Sockets Layer (SSL) and Transport Layer Security (TLS). When sending private data from a 

Web Browser (WB) to a web server (WS), SSL is most frequently utilized. Sensitive and confidential data, such 
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credit card numbers, passwords, and private messages, benefit greatly from TLS encryption, which prevents 

hackers and unauthorized individuals from reading data transferred over the Internet.  

In order to grant users authorized access, the CSPs must be managed through the authentication procedure [3]. It is 

the basis for revoking the identities of the malicious users. Users use cloud resources with effective dynamic 

reliability and service integration procedure according to their needs. User privacy must be protected, processed 

using a secure paradigm, and made available to authorized healthcare providers in the context of medical data 

processing. There is still significant expense and computational complexity even with the various Enc and key 

distribution mechanisms that are created in the current secure cloud Data Sharing (DS) technologies.  

  For converting Plain Text (PT) data (PT ) into something that appears random and unimportant (Cipher 

Text (CT)) and this procedure is called Enc . The process of converting CT to PT is called Dec [4]. Many pieces of 

information have been combined by the use of Symmetric Encryption (SE). The virtualization of currently 

accessible data services or data centers, which offers a multipurpose framework and supports services to various 

clients, is referred to as CC. Many services available over the Internet, including servers, databases, networking, 

software, and data storage, are sourced from CC. Cloud storage makes it possible to store files to a remote database 

and retrieve them whenever needed. Reliability, pay-per-use pricing, and accessibility are the primary advantages 

of CC [5].  

Moreover, CC is considered to have drawbacks in terms of security, recurring expenses, and decreased control over 

infrastructure and flexibility. Services in the cloud are rendered according to the needs of the user. The cloud model 

also offers effective service to users with a dependable CS model, and it saves large amounts of data. These days, 

users connect to and use cloud-based programs over the Internet with Software (aaS) as a service (SaaS), along with 

the current services like Infrastructure aaS (IaaS), Platform aaS (PaaS). New cloud models like Supercomputing 

aaS (SCaaS) and High-Performance Computing aaS (HPCaaS) are also made possible by the effectiveness of new 

technologies.  

Microsoft Office 365 provides additional popular instances. such as calendaring, email, and office tools. Paying for 

the entire software system solution on a "pay-as-you-go (PAYG)" basis is possible with Clouds Service Providers 

(CSP). The term "PAYG" CC service that provides on-demand networking, storage, and processing power is called 

 IaaS. SaaS, PaaS, serverless, and IaaS are the four categories of cloud services [7]. From basic cloud-based 

applications to sophisticated Cloud-Based (CB) organizations, PaaS is an all-inclusive cloud development and 

deployment environment. 

 Encrypting the data before outsourcing is a simple way for users to protect the privacy of their data. The 

Amazon IS service has adapted this model. Keyword-based searches on encrypted data become challenging even 

while privacy is maintained [8]. To search over PT, a naive method needs the data to be downloaded and decrypted. 

Such an approach severely reduces the benefits of using the cloud by producing enormous overheads in processing 

and communication. Though the computing overhead is so high that it is not at all practical, completely HE permits 

arbitrary operations, such as searches over encrypted data [9].  

Due to the scalable and affordable services provided by CSP, CC has been seen as an appropriate platform to deploy 

standard MD systems by healthcare providers who are looking to automate processes of health information 

manipulation at lower costs and higher gains. Though CB DS systems are becoming more popular, their adoption in 

the medical sector has been hindered by privacy-related issues. Over the past few years, a great deal of research has 

been done on the many security and privacy issues pertaining to clinical information [10]. Reports on the security 

and privacy concerns related to the manipulation of clinical information in networked systems have been released 

by numerous organizations.  

The European Data Protection Directive 95/46/EC and the Health Insurance Portability and Accountability Act 

(HIPAA) are the two most often used regulations. PP during transmission and PP of the stored data are the two 

main concerns about the privacy of Medical DS (MDS) that these regulations address. The SSL and TSL protocols 

both address the former, which has been the subject of extensive study. The latter is more pertinent to storage as a 

service under the CC framework, because the data that is outsourced is kept on the CSP's website, but it has 

received less research [11]. Several strategies based on various Enc systems have been explored to address data 

privacy and integrity.  
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Cloud-related risks include malware attacks, data loss and leakage, and exploited vulnerabilities. Thus, it is 

essential to make sure that anonymity is preserved when keeping data in the cloud and that a foolproof security 

system is in place to prevent attacks. In order to fully realize the value of medical data and actualize data 

collaboration sharing, this research effort constructed a DL framework that uses HE technology to safeguard 

training parameters and created a MD security sharing scheme based on the communication mode. 

 Following shows the arrangement of the remaining study: A few of the modern techniques for a PP CC 

security architecture are examined in Section 2. The suggested methodology's approach is presented in section 3. 

The results and the discussion are given in section 4. Future work and the conclusion are covered in section 5. 

2. Literature Review 

 In this section,  an in-depth analysis of the associated solutions for security concerns, cloud data services, 

and multiple risks are provided. 

 A service-oriented query (SOQ) approach was presented by Song et al. [12]; it adaptively modifies the 

encrypted data buckets according to the workload of queries and the distribution of sensitive data. In order to get 

around the still-unresolved join query issue between Enc attributes,  also suggest a two-stage indexThe strategies 

achieve effective encrypted data query performances, as demonstrated by the experiments designed to assess the 

performance of the suggested method . 

 To verify data security and integrity for data outsourcing in cloud environments, the PP Data Security 

Approach (PP-DSA) was suggested by Kirubakaran et al. [13]. The Efficient Authentication Technique (EAT) in 

conjunction with the Third-Party Auditor (TPA) Group Signature approach ensures PP in this work. Data security 

and shared data integrity are the auditor's two main responsibilities. Furthermore, the attackers that need to be 

dealt with by the EAT may also be the CSP and Data User (DU). Improving cloud security and enhancing Quality of 

Service (QoS) is the primary objective of this research. The suggested model outperforms previous approaches 

when compared to the results, which are assessed based on the model's efficacy, security, and dependability. 

 A practical strategy for CC MDS that protects privacy was put out by Yang et al. [14]. To account for various 

medical datasets with varying privacy issues, employing a vertical partition of medical dataset based on a 

classification of clinical record features. In order to provide multiple paradigms of balance between medical data 

utilization and PP, it primarily consists of 4 components:  

(1) MD publishing vertical data partition  

(2) Data fusion for accessing medical datasets 

(3) Verification of integrity  

 

and(4) hybrid search utilizing both CT and PT 

 For the large-scale access and sharing of medical data, a prototype system is put into operation. 

 A unique Blockchain (BC)-assisted framework for efficient cloud platform DS and Data retrieval was 

developed by Gajmal et al. [15]. For secure transmission, the EHR application has developed a data protection 

model. The Inter-Planetary File System (IPFS), smart contracts, transactional BC, DU, and data owner are among 

the entities on the cloud platform. By transferring the secured EHR to IPFS before sharing it with the DU, the data 

owner in this case incorporates a data protection framework to secure EHR. The suggested Conditional 

Autoregressive Value at risk (CAViaR)-based (BSO) Bird swarm algorithm for producing optimal PP coefficients is 

used to secure data privacy. Considering utility and privacy, a new Objective Function (OF) was created. With least 

responsiveness of 251.339 s, maximal real user detection of 32.451%, maximal privacy of 96.5%, and minimal 

information loss of 3.5%, the suggested CAViaR-based BSA outperforms other techniques. 

 A parallel retrieval approach that is adaptable to such a structure has been suggested by Wang et al. [16] 

along with a parallel Binary Search Tree (BST) structure constructed in block format. The approach performs better 

in searches, according to a quantitative investigation using the information retention index. Furthermore, the 

unexplainability of the feature vectors produced by the approach makes reverse analysis challenging, improving 

patient and researcher PP. The EEPR technique delivers a lower time complexity and greatly increases both search 
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efficiency and accuracy over existing schemes, as demonstrated by a formal security research. It is also resistant to 

known background attacks. 

 For the outsourced searchable encrypted data, A PP STorage and REtrieval (STRE) technique has been 

suggested by Li et al. [17]; it guarantees dependability and security while also maintaining privacy. Users of cloud 

services can distribute and search their encrypted data throughout several separate clouds managed by various 

CSPs due to the STRE mechanism, which remains stable even in the event that a specific number of CSPs fail. STRE 

has the advantage of a partially hidden search pattern in addition to reliability. The approach efficacy and efficiency 

are demonstrated by the real-world dataset by assessment of the STRE mechanism on Amazon EC2. 

 A high-level review of the related security technologies is provided after Tang et al. [18] developed a 

security architecture for outsourcing data services to the cloud. Then,  cloud data services such as data search, data 

processing, DS, data storage, and data access are offered by a focus on current security measures, that are safe, 

dependable, and private. At last, for each category of solutions, suggesting an open challenges and possible research 

areas. 

 Order-preserving SE (OPSE), an established cryptographic technique, is effectively utilized in Wang et al.'s 

formulation of ranked searchable SE [19]. A detailed examination reveals that the suggested approach accurately 

achieves the aim of ranked keyword search while having a "as-strong-as-possible" security assurance in comparison 

to earlier SSE systems. The effectiveness of the suggested solution is demonstrated by extensive research results. 

 Basic notion for the MRSE based on secure inner product computation was suggested by Cao et al. [20] to 

meet a variety of strong privacy criteria in two distinct threat models. Two greatly enhanced MRSE approaches 

were subsequently presented. Extend these two techniques further to allow additional search semantics in order to 

enhance the data search service's search experience. A detailed examination of the efficiency and privacy 

guarantees of the suggested methods is provided. Real-world dataset experiments confirm that the suggested 

approaches offer minimal computational and communication overhead. 

 A unique PP functional encryption-based search mechanism for encrypted cloud data was created by Liang 

et al. [21]. When compared to the current public key based search systems, one of the main advantages of the new 

primitive is its support for regular language search, which is an extremely expressive search mode. The suggested 

system is demonstrably safer and more effective than several searchable systems with high expressiveness, 

according to the security and performance studies. 

 A "Greedy (DFS) Depth-first Search" technique was introduced by Xia et al. [22] to offer effective multi-

keyword ranked search. The Index Vectors (IV) and Query Vectors (QV) are encrypted using the secure kNN 

method, which also guarantees precise relevance score computation between the encrypted IV and QV. To protect 

against statistical attacks, phantom phrases are inserted to the IV to blind search results. The suggested technique 

can achieve sub-linear search time and handle document deletion and insertion flexibly since it makes use of 

the unique tree-based index structure. In-depth tests are carried out to show that the suggested plan is effective. 

3. Proposed Methodology 

 This study developed an MD security sharing method based on the communication mode and a DL 

framework that uses HE technology to secure training parameters. In this case, the training parameters are 

protected by using the PHE to achieve additive homomorphism. This article offers a PP hybrid CRNN based on 

SSO to address the issue of privacy leaking. By merging DL with HE, a knowledge transfer strategy with PP is 

created. 
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figure 1. The procedure of the suggested method 

3.1. Security Model  

 The entire system security structure model has been separated into three layers, which are depicted in 

Figure 1. 

 (a)  Level of the End User 

 This level includes both the owner and those who make use of the data. The data owner uploads encrypted 

data and a list of all authorized users to the security environment. 

 (b) Security Level 

 The security level of the proposed system includes SM-PHC security framework, which operates using the 

following workflow: 

 1. File uploading: The user initiates the process by selecting a file from their local machine and uploading it 

through the interface of the security framework. This file is then stored in the local database for safekeeping. 

 2.File Encryption (Enc): The security framework employs Pallier Homomorphic Encryption (PHE) to 

convert the plain text (PT)of the uploaded file to cipher text (CT). This conversion process happens during the 

encryption phase, and the resultant cypher text is secure and unreadable to any unauthorized parties. 

 3.Secure File Uploading: The Enc file is then uploaded to the public cloud, where it is stored securely to 

ensure that no unauthorized persons can access it. 

 4.File downloading: A user submits the file name to the cloud in order to get a file. The user receives the file 

in an encrypted format after the cloud system looks for it. 

 5.File (Dec) decryption: The encrypted file is decrypted using the PHE decryption algorithm. This 

algorithm requires the private key that was used during the encryption phase to convert the CT back to PT. 

 6.Optimal Key generation: The security framework generates a pair of keys optimized by the spider monkey 

optimization method (SMO). These keys are used to ensure secure encryption and decryption of files, and the 

optimization process helps for Enc system optimization. 
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 (c) Cloud storage level 

 A cloud storage is the highest level component of the security concept described in this study. The cloud 

interface is used by the security framework to upload encrypted user data, which is subsequently stored there. 

When necessary, users can download encrypted files using the security framework. Once the security framework 

has encrypted the file, it is sent to the user. Additionally, a multi-cloud environment can make use of this system 

concept. Nonetheless, the study's main focus is on the Spider Monkey (SM)-PHE technique. To provide the most 

effective solution for data security in CC, this technology encrypts and decrypts data before uploading it to the 

cloud. 

3.2. Pallier Homomorphic Encryption (PHE) 

 Data encrypted with a CT can be processed using HE. This Enc method produces Enc results and enables 

computations on CT [23]. The computation outcome acquired in the encrypted form is Dec and compared with the 

PT version, as though the identical computation process was carried out on the PT. Figure 2 presents the processing 

flow in both Enc and unencrypted stages. 

 

Figure 2. Process of PHE 

 HE is currently the most widely used PP mechanism since it may process CT without initially Dec it. In 

order to secure sensitive data and information during computing operations, the HE method can compute the 

CT without initially Dec it. This means that the computation party only has to receive the CT and not the contents of 

the PT. With the Enc content, HE can perform particular algebraic operations and process cryptographic data 

efficiently. Equation (1) illustrates that quaternions make up the HE cryptosystem. 

𝐻 = {𝐻𝑜𝑘𝑒𝑦 , 𝐸𝑛𝑐, 𝐷𝑒𝑐, 𝐸𝑣𝑎𝑙}      (1) 

 Here, the key generation function is represented by 𝐻𝑜𝑘𝑒𝑦 . The Enc function is denoted as 𝐸𝑛𝑐 . The 

decryption function is represented by 𝐷𝑒𝑐, and the evaluation function is represented by 𝐸𝑣𝑎𝑙. A homomorphic 

operation that enables secure cryptosystems similar to Eq (2).  The Enc that uses the public key (pub) as the Enc 

key is represented as 𝐸𝑛𝑐𝑝𝑢𝑏(. ). The CT space is represented by C, and the PT space is by M. 

∀𝑚1, 𝑚2 ∈ 𝑀, 𝐸𝑛𝑐𝑝𝑢𝑏(𝑚1⨀𝑀𝑀2) ← 𝐸𝑛𝑐𝑝𝑢𝑏(𝑚1) ⨀𝑐𝐸𝑛𝑐𝑝𝑢𝑏(𝑚2)       (2) 

  ⨀𝑀 represents the operator on the M, and ⨀𝑐 represents the operator on the C.The outcome is the same as 

if 𝑚1 and 𝑚2 were encrypted first and the operators were then run, as demonstrated by Eq. (2), for any two items 

𝑚1 and 𝑚2 in the  M, following the application of the ⨀𝑀 operating on them. The absence of the intermediate 

decryption step and the equality or direct computation of the left-hand term from the right-hand term can be 

denoted by the symbol  .  

The result of HE for the PT v can be represented by [[v]], which simplifies the formula. The following defines 

addition HE and multiplication HE, the two fundamental HE operations.  

 Definition 1: Additive homomorphic operation.  

Here, [[u]] and v]] represents the encryption outcomes for any 2 elements u and v in PT space, and if Eq (3) is 

met, 𝐷𝑒𝑐𝑝𝑟𝑖  represents the private key employed for decryption as: 

𝐷𝑒𝑐𝑝𝑟𝑖([[𝑢]] + [[𝑣]]) = 𝐷𝑒𝑐𝑝𝑟𝑖([[𝑢 + 𝑣]]) = 𝑢 + 𝑣                   (3) 

 Definition 2: Multiplicative homomorphic operation.  
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Here, [[u]] and v]] represents the encryption outcomes for any 2 elements u and v in PT space, and if Eq (4) is 

satisfied with 𝐷𝑒𝑐𝑝𝑟𝑖: 

The is represented as  

𝐷𝑒𝑐𝑝𝑟𝑖([[𝑢]] × [[𝑣]]) = 𝐷𝑒𝑐𝑝𝑟𝑖([[𝑢 × 𝑣]]) = 𝑢 × 𝑣                (4) 

3.2. Paillier algorithm  

 The following are the procedures involved in creating the public-private key pair and the Enc and 

Dec principles in the Paillier algorithm.  

 Key generation: Initially, choose 2 huge prime numbers, a and b, at random. Make sure that a and b are the 

same length. Then, lcm is a function that determines the least common multiple and Proceed by computing n=ab 

and 𝜆 = 𝑙𝑐𝑚(𝑎 − 1, 𝑏 − 1). To satisfy Eq (5), randomly choose a positive integer g smaller than 𝑛2 after defining 

𝐿(𝑥) =
𝑥−1

𝑛
. 

gcd(𝐿(𝑔𝜆𝑚𝑜𝑑 𝑛2), 𝑛) = 1, 𝑢 = (𝐿(𝑔𝜆𝑚𝑜𝑑 𝑛2))
−1
, 𝑚𝑜𝑑 𝑛)                       (5) 

 A function to determine the greatest common divisor is called gcd. This approach can be used to get the 

public key, which is known as the Pub Key (n,g), and the private key, which is known as the Secret Key (λ,u).  

 Enc procedure: Select a random number r such that 0<r< n for any m. Eq (6) determines the c. 

 

𝑐 = 𝑔𝑚𝑟𝑛𝑚𝑜𝑑𝑛2                         (6) 

Dec procedure: 

From Eq (7), the m for the c may be obtained. 

𝑚 = 𝐿(𝑐𝜆𝑚𝑜𝑑𝑛2) ∗ 𝑢 𝑚𝑜𝑑 𝑛                          (7) 

 The Paillier algorithm is an example of an asymmetric encryption mechanism that can be used to decrypt 

encrypted data and produce encrypted outcomes. The outcome that is reached is identical to the one that happens 

when the PT is operated on directly. Nevertheless, the multiplicative homomorphic operation is not satisfied by the 

Paillier algorithm. Despite not being fully HE, the Paillier algorithm is commonly employed in industry due to its 

excellent computational efficiency. The simulation algorithm of HE employed in this paper is the Paillier algorithm. 

• Calculation of the encryption loss function  

 The public Keys and private keys in a ML model that protects the training parameters using the Paillier 

algorithm are typically generated randomly on the server. Data is primarily decrypted via secret key and encrypted 

using the Pub key. Typically, in ML models, an optimization technique like a Stochastic Gradient (SG) that 

minimizes the value L(;x)is applied once a loss function (L) has been created. The minimal value of L(;x) that is 

optimal is found using the parameter * descent.  

Using (LR) Logistic Regression as an example, let 𝑇 = (𝑥1, 𝑦1), (𝑥2, 𝑦2), ……… (𝑥𝑛, 𝑦𝑛) represent the current 

collection of n sample data points. Then, in Eqn 8, the logarithmic L as its target L were implemented: 

𝐿 =
1

𝑛
∑ log (1 + 𝑒−𝑦𝑖θ

𝑟𝑥𝑖)𝑛
𝑖=1                   (8) 

 By using the partial derivative  from the previous Eq (8), the model parameters are updated. Equation (9) 

illustrates how to include the acquired gradient values into the gradient descent equation, thus the model 

parameters are updated. 

θ = θ − lr ∗
∂L

∂θ
                        (9) 

 Until the value of the loss function L(;) and the computing process outlined above is repeated after x stops 

dropping or the maximum number of iterations is reached. The iteration is terminated at this point . There is a 
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chance of data leaking in the ML scenario, as the computing process described including the parameters and data 

being done in an explicit state. It is necessary for the parameters to be solved in the encrypted state for ML based on 

HE. Typically, the encrypted value [[]]is the transmitted parameter . In Eq. (10), the loss function is presented.  

𝐿 =
1

𝑛
∑ log (1 + 𝑒−𝑦𝑖[[θ]]

𝑟𝑥𝑖)𝑛
𝑖=1                        (10) 

 To calculate the L, complex exponential and logarithmic operations must be performed on the encrypted 

data since the Paillier algorithm only permits addition homomorphism and scalar multiplication homomorphism, 

not multiplication homomorphism or complex exponential and logarithmic operations. As a result, the encrypted 

form of the aforementioned Eq (10) cannot be solved.Here, the original logarithmic L can be approximated using 

the Taylor L by using the original logarithmic L's Taylor expansion. After Taylor expansion, the L is reduced to 

merely scalar multiplication and addition operations, allowing Paillier to be applied directly to the cryptographic 

solution. The logarithmic L is approximated by polynomials. 

 Many large prime power operations are required when utilizing the Paillier method for Enc and Dec. 

therefore intermediate outcomes typically lead to overflow problems and may be out of bounds. Consequently, 

when the number of local training iterations exceeds a predetermined number of rounds, build the FNN with 

HMDH algorithm to re-encrypt the data using the server-side key. 

 Like previous HE methods described in the literature, the PHE method introduces noise into 

CT throughout the Enc process. Encrypting the same PT with two distinct encryption step activations would result 

in two separate CT. As a result, this is necessary to guarantee the PHE scheme's  Attribute Based Enc.The 

disadvantage is that noise is added in addition to being multiplied when performing homomorphic addition and 

multiplication on the CT. 

In the event that one of the CT coefficients is rounded to the incorrect value throughout Dec (Eq. (4)), this could 

result in a critical situation. Thereby failing the step of Dec. One important component of the PHE design is noise 

handling. In the development of HE-based processing systems, an accurate assessment of the quantity (and kind) 

of operations permitted on the CT is essential. The noise budget (NB) is relevant in this particular situation. An 

intuitive definition of the NB is an indication of the number of operations that can be executed on a CT before its 

Dec fails, even though a formal definition is outside the scope of this work. 

 As a CT goes through the processing pipeline, its NB attribute changes. It is determined by the PHE 

scheme's parameters and expressed as a positive integer. Right after the Enc phase, the NB is first assigned to the 

CT. The amount of NB that is available in a newly encrypted CT will often rise when n is increased. In contrast, 

during homomorphic operations, maximizing p and q will result in a rise in NB usage. For HE-based systems, 

especially those that use DL methods, determining the values of _ that ensure the correct processing of the CT while 

lowering computation and memory complexity is essential.  

 The NB is reduced when HE operations: + and x are performed on the CT. It is important to emphasize that in 

order for the Dec process to operate properly, the CT must be decrypted before the NB decreases to 0. Although NB 

computation is quite complicated, there are specialized HE tools available for NB estimate.  

3.3. Privacy preserved using hybrid Convolutional Neural Network (CNN) with Recurrent (NN) 

Neural Network (RNN) and (SSO) Swallow Swarm Optimization 

 The 2nd study's two primary contributions, describing in detail the process for creating PP CNNs using HE, 

is the objective of this section. It is necessary to reconsider and rebuild DL solutions in order to take into account 

the limitations on the kind and quantity of tasks that define the BFV system while creating PP DL solutions based 

on HE. The current study focuses on CNNs, which are the SOTA solution in various applications, among the many 

DL methods available. 

 When 𝑙 = 1,…… . 𝐿, a CNN F(.) is a deep NN with L processing layers 𝜂𝜀𝑙
(𝑙)

, each of which is defined by the 

parameters 𝜀𝑙. In order to prevent the NB from running out while processing a PP CNN based on HE, the 

processing pipeline's length L must be carefully considered.  

The processing layers in this CNN only consist of + and multiplication. An overview of the suggested process for 

creating PP CNNs based on HE is shown in Figure 2 [24].  
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The CNN that will be HE-encoded is indicated by F(.). By figuring out the configuration of the ⊝ encryption 

parameters, the methodology aims to produce a PP version' 𝜑 ⊝ (. ) of F(.)   and ensure that the NB does not exceed 

0 during processing. 

The methodology consists of three steps: model encoding, model validation, and model approximation, to 

accomplish these goals. The next sections provide more detail about these three steps. 

 

Fig. 2. An approach for the structure of PP CNNs depends on HE. 

A. Model approximation (MA) 

  Its objective is to substitute processing layers that only perform adds and multiplications for those that do 

not adhere to the BFV scheme for F(.). In a DL scenario, where processing layers consist of division, square root, 

and nonlinear (AF) Activation Functions, this is crucial. An approximated model 𝜑 (.)  with HE-compliant 

processing layers is the outcome of this stage. More specifically, the relevant approximated model 𝜑 (.) is output by 

the model approximation stage, which takes a CNN F(.) as input. 

Each processing layer_(l)^_l in such a model is consistent with the BFV scheme since it only consists of additions 

and multiplications.  

After this approximation step, the estimated CNN model has to be retrained. 

1) Pooling layers: BFV scheme does not include the comparison operator, is used by maximum pooling 

layers. Different pooling methods might be employed in place of maximum pooling to solve this issue. Since 

the BVF scheme's average pooling only needs to be multiplied by the sum of the CT and a fixed value that is 

known in advance (i.e., 
1

𝑘𝑤× 𝑘ℎ
).  Here,the width of the pooling kernel is denoted as  𝑘𝑤 and the height of the 

pooling kernel is denoted as 𝑘ℎthe authors suggest to replacing it with this method. 

 2) Normalization layers: Since it is difficult to calculate the mean and Standard Deviation (SD) of 

encrypted data, NL cannot be taken into account in the BFV scheme. On the other hand, because batch 

normalization layers rely on the values of the training data, they are accessible. These values can be utilized while 

processing CTand are calculated throughout the training phase. 

 3) Activation functions:  

Nonlinear functions are commonly employed as AF in CNNs. Because it needs to apply the comparison operator, 

the ReLU AF cannot be computed. This also applies to the division-based hyperbolic tangent tanh. This work 

proposes to substitute the square AF f(x) = x2 for these nonlinear AF. Taylor polynomial expansions can be used to 

improve this approximation even more. Still, utilizing more polynomials to make the expansion more accurate 

means that there will be more operations involved, which will increase the amount of NB used. 

B. Model encoding (ME) 

  It can be encoded using the ME step Once the model is approximated. This produces an encoded 

approximation model 𝜑⊝ (. ) with weights encoded based on the parameters ⊝ and the PHE scheme. 𝜑⊝ (. )  may 

now process encrypted data and return the CNN processing result. Interestingly, this result is still encrypted, 

meaning that it can only be decrypted by the owner of the secret key, sk. It is still an  interpretation how the ideal ⊝ 

parameter setting serves for HE processing. Usually, a "trial-and-error" method is used to choose the values for 

these parameters. However, the following instructions are offered for the setting of ⊝.  
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The most important encryption parameter is n, since it affects both the computing expense of the encrypted 

processing and the initial NB setting. NB adequate values are normally only guaranteed for extremely simple 

machine learning (ML) models (usually consisting of two or three processing layers at most) when n is smaller than 

4096. Generally, n is first set at 4096 and then increased from a methodological perspective. In other words, the 

parameter p influences the likelihood that some coefficients of the decrypted polynomials will be rounded to the 

incorrect value, which in turn impacts both the precision of the homomorphic operations and the quantity of NB 

spent.  

A number of p between 216 and 218 usually indicates an acceptable location to start when experimenting with the 

settings; tuning p is a process that involves trial and error. The value of q is crucial to the scheme's security; to set q 

in accordance with n and p, it is advised to rely on the aid function offered by SEAL. The DL model 𝜑⊝ (. ) can be 

obtained by encoding 𝜑(. ),  with the obtained ⊝= (𝑛, 𝑝, 𝑞). 

C. Model validation (MV) 

  Following the completion of the encoding process, the encoded model 𝜑⊝ (. )  is assessed from two 

distinct angles by means of this stage. In order to ascertain whether the selected configuration ⊝ provides a strong 

enough NB during CT processing, 𝜑⊝ (. )   is initially looked at. 

 The accuracy loss of 𝜑⊝ (. ) with respect to F(.) is assessed in the second place 𝜑 ⊝ (. )processes a (potentially 

huge) set of raw messages ms in order to measure the NB of the final CT . For attaining these goals, assessing the 

difference in accuracy among the encoded model 𝜑⊝ (. )and that of the plain model F(.). 

The difference among the accuracy of 𝜑⊝ (. ) and F(.) and final CT NB can be assessed. The incorrect setting of ⊝ 

is the basis for the issues related to NB loss. But, the approximations of processing layers that are presented in MA 

step and in 𝜑⊝ (. ), encoded approximated model, p and q are too small for pipeline processing, these 2 will be 

related to the discrepancies in the output among 𝜑⊝ (. ) and F(.). 

Generally, the issues related to a loss of NB are dependent on an incorrect setting of ⊝. If the NB constraint is met 

and the accuracy loss is less than a user-specified threshold (like 1% or 5%), then 𝜑⊝ (. ) and that of the F(.). The 

PP variant of F(.) to be taken into consideration is usually the one whose issues stem from a loss of NB due to an 

improper setup.  

Alternatively, when both the plain model F(.) and the NB of the CT decline to 0 during the processing of 𝜑(. )the NB 

condition is not satisfied.  

The methodology recommends 3 diverse tasks: update ⊝, change the manner in which layers in F(.)change the 

processing pipeline of F(.) or approximated. An incorrect setup or a loss of accuracy greater than the threshold 

typically causes the problems connected with a loss of NB. 

 The following is a detailed description of these three actions.   

Initially, ⊝ is the only factor that determines the NB and accuracy loss. Specifically, raising the parameter n results 

in an initial NB increase, but at the rate of an upsurge in computational overhead (which could be significant) and 

memory consumption of 𝜑⊝ (. ). On the other hand, raising p and q would result in higher NB consumption by the 

HE processes but less accuracy loss (by improving processing precision). Second, for the processing layers in F(.) 

that do not comply with HE, alternative model approximations could be taken into consideration.  

In this case, a trade-off needs to be thoroughly considered. In fact, a finer approximation for the (CG) coarse-grain 

layer could be used to reduce the accuracy loss (e.g., greater degree of polynomial approximation was employed); 

this would further reduce the NB by requiring more operations to be completed for that layer. Conversely, switching 

from a fine-grain to a CG layer approximation may lessen the amount of NB used, but it may also result in a greater 

accuracy loss.  

Third, a updated form F'(.) of F(.) can be constructed if the first two steps are unsuccessful in meeting the 

requirements on NB and accuracy. This objective of lowering the number of operations to be done can be attained 

in two ways: through lowering the amount of processing layers or by simplified the operations that must be 

performed.  
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The stages of model approximation, encoding, and validation are reactivated to identify 𝜑 ⊝ (. ) once F'(.) has been 

rebuilt. 

3.3.1. CNN combined with RNN 

 Data representations at different levels of complexity can be obtained using computational models made up 

of many processing layers via DL. These representations are then used to make predictions. To improve 

PP performance more accurately, the notion of hybrid learning is presented in this work. The RNN and the CNN are 

integrated. 

 One framework that has been suggested by the advancement of biotechnology is the CNN. Together, 

neurons are arranged in a well-organized manner, similar to local filtering of the whole input space. The deep 

features and local features of the input data can be extracted by CNN [26]. Neural networks that process sequence 

data are called RNN.  Each layer and the nodes that connect it are connected, beginning with the input layer (IL) 

and continuing through the hidden layer (HL) and output layer (OL) in the CNN structure.  

Such sequential data cannot be handled by such a network approach. In order to create higher order features, the 

CNN layer first learns low-level translation invariant features, which it then feeds into multiple fixed-tree RNNs.  

Convolution Layer (CL) and pooling layer can be considered as being combined into one effective, hierarchical 

process by RNNs. When compared to a-priori techniques, these two models both produce superior outcomes. 

Combining the usage of CNN and RNN frameworks for the classification of blood cell images was inspired by these 

works. Furthermore, the CNN-RNN model is the one put forth in this paper. A training phase and a testing phase 

are part of the suggested methodology. Pre-trained the CNN model on the dataset was the initial step in the training 

process. After that, a new CNN is initialized using pre-trained network parameters with the use of a Transfer 

Learning (TL) technique. After that, the RNN model is trained and all CNN layers are blocked.  Both features 

generated from the CNN and RNN are combined simultaneously using NN attention processes. During the testing 

phase, the refined CNN-RNN model receives the pre-processed test data, and the Softmax layer is used to extract 

the classification results. Below is a description of further information. 

 The pre-trained CNN layer, RNN layer, merge layer, and Fully Connected (FC) layer with Softmax output 

make up this suggested model's component parts. 

1) Pre-Trained CNN Layer  

 As the CNN model's initialization weights, through pre-trained on dataset, the weight parameters that have 

been obtained. CNN consists of pooling layers and CL. 

2) CL 

 Applying convolution operations on the Feature Map (FM) of the preceding layer using convolution 

windows of different sizes, this layer is the most crucial and it is computed in the CNN. Various-sized convolution 

windows slide sequentially onto the previous layer's FM [25]. Typically, the CL number of weight parameters varies 

with the Window Size (WS), which is either 3x3 or 5x5. Each feature map's neuron values in the CL are convoluted 

through corresponding windows, and the AF employed in the layer determines the final outcome.  

3) Pool Layer  

 This layer calculates in a manner similar to that of the CL. The difference is because the lowest sample 

layer's (SW) sliding window tends to be 2 x 2, whereas the sliding step is usually 2. As a result, this procedure will 

typically cut the FM size from the preceding layer by half. This can significantly lower the convolution weights of 

NN parameters, it facilitates the overall efficiency of the network training process. It also makes it possible for the 

network to adjust to variations in image scale more effectively. Utilize the ReLU (Linear Rectification Function) as 

the AF in this study.  

4) RNN Layer  

 There are three layers in RNN and CNN: IL, HL, and OL. The most crucial aspect of RNN is the manner in 

which these HL are connected [26]. The HL is output to the OL, and the IL and HL nodes are coupled to one 

another. The HL node receives the node output data back. Data regarding nodes that are adjacent to one another in 
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the HL might even be contained. This network is dynamic. RNNs are more closely related to the biological nervous 

system since biological NN are cyclic networks with the ability to comprehend serial data. Long-term dependency 

information can be learned via this method.  

The cell is the name of this processor's structural component. The three gates that exist in a cell are an input gate 

(IG), an output gate (OG), and a forget gate (FG). 

 Rules can be used to evaluate a message once it enters the LSTM network. The Oblivion Gate will remove the 

contradictory data, leaving only the data that satisfies the standards for validation of the algorithm. The IL, OL, and 

FG are the three multiplicative gates that make up an LSTM, along with a memory cell. Compared to a traditional 

RNN repeat module, the LSTM has a more complex internal structure. 

 

Figure 3. Suggested Hybrid DL framework 

5) Merge Layer  

 The purpose of this layer is to combine Features Extracted (FE) from the RNN and the CNN using a 

particular technique. Introduce NN Attentional Mechanisms (AM) in the sequential model. With the help of its AM, 

a NN can selectively choose and focus on particular input features and for feature fusion, use the corresponding 

(EWM) Element-Wise Multiplication procedures.  

6) FC Layer with Softmax Output  

 The output of the FC Softmax layer, which receives the FE from the combined RNN and CNN, is the 

probability distribution of all classes. Additionally, use the Cross-Entropy (CE) as a (LF) Loss Function to assess the 

difference between the desired and actual outputs.  

 7) Training of Network  

 This model has two separate branches. The RNN branch initializes the parameters at random, while the 

CNN branch uses weights based on pre-trained parameters from the dataset. The gradient of the CE LF is used to 

iteratively update these weights throughout the training phase. The RMS Prop optimizer calculates the training 

samples and needs 100 epochs to complete the training process after initially blocking the CNN layer. The CNN 

layer is then thawed the network as a whole computes training samples using the Adam optimizer, the learning rate 

is 0.0001, and training now takes 70 epochs. After a set number of intervals, the training procedure ends.  

 To learn compact representations, these combined models do not make use of time dependencies in 

features. Even with fewer samples available,  deep architectures was trained due to these underlying time 

dependencies. Time dependencies frequently occur to improve time sequence modeling and time utilization. 

Therefore, in order to train the model in the shortest amount of time, this work used SSO to limit error propagation 

during training. 

3.3.2. Swallow Swarm (SS) optimization (SSO) 

 The main inspiration for this novel optimization approach comes from SS.  

In this algorithm, 3 kinds of particles are employed: 

 1. Explorer particle (𝑒𝑖) 
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 2. Aimless particle (oi) 

 3. Leader particle (li) 

 These particles constantly interact with one another as they travel in parallel directions. Every particle 

within the colony (which may consist of several subcolonies) is accountable for something, and by doing so, they 

help the colony move toward a more favorable state. 

a) Explorer particle  

 These particles are primarily representative of the colony's population.Exploring problem space is 

considered to be the main task.Once the group reaches the extreme point (swallow), a unique sound is used to bring 

them there. If this location proves to be the best in the problem space, the particle assumes the position of a Head 

Leader (HLi) [27]. On the other hand, each particle 𝑒𝑖 with respect to VHLi (velocity vector of particle toward HL), 

VLLi (velocity vector of particle toward LL), and competence of resultant of these two vector makes a random move. 

If the particle is in a good (though not the best) situation compared to its neighboring particles, it is chosen as a 

local leader LLi. The movement of a particle in problem space is seen in Figure 3. 

 

Fig. 3 Particle types and the movement of explorer particles 

𝑉𝐻𝐿𝑖+1 = 𝑉𝐻𝐿𝑖 + 𝛼𝐻𝐿𝑟𝑎𝑛𝑑( )(𝑒𝑏𝑒𝑠𝑡 − 𝑒𝑖) + 𝛽𝐻𝐿𝑟𝑎𝑛𝑑( )(𝐻𝐿𝑖 − 𝑒𝑖)                      (11) 

𝛼𝐻𝐿 = {𝑖𝑓(𝑒𝑖 = 0||𝑒𝑏𝑒𝑠𝑡 = 0) → 1.5}                        (12) 

𝛼𝐻𝐿 =

{
 
 

 
 𝑖𝑓(𝑒𝑖 < 𝑒𝑏𝑒𝑠𝑡) (𝑒𝑖 < 𝐻𝐿𝑖) →

𝑟𝑎𝑛𝑑( ).𝑒𝑖

𝑒𝑖.𝑒𝑏𝑒𝑠𝑡

𝑖𝑓(𝑒𝑖 < 𝑒𝑏𝑒𝑠𝑡) (𝑒𝑖 > 𝐻𝐿𝑖) →
2𝑟𝑎𝑛𝑑( ).𝑒𝑏𝑒𝑠𝑡

1/(2𝑒𝑖)

𝑖𝑓(𝑒𝑖 > 𝑒𝑏𝑒𝑠𝑡) →
𝑒𝑏𝑒𝑠𝑡

1/(2.𝑟𝑎𝑛𝑑( ))

                          (13) 

𝛽𝐻𝐿 = {𝑖𝑓(𝑒𝑖 = 0||𝑒𝑏𝑒𝑠𝑡 = 0) → 1.5}                         (14) 

𝛽𝐻𝐿 =

{
 
 

 
 𝑖𝑓(𝑒𝑖 < 𝑒𝑏𝑒𝑠𝑡) (𝑒𝑖 < 𝐻𝐿𝑖) →

𝑟𝑎𝑛𝑑( ).𝑒𝑖

𝑒𝑖.𝐻𝐿𝑖

𝑖𝑓(𝑒𝑖 < 𝑒𝑏𝑒𝑠𝑡) (𝑒𝑖 > 𝐻𝐿𝑖) →
2𝑟𝑎𝑛𝑑( ).𝐻𝐿𝑖

1/(2𝑒𝑖)

𝑖𝑓(𝑒𝑖 > 𝑒𝑏𝑒𝑠𝑡) →
𝐻𝐿𝑖

1/(2.𝑟𝑎𝑛𝑑( ))

                          (15) 

 The behavior of the 𝑒𝑖 is considerably impacted by 𝑉𝐻𝐿𝑖. The particle's present location in problem space 

is denoted by 𝑒𝑖. The best position that the particle can recall from the start to the present is denoted by 𝑒𝑏𝑒𝑠𝑡. A 

leader particle with the best reaction at its current position is denoted by 𝐻𝐿𝑖. The control of adaptively specified 

acceleration coefficients is given by 𝛼𝐻𝐿 and 𝛽𝐻𝐿. The position of the particle affects how these two parameters vary 

as the particle moves. The chance of the particle being a global minimum should be taken into account, and control 
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coefficients should estimate a little amount to reduce the particle movement to the least, if the particle is a 

minimum point (minimizing problem) and is in a better position than the 𝑒𝑏𝑒𝑠𝑡 and 𝐻𝐿𝑖.  

 The particle ought to move toward 𝐻𝐿𝑖with an average amount if it is in a worse state than 𝐻𝐿𝑖  but better than 𝑒𝑏𝑒𝑠𝑡. 

The particle can travel closer to 𝐻𝐿𝑖with a greater amount if its location is poorer than 𝑒𝑏𝑒𝑠𝑡, which also makes it 

worse than 𝐻𝐿𝑖. Consider that this movement is influenced by the 𝑉𝐿𝐿𝑖vector. 

𝑉𝐿𝐿𝑖+1 = 𝑉𝐿𝐿𝑖 + 𝛼𝐿𝐿𝑟𝑎𝑛𝑑( )(𝑒𝑏𝑒𝑠𝑡 − 𝑒𝑖) + 𝛽𝐿𝐿𝑟𝑎𝑛𝑑( )(𝐿𝐿𝑖 − 𝑒𝑖)                   (16) 

𝛼𝐿𝐿 = {𝑖𝑓(𝑒𝑖 = 0||𝑒𝑏𝑒𝑠𝑡 = 0) → 2}                  (17) 

𝛼𝐿𝐿 =

{
 
 

 
 𝑖𝑓(𝑒𝑖 < 𝑒𝑏𝑒𝑠𝑡) (𝑒𝑖 < 𝐿𝐿𝑖) →

𝑟𝑎𝑛𝑑( ).𝑒𝑖

𝑒𝑖.𝑒𝑏𝑒𝑠𝑡

𝑖𝑓(𝑒𝑖 < 𝑒𝑏𝑒𝑠𝑡) (𝑒𝑖 > 𝐿𝐿𝑖) →
2𝑟𝑎𝑛𝑑( ).𝑒𝑏𝑒𝑠𝑡

1/(2𝑒𝑖)

𝑖𝑓(𝑒𝑖 > 𝑒𝑏𝑒𝑠𝑡) →
𝑒𝑏𝑒𝑠𝑡

1/(2.𝑟𝑎𝑛𝑑( ))

                   (18) 

𝑉𝑖+1 = 𝑉𝐻𝐿𝑖+1 + 𝑉𝐿𝐿𝑖+1                     (19) 

𝑒𝑖+1 = 𝑒𝑖 + 𝑉𝑖+1                        (20) 

 To calculate the vector of 𝑉𝐿𝐿𝑖, each particle 𝑒𝑖 makes use of the nearest particle, 𝐿𝐿𝑖. 

b) Aimless particle (𝑜𝑖) 

 In the early stages of ei, these particles have a poor amount of f(𝑜𝑖) and a worst position relative to other 

particles. A new group reponsibility for them (𝑜𝑖) is defined after identifying that these particles can be 

distinguished from explorer particles ei. Exploratory and random search are included in this task. They move at 

random and are unaffected by HLi and LLi  positions when they begin. These swallows serve as the colony's 

explorers, venturing into isolated regions and reporting significant results to the rest of the group. 

The group converges to a local optimum in many optimization problems because of the improper distribution of 

particles in position space, which hides the optimal solution. Early convergence in local optimum pints is the most 

difficult problem to solve when dealing with optimization problems. Although (𝑜𝑖) appear to be aimless and useless, 

consider the possibility that they will ignore the global optimum solution, avoid the many surrounding points with 

their long hops, and consider the optimization problem. The local optimum locations, LLi and HLi, are compared 

by the particle oi with its current position. This particle will switch its position with the closest explorer particle, 𝑒𝑖, 

if it reaches an optimal point while searching, and it will then resume its search. 

𝑜𝑖+1 = 𝑜𝑖 + [𝑟𝑎𝑛𝑑({−1,1}) ∗
𝑟𝑎𝑛𝑑(𝑚𝑖𝑛𝑠,𝑚𝑎𝑥𝑠)

1+𝑟𝑎𝑛𝑑( )
]                     (21) 

 Each 𝑜𝑖  particle's new position is equal to its current position with a random number among the position 

space's lowest and maximum, divided by a value between one and two. Particle 𝑜𝑖  is randomly moved to or from its 

prior position based on the division answer. (-50, 50) is used to define the function Rosenbrock's range. The 

fraction result would be 12.5 if the function rand (min, max) yields a random number of 25, and the function rand() 

provides 0.5. At this point, the value of oi may be increased or decreased by this number. Examining the many 

environmental areas will be more likely increased as a result. 

c) Leader particle    

Leader particles are part of the SSO algorithm. When position space searching first starts, these particles have the 

optimal value of f(𝐿𝑖). In each level, their location and number may vary. While the new approach may contain 

nl leader particles, the PSO method only contains one (gbest). In space, these particles could be dispersed or 

accumulated. There are some particles called 𝐿𝐿𝑖, and the greatest leader is called Leader Head, which is 

acknowledged as the colony's main leader. The responses we keep find them to be excellent candidates. A 

thousand-member colony of swallows is subdivided into several sub-colonies in the real world.  

There is a 𝐿𝐿𝑖  in all of these subcolonies, but other swallows who are stronger and smarter may frequently replace 

them. A bird that is in a superior location, close to food and a resting area, is considered the leader of the swallow 

population. Guiding other colony members to this location is the leader's responsibility. The SSO algorithm 
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simulates this problem. Every time an issue is repeated, either a head or  𝐿𝑖 acting as a leader may change, or 𝑜𝑖may 

find a solution that works best at that particular location thus far. Since swallow movements occur quickly and 

dynamically, actual borders between subcolonies might never be created.  

The number and distribution of swallows in the diagram varies with the size of subcolonies. Each particle, swallow, 

is capable of fulfilling one of these 3 tasks. These three particles, 𝑒𝑖, 𝑜𝑖, and 𝐿𝑖, interact with one another on a 

constant basis. When these particles may often switch roles during the search phase, identifying the optimal 

position is the more crucial task. 

4. Results and Discussion 

 Initially, a medical diabetic dataset   is   obtained   from   the   internet and used to train the system using 

800 samples and the key is generated using paillier homomorphic encryption (PHE), which can be optimized using 

optimization. As a result, which gives optimal keys for encryption and decryption. Finally, the selected dataset is 

encrypted using a public key, which is then stored securely in real time database of public cloud for further 

accessing. To maintain confidentiality and to prevent unauthorized access by third parties, the data is provided in 

an encrypted form when accessed from the public cloud by the user and data owner. The proposed mechanism 

established in this study provides protection against malicious activity and unauthorized access through the use of 

encrypted data. Performance metrics are compared with those of other current methods to evaluate the 

effectiveness of the suggested procedure. This section presents a comparison between the proposed technique and 

several existing homomorphic encryption methods, Key  Homomorphic  Encryption  (KHE),  Energy Efficient 

Dynamic Homomorphic Security (EE-DHS) spider-monkey wıth Paillier homomorphic encryption model (SM-

PHE), and proposed Hybrid Fuzzy Neural Network with Modified Deer  Hunt optimization based Pallier 

Homomorphic Encryption (HFNNMDH-PHE). 

 Encryption time: To calculate the encryption time, you can measure the amount of time required by the 

encryption algorithm to encrypt the plaintext into ciphertext. Generally, the encryption time can be calculated by 

subtracting the start time from the end time of the encryption process. Encryption time is a critical factor in 

evaluating the efficiency of an encryption algorithm, as it reflects the amount of time required to convert plaintext 

to ciphertext. The shorter the encryption time, the more efficient the algorithm. This Section compares the 

encryption time of proposed with that of other homomorphic encryption algorithms. 

 

Table 1. Encryption time vs methods 

Data Size 

(kb) 

KHE EE-DHS SM-PHE HFNNMDH-

PHE 

HCRNN-

SSO 

100 12 15 18 22 24 

200 15 16 21 25 27 

300 18 17 25 28 29 

400 20 18 28 31 33 

500 23 21 31 33 35 
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Figure 5. Encryption Time 

 The results of figure1. demonstrate that proposed model takes less time to encrypt the same plaintext 

compared to the other algorithms, indicating its superior efficiency in this aspect. The intended HFNNMDH-PHE 

model achieved 24 ms for 100kb using this metric.  As a result, the EE-DHS and SM-PHE methods achieved 27, 

and 29 ms, respectively, while the KHE approach reached 33 ms for 100kb, as shown in Fig 5. 

Decryption Time: The length of time required to decrypt encrypted data or information is referred to as 

decryption time. Decryption is the process of turning encrypted or encoded material back to its original form so 

that the intended recipient can read and understand it. The time taken to decrypt data based on the encryption 

algorithm employed, the size of the data being decrypted, and the computational capability of the device used for 

decryption. In general, more advancedencryption algorithms and higher data volumes will necessitate more 

decoding time. Using this criteria, the proposed model accomplished 5 ms for 100kb. 

Table 2. Decryption time vs methods 

Data Size 

(kb) 

KHE EE-DHS SM-PHE HFNNMDH-

PHE 

HCRNN-

SSO 

100 13 11 9 6 4 

200 17 14 10 7 6 

300 22 19 15 10 8 

400 25 21 18 13 10 

500 29 25 21 15 12 
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 As a result, for data sizes of 200 kb, 300 kb, 400 kb, and 500 kb,  the decryption time is 4, 6, 10, and 12 

milliseconds.The proposed HFNNMDH-PHE technique gained less decryption time when compared to other 

models expressed in fig 6. 

Execution Time: The execution time of  an  algorithm  is  the  amount  of  time it takes for the algorithm to 

complete its task or solve a problem. Execution time is typically measured in units of time, such as seconds, 

milliseconds, or microseconds. 

Table 3. Execution time vs methods 

Data Size 

(kb) 

KHE EE-DHS SM-PHE HFNNMDH-

PHE 

HCRNN-

SSO 

100 0.3 0.28 0.24 0.06 0.04 

200 0.34 0.32 0.2 0.08 0.06 

300 0.38 0.36 0.18 0.1 0.1 

400 0.42 0.4 0.16 0.12 0.14 

500 0.46 0.45 0.18 0.14 0.13 

 

 

Figure 7. Execution time 

 The specific unit used may depend on the granularity required to accurately measure the execution time of 

the operations, which can be expressed in fig 7. The proposed model takes the less time for the execution compared 

with the other models.The proposed model achieves shorter execution time of 0.04 ms for 100 kB, 0.06 ms for 200 

kB, 0.10 ms for 300 kB, 0.14 ms for 400 kB, and 0.13 ms for 500 kB of data size as a result in fig 3. 

Efficiency: The efficiency of an algorithm can be evaluated based on several factors, including computational 

complexity, memory requirements, power consumption, and communication overhead. These factors determine 

how quickly and efficiently the algorithm can perform its cryptographic operations while using the minimum 

possible resources and proposed model is more efficient than other homomorphic techniques. 

Table 4. efficiency vs methods 

Data Size 

(kb) 

KHE EE-DHS SM-PHE HFNNMDH-

PHE 

HCRNN-

SSO 

100 92.67 91.45 89 98.5 99 

200 91.64 90.85 90.36 98.2 98.7 

300 92.68 91.36 91.5 98 98.4 

400 93.47 92.35 92.12 97.9 98.3 

500 94.57 92.68 91.55 97.7 98.8 
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Figure 8. efficiency 

 In this case, the suggested model's efficiency was superior when compared to other frameworks, as a 

consequence, proposed methods effectiveness is > the standard methods in the following cases: 99% for 100 kb, 

98.7% for 200 kb, 98.4% for 300 kb, 98.3% for 400 kb, and 98.8% for 500 kb in the fig 8. 

Power consumption: The power consumption can be estimated based on several factors, including the size of 

the public key, the length of the plaintext and ciphertext, and the number of operations required to perform the 

homomorphic computation. The less power consumption leads to secure and energy-efficient system. 

Table 5. Power consumption vs methods 

Data Size 

(kb) 

KHE EE-DHS SM-PHE HFNNMDH-

PHE 

HCRNN-

SSO 

100 28 25 30 15 13 

200 30 28 32 18 15 

300 32 30 35 20 17 

400 34 32 38 22 19 

500 35 34 40 25 20 

 

 

Figure 9. power consumption 

 The suggested model uses less energy than the current models, such as HCRNN-SSO, which uses 13Wh for 

100kb of data and 15Wh, 17Wh, 19Wh, and 20Wh for 200kb, 300kb, 400kb, and 500kb, respectively in fig.9. 
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5. Conclusion 

 There's a need to use security algorithms more frequently in data systems and processes due to increased 

awareness and concerns about CC, information security, and privacy protection. Based on the communication 

mode, this research created a MD security sharing scheme and built a DL framework that protects training 

parameters using HE technology. In this case, the training parameters are protected by using the PHE to achieve 

additive homomorphism. This article offers a PP hybrid CRNN based on SSO to address the issue of privacy 

leaking. By merging DL with HE, a knowledge transfer strategy with PP is created. The suggested method performs 

an effective task in securing the data owner's privacy. In order to compare the efficiency of the suggested scheme 

with the state-of-the-art plan, the final result is a detailed evaluation. The outcome demonstrates that, in 

comparison to alternative methods, the suggested plan offers efficiency gains of up to 99%. This increase has 

demonstrated that the suggested strategy is better suited to run the data collecting method in a mobile 

CC environment. 
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