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The advent of research into neural networks has led to the widespread utilisation of deep 

learning methodologies in the domain of text sentiment analysis, owing to their formidable data 

processing and pattern recognition capabilities. In recent years, Transformer and its variant Bert 

have attracted considerable attention, and their performance has been demonstrated to be 

superior in practice. However, it is important to note that China's unique social media data set is 

characterised by a variety of languages, distinct cultural backgrounds, and intricate emotional 

expressions, which poses a significant challenge to the generalisability of models trained on more 

homogeneous data sets. Consequently, the conventional Transformer model's efficacy in feature 

extraction is constrained in certain scenarios, impeding the efficiency of its implementation. It 

is necessary to adapt and optimize the model further to account for the specific attributes of 

social media data in the task design. Nevertheless, within the framework of Chinese linguistics, 

the significance of word order and conjunction is inherently apparent. Conversely, the potential 

of adjectives in emotional expression is frequently disregarded. This study endeavours to 

investigate an innovative approach, underpinned by a Transformer encoder model, to construct 

a reinforcement model that can integrate and learn adjective features. The model will be 

evaluated through experimentation with three publicly available Chinese social media datasets. 

The experimental data demonstrate that the model can utilise the attention mechanism to not 

only identify the emotional tendency of keywords but also to effectively combine the positional 

characteristics of conjunctions and adjectives to obtain local details and contextual meanings of 

the text. This enhancement of the model's effectiveness in feature extraction is a significant 

contribution to the field. 

Keywords: Sentiment Analysis, Social media content, Feature identification,  Transformer 

model, Mandarin language. 

 

1. Introduction 

Sentiment analysis, otherwise referred to as opinion mining, is the process of identifying, extracting, and interpreting 

the emotions, attitudes, evaluations, opinions, and experiences expressed by individuals with regard to services, 

products, organisations, people, topics, events, and their attributes [1]. Sentiment analysis occupies a fundamental 

and important position in the field of natural language processing. Indeed, this topic has been the focus of 

considerable interest and in-depth study by researchers worldwide in recent years. The rapid development of the 

Internet and mobile networks has resulted in an increasing number of users sharing their personal opinions, 

consumption experiences, social perspectives, and emotional tendencies through various online platforms. In China, 

Internet users often express their emotions and opinions on social media platforms like Weibo and WeChat. 

Customers leave reviews for hotels and restaurants on websites such as Ctrip and Meituan, while shoppers share 

feedback on products through e-commerce websites like Taobao and Jingdong. It is also worth exploring how to mine 

important sentiment information from these contents. Emotion analysis can be categorised into two distinct 

classifications: document-level and aspect-level. The primary objective of document-level sentiment analysis is to 

evaluate the prevailing emotional tendency articulated by the entirety of a text, such as an article, commentary, or 

blog content. The assessment of document-level sentiment is typically classified into positive, negative, or neutral 

categories. When undertaking document-level sentiment analysis, it is imperative to take into account the lexical 
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selection, grammatical characteristics, and the contextual milieu of the text. Aspect-Level Sentiment Analysis delves 

deeper by identifying specific topics or aspects mentioned within the text and analyzing the sentiment associated with 

each. For example, in a product review, the sentiment towards "price," "quality," and "customer service" might be 

assessed separately [2].  

In the early stages, sentiment analysis methods primarily fell into two categories: those based on sentiment 

dictionaries and those relying on machine learning. These approaches required the construction of a sentiment 

dictionary, followed by manual annotation to assign polarity and intensity, and were then used to classify text 

sentiments. While effective for sentiment classification, this approach was labor-intensive and inefficient due to the 

need for manual dictionary creation and annotation. In the 1990s, machine learning methods began to gain traction 

in text sentiment analysis [3][4]. Despite the rudimentary functionality of these sentiment analysis models, they are 

heavily reliant on the sophisticated engineering of complex features. The efficacy of feature engineering is a pivotal 

factor in determining the accuracy of emotion classification outcomes. This process encompasses pivotal procedures 

such as feature selection, extraction, and subsequent optimisation. Additionally, machine learning models often 

struggle with generalization, limiting their applicability across diverse datasets. The advent of deep learning 

technology has precipitated a paradigm shift within the domain of sentiment analysis, effectively circumventing the 

constraints imposed by conventional sentiment dictionaries and traditional machine learning methodologies. In the 

field of natural language processing, particularly in the context of sentiment analysis, deep learning has demonstrated 

remarkable efficacy and generalisability.  

CNN and RNN are two primary neural network models frequently employed in text sentiment analysis within the 

domain of deep learning. The utilisation of CNNs in text sentiment analysis enables their convolutional layer to 

precisely identify and extract local features and patterns in the input text, as well as the intricate connections between 

them. This facilitates the automatic acquisition of feature data which is indispensable for sentiment analysis. No need 

for manual feature engineering, the network learns features directly from data. Ideal for capturing sentiment-laden 

phrases or n-grams. Efficient for large datasets and can handle varying input lengths with appropriate preprocessing. 

By leveraging these feature extraction methods, CNN-based approaches excel in identifying local patterns crucial for 

sentiment classification, especially in structured or short texts. Textual sentiment analysis shares similarities with 

sequential modeling, as it involves learning contextual information from sequences. RNNs are commonly used for 

this purpose. In the context of text data, RNNs encounter limitations due to their sequential processing mode and 

gradient disappearance, which hinders the effective capture of long-distance dependencies. To address this challenge, 

research in the field of Chinese text sentiment analysis is progressively orienting towards integration of RNN, 

attention mechanism and Transformer model.The attention mechanism enhances the model's capacity to recognise 

long-distance dependencies by focusing on distinct regions of the input sequence. Concurrently, the Transformer 

model employs a self-attention mechanism to circumvent the limitations imposed by sequential processing in RNN, 

thereby demonstrating remarkable efficacy in the capture of long-distance dependencies. The Transformer model 

utilises a distinctive self-attention mechanism that enables it to evaluate the significance of each component within 

an input sequence in a concurrent manner. This capacity to process long sequences is significantly enhanced. The 

Transformer model's unique mechanism facilitates the capture of long-distance dependencies, thereby enabling it to 

concurrently assess the relationship between any two elements in a sequence and generate an attention-weight matrix 

that reflects the proximity between these elements. As a result, Transformers achieve better performance in tasks 

such as language modeling and translation. 

In the context of Mandarin Chinese, word order plays an important role. It is not only the core element of expressing 

grammatical meaning, constructing sentences and transmitting information, but also the main way to distinguish 

grammatical structure and semantic differences in cases of relatively limited morphological changes in Chinese [5]. 

The integration of word order elements into Mandarin Chinese data sets is of significant importance when it comes 

to enhancing the efficacy of sentiment analysis. Word order remains constant in Chinese, and any adjustments made 

to it result in semantic alterations. The incorporation of word order can serve to enhance the model's capacity to 

recognise the logic of sentences, accurately interpret meaning, improve analysis accuracy, reduce misjudgement, and 

establish a theoretical and practical foundation for the application of sentiment analysis in Chinese. Therefore, 

effectively capturing and utilizing word order is crucial for accurate sentiment interpretation and overall model 

performance [6]. "especially good/特别好" refers to food that tastes particularly delicious, "very special/好特别" 

means that this food is different from others and has distinctive characteristics. Despite the absence of any overt 

emotional sentiment in these phrases, they do, nevertheless, reflect divergent levels of positive emotion. Research 
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findings indicate that the observed variation in emotional inclination is predominantly attributable to the 

transformation of parts of speech subsequent to the alteration of word order. In the context of Mandarin Chinese, the 

arrangement of words has the capacity to modify the parts-of-speech properties of a phrase, thereby exerting an 

influence on its emotional tone or intrinsic meaning. Essentially, different word orders can shift how a word or phrase 

is understood, influencing whether the expression has a positive, neutral, or negative emotional impact. For example: 

"好人" (hǎo rén): This phrase is a noun in Chinese, means "good person" and has a positive connotation, describing 

someone with good character. "人好" (rén hǎo): This is a phrase with a subject-predicate structure in Chinese, where 

"ren" is a noun (subject) and "hao" is an adjective (predicate), meaning "this person is good" or "people are good" 

which is more neutral and simply states a fact about someone's character without the same focus or emphasis. 

Another example: "吃好" in Chinese is a phrase with a verb-object structure, which contains a verb and an adjective. 

"吃" is a verb, which means "eating" or "eating", "好" here is an adjective, which means "good" or "satisfied". Therefore, 

the overall meaning of "吃好" is "eating well" or "eating satisfactorily". This phrase itself is not an independent word, 

but a verb phrase, which cannot be classified into a certain part of speech. But in terms of composition, it is composed 

of a verb ("吃") and an adjective ("好"), expressing a state or result and does not have a strong emotional connotation. 

"好吃" is an adjective in Chinese, used to describe the taste of food, meaning "the food is delicious" or "delicious". It 

is composed of "好" (adjective) and "吃" (verb), but as a whole, it expresses the evaluation of food and is an adjective 

and this word clearly expresses a strong positive emotion. From the above analysis, we can find that adjectives 

frequently serve a crucial function in establishing sentiment polarity (positive, negative, neutral)[7][8][9].  

Building on the aforementioned methods and challenges, this paper introduces learnable conjunction with an 

adjective-enhanced model for Mandarin Chinese sentiment analysis, leveraging a Transformer encoder framework. 

The integration of conjunction position attributes and adjective weight factors within the attention mechanism of the 

model facilitates the effective extraction of the global semantic content of the context, while concurrently maintaining 

a high degree of vigilance to key local information. This combination of attributes results in the model demonstrating 

excellent performance in the domains of sentiment analysis and semantic interpretation. The model incorporates 

enhanced modules, such as a weighted enhancement mechanism, to dynamically adjust the contribution of attention, 

thereby improving the attention module's capacity to handle complex contexts. The residual structure of the pre-

trained language model has been enhanced, and a flexible design has been adopted for the purpose of optimising the 

network and facilitating the flow of information. An evaluation of three Chinese social media data sets has been 

conducted, and the model has been shown to possess strong text feature extraction and classification capabilities that 

surpass those of the baseline model, thereby demonstrating its superior performance. 

The primary research outcomes of this paper concentrate on the following aspects: 

a) It elucidates the fundamental role of word order in the sentiment analysis of Chinese social media texts and 

employs it as a pivotal feature. 

b) A novel adjective-combined enhancement model is formulated for efficient extraction of Chinese affective 

features and precise prediction of affective categories. 

c) Through experimental validation on three publicly available data sets, the proposed method attains substantial 

performance enhancement in comparison with the two baseline methods. 

2. Related works 

The objective of text sentiment analysis is to transform unstructured emotional text into a structured format that is 

readily interpretable and processable by computers. This transformation not only enhances the capacity of computers 

to discern the emotional content of text but also establishes a robust foundation for subsequent tasks, such as text 

classification and emotion recognition. It is necessary to identify and judge its meaningful information units, and 

then obtain the sentiment subject and evaluation opinion information. There are three primary methodologies 

employed to obtain evaluation information: the dictionary rule method, the general machine learning method, and 

the deep learning method. The dictionary rule method is characterised by simplicity, but its efficacy is constrained. 

General machine learning is predicated on feature engineering, while deep learning relies on neural networks with 

considerable learning capabilities. However, the training cost is high. 
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The method based on lexicon and rules generally uses existing knowledge resources, such as WordNet, to build a 

sentiment dictionary, and then builds rules based on the sentiment dictionary to judge emotions[10][11][12]. The 

approach utilizing machine learning was initially introduced by Pang et al. in 2002 [3]. In their method, the feature 

representation of the text is constructed using the sentiment dictionary, and then use NB, SVM, and ME models for 

positive and negative sentiment classification. After Pang, many people began to try to use machine learning methods 

for text sentiment analysis, and many new methods were proposed[13][14][15]. For machine learning methods, a big 

difficulty is the acquisition of training data. Training samples can be obtained by manual labelling, but this method 

is labour intensive and cannot obtain a large amount of labelling data. For texts such as Weibo, comments, etc., the 

emoticons in the text can be used to label the text[16], this labeling method might generate a degree of noise; 

nevertheless, it enables the effective gathering of significant training data while achieving satisfactory outcomes. 

Convolutional Neural Networks—CNNs were originally proposed by LeCunY et al. and applied to handwriting 

recognition in the image domain[17], and LeNet-5 based on deep CNNs achieved good results. Collobert et al., 2011 

proposed a novel application of CNN to NLP tasks, such as part-of-speech tagging. This development signified a 

significant expansion of the application scope of CNN [18]. In 2014, Kim suggested using CNNs for sentiment 

classification of English text and achieved notable results at the time [19]. In that same year, Kalchbrenner et.al 

developed an innovative wide convolution model that replaced the traditional max pooling layer in CNN [20]. This 

approach neither requires prior knowledge input nor the creation of complex handcrafted features. In 2016, Yin and 

Schutze pioneered the adoption of a multi-channel convolutional neural network architecture, incorporating 

convolutional cores of varying sizes for each channel. This innovation led to a substantial enhancement in the quality 

of feature extraction in sentence classification [21]. Building on this foundation, in 2018, Chen et.al advanced the 

state of the art by designing a multi-channel convolutional neural network model that enabled the comprehensive 

capture of sentence-level features through the utilisation of multiple CNN channels. This model yielded exceptional 

outcomes in the sentiment analysis task of Chinese microblogging, effectively surmounting the challenges posed by 

noisy data and the intricacies of language complexity [22]. However, a limitation of sentiment classification using 

CNNs is their inability to account for the contextual semantic information within sentences. 

RNNs have a long history of development and are mainly used in speech processing-related problems. Rong et al., 

2013 utilised a two-form RNN model with double closed-loop hidden layers to learn the vector representation of film 

review sentences and explore the emotion distribution. The model demonstrated the ability to capture timing and 

context information, generate accurate sentence vectors, support sentiment classification, and illustrate the potential 

of biformalised RNNs in sentiment analysis[23]. Kiros et al. and D. Tang et al. used a deep network based on gate 

units to model sentences[24][25]. Compared to CNNs, RNNs introduce memory units, enabling the network to retain 

certain information and capture long-distance dependencies in text. To address this, LSTM and GRU networks 

incorporate gating mechanisms, effectively mitigating the gradient vanishing issue in traditional RNNs. In 2015, D. 

Tang et al.[25] employed CNN and LSTM methods to obtain an effective representation of a single sentence. 

Subsequently, they utilised gated RNN technology to meticulously encode and process the correlations and semantic 

ties among sentences, thereby successfully constructing a high-precision text model at the text level. This approach 

effectively captures semantic information across sentences. In the same year, C. Zhou et al.[26] amalgamates the 

feature extraction advantages of CNN with the time series processing capability of LSTM, thereby facilitating the 

efficient operation of text classification tasks.  

The hierarchical bidirectional LSTM model adopted by Ruder et al. [27] and the bidirectional LSTM method applied 

by Rao et al. [28] demonstrate excellent performance in both aspect- and document-level sentiment classification 

tasks. Furthermore, in the 2020 study, Sachin et al. utilised LSTM, GRU and their two-way forms to implement a 

detailed emotional analysis of Amazon user reviews, achieving notable research outcomes [29]. These pioneering 

research results not only promote the rapid development of text . 

The attention mechanism represents a pivotal technique in the field of neural networks, with the capacity to enhance 

the efficacy of tasks such as NLP and computer vision by means of a targeted focus on critical components of the 

input data. Within the domain of NLP, the attention mechanism finds extensive application in text classification, 

machine translation, sentiment analysis, question-answering systems, and a range of other tasks [30]. Li et al. [31] 

proposed a new attention model, which optimises the performance of traditional RNNS and significantly improves 

the accuracy of Chinese emotion classification. The model accurately captures key text information and emotional 

trends, enhancing the ability of emotion recognition and providing technical support for NLP and emotion analysis. 
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In 2016, Z. Yang et al.[32] combined a bidirectional RNN with the attention mechanism, developing an attention 

model for chapter-level text classification.  Later, in 2021, Gan et al. [33] have developed a multi-channel scalable 

design framework that integrates extended CNNs, BiLSTMs, and attention mechanisms to deeply explore the 

emotional content of Chinese texts. The framework utilises multi-channel design and can swiftly extract the original 

context and multi-level high-level features, thereby enhancing the accuracy and efficiency of sentiment analysis.  

Transformers, a powerful class of models used widely in NLP, rely heavily on attention mechanisms. The Transformer 

architecture has been shown to achieve breakthroughs in NLP tasks by analysing input sequence element associations 

through a self-attention mechanism. Its encoder-decoder layout eschews RNNs and CNNs, instead relying on self-

attention to capture sequence dependence for superior performance. Instead, the Transformer employs a self-

attention mechanism, which captures the relationships between different words within the same sequence. For 

example, consider the sentence "Mary gave her friend a gift because she was grateful." As humans, we can easily 

understand that the word "she" refers to "Mary", based on the context of the sentence. However, for an algorithm, 

this association is not immediately clear. For the word "she", it calculates its relevance to all other words in the 

sentence. In this example, "she" has a stronger connection to "Mary" than to other words like "friend" or "gift", based 

on their semantic roles. By associating "she" with "Mary", the model understands they refer to the same person, 

allowing it to make a more accurate prediction or interpretation of the sentence. From studies, the Transformer model, 

which incorporates this Self-Attention Mechanism, has demonstrated exceptional performance across various tasks, 

including sentiment classification, surpassing the abilities of previous top models. Built upon the Transformer 

architecture, a range of groundbreaking pre-trained language models has been developed, demonstrating exceptional 

capability in learning general Chinese representations[34]. Z. Li et al., 2021 leveraged enhanced attention 

mechanisms to fully capture contextual information and encode the relative positions between words based on 

ELMo[35]. Li et al. utilised BERT to verify the efficacy of the Transformer model in the domain of Chinese sentiment 

analysis, particularly in its ability to comprehend text context and discern subtle emotional shifts, thereby surpassing 

the capabilities of RNNs[36]. Jing and Yang have devised a hybrid model that integrates RNNs, an attention 

mechanism, and Transformer, leading to a substantial enhancement in the accuracy of sentiment analysis[37]. 

Furthermore, Wang's team discovered that fine-tuning a pre-trained Transformer model leads to enhanced 

performance in Mandarin sentiment analysis when compared to traditional RNN models[38]. These findings 

underscore the efficacy of Transformer models in Chinese sentiment analysis and contribute to the advancement of 

the field. 

RNNS frequently encounter challenges when processing sequence data due to signal attenuation, which can impede 

the establishment of long-term dependencies. Conversely, the Transformer architecture, with its self-attention 

mechanism, has the capacity to simultaneously consider the correlation of all elements in the input sequence. This 

capability enables the effective identification and interpretation of both short- and long-term dependency patterns, 

thereby demonstrating notable advantages in the context of dealing with this particular type of data. The Transformer 

architecture has been engineered to capture long-distance dependencies and parallel sequence processing, rendering 

it effective for tasks such as language modelling and sentiment analysis. However, contemporary pre-trained 

language models exhibit a substantial limitation in the domain of emotion analysis: they frequently fail to adequately 

integrate syntactic structure with semantic information and are unable to effectively extract and utilise key emotion-

specific features.  

This study introduces a learnable model enhanced with conjunction and adjective features for Mandarin Chinese 

sentiment analysis, built on the Transformer encoder architecture. The model has been developed to combine the 

position features of conjunctions and the weight features of adjectives into the attention mechanism. This has enabled 

it to successfully realise an accurate grasp of the global semantic context, while continuously focusing on key local 

information. The result is excellent performance and stability in natural language processing tasks. 

3. System model 

This study proposes a novel enhanced sentiment analysis model for Chinese social media texts based on a 

Transformer encoder. The model integrates an optimised multi-head attention mechanism, a trainable residual 

connection, and a residual design in the feedforward layer. The architecture of the model is shown in Figure 1. This 

architecture significantly improves the accuracy and processing efficiency of sentiment analysis. 
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Figure 1. The overall system model architecture 

3.1. Word embedding 

In the field of sentiment analysis, the employment of models necessitates the provision of input data that is structured 

as vectors or tensors. Consequently, any text-based input must undergo transformation to align with these structural 

requirements. Within this paradigm, the advent of word embedding technology emerges as a pivotal development. 

This technological framework facilitates the mapping of words into compact, continuous vectors within a high-

dimensional space, thereby ensuring that semantically analogous word vectors are proximate in this dimensionality. 

The integration of word embedding technology facilitates not only the conversion of text into a digital format but also 

the preservation of the semantic connections between words. This, in turn, ensures the provision of accurate and 

comprehensive data for sentiment analysis models. This allows text data, which is inherently discrete, to be 

transformed into a numerical format compatible with machine learning models like those used for sentiment analysis. 

By converting words into embeddings, the model can process text inputs as vectors or tensors, enabling advanced 

analysis like sentiment classification. This sentiment analysis strategy is characterised by a meticulous approach to 

the planning of the length of the input sequence, with the value of 𝑘 being set to align with the broader text. In this 

strategy, the words in the sequence are transformed into vectors through the implementation of the word embedding 

technique. For words that are not present in the word dictionary, a random vector initialization strategy is adopted 

to ensure that the model is adequately equipped to handle diverse text inputs. Consequently, a 𝑘 × 𝑑 dimensional 

matrix is generated, where 𝑑 indicates the dimensionality of the word representations. To standardize the length of 

the input sequence: If the text length is shorter than 𝑘, zero vectors of dimension 𝑑 are added as padding until the 

sequence reaches length 𝑘. If the text length exceeds 𝑘, it is truncated to 𝑘. Following these rules, a text 𝑇 can be 

expressed as: 

𝑇 = 𝑤1⨁𝑤2⨁ … ⨁𝑤𝑡⨁ … ⨁𝑤𝑘 , 𝑡 = 1,2, … , 𝑘, (1) 

 

In this study, 𝑤𝑡  is the word embedding vector of the 𝑡th word in 𝑇 sequence, which contains semantic information. 

⊕ is a series operation of 𝑤𝑡  vector to improve the model's ability to capture text semantics and context. This ensures 

that all input sequences have a consistent format for processing by the model. 

In this study, word vectors that had been pre-trained on the Sogou corpus were used to initialise the baseline model. 

The dimension of the word vectors was set to 300. Following the training process, the model demonstrated effective 

mapping of Chinese words in vector space, and the distribution of similar semantic words was found to be close, thus 

establishing a solid foundation for sentiment analysis tasks.  

3.2. Conjunction Enhanced Multi-Head Attention 

The conjunction-enhanced multi-head attention mechanism incorporates relative location data to enhance the 

model's ability to recognise complex interactions between input text and conjunctive representations. In this research, 

conjunctions indicating transition, progression, selection, and coordination are identified using the Jieba tool, and it 

is imperative to consider that the distance between the sentence character and the initial character of the conjunction 
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should be maintained at a positive value 𝑑(𝑑 ≥  0). The relative position information of the conjunction is then 

normalised within the interval (0,1), consequently resulting in the acquisition of the relative position feature 𝑅𝑃: 

𝑅𝑃 = 1 − 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑑) = 1 −
1

1+𝑒−𝑑               (2) 

In the absence of a conjunction, the relative position of each word in the sentence is characterised by calculating the 

distance between it and the starting point. 

 

Figure 2. Details of conjunction enhanced multi-head attention 

As shown in Figure 2, the inclusion of 𝑅𝑃 significantly improves the model's ability to focus on conjunctive contexts. 

We optimized the calculation strategy for attention by adding the adjustable parameter 𝜔 and integrating it with the 

underlying input representation 𝐻 to incorporate the relative position feature: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝐾

+ 𝜔𝑅𝑃) 𝑉 

𝑤ℎ𝑒𝑟𝑒 𝑄 = 𝐻𝑊𝑄 , 𝐾 = 𝐻𝑊𝐾 , 𝑉 = 𝐻𝑊𝑉 

(3) 

3.3. Adjective Enhanced Multi-Head Attention 

Adjectives have been shown to enhance multiple attention mechanisms, innovate traditional mechanisms, and 

integrate the syntactic attributes of adjectives. This change has been demonstrated to improve the semantic 

understanding of models and strengthen the analysis of complex structures. To focus more on adjectives, we 

introduced an adjective weight mask that amplifies the attention scores of adjectives. This can be done by adding a 

weight factor 𝛼𝑖  to the softmax function, where 𝛼𝑖  is  greater than 1 for adjectives and 1 for other words. 𝐴𝑖  is an 

indicator function that is 1 if the token at position 𝑖 is an adjective, and 0 otherwise.  𝜆  is a hyperparameter that 

controls the amount of boost given to adjectives (e.g., 𝜆 > 1). 

Then, the modified attention score for each token 𝑖 becomes: 

𝛼𝑖 = 1 + (𝜆 − 1) ⋅ 𝐴𝑖                     (4) 

The enhanced attention weights are calculated as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
+ 𝜔𝛼𝑖) 𝑉         (5) 

Here we use the part-of-speech (POS) tagger jieba tool to identify which tokens in the sequence are adjectives (where 

𝐴𝑖 = 1) 
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Figure 3. Details of adjective enhanced multi-head attention 

As demonstrated in Figure 3, 𝛼𝑖 accentuates the significance of the adjective weight, this is the adjective-boosting 

factor. For adjectives, 𝛼𝑖 = 𝜆 (𝑤ℎ𝑒𝑟𝑒 𝜆 > 1, e.g., 𝜆 = 2, boosting their contribution to the attention weights. For non-

adjectives, 𝛼𝑖 = 1, leaving their weights unchanged. This adjustment ensures that adjectives, which play a critical 

role in sentiment polarity, are given higher attention weights, improving the model's focus on sentiment-bearing 

tokens in the sequence. Suppose the sentence is: "这个产品的质量非常好，价格也很合适("This product is of good 

quality and the price is suitable.") ", the POS tagging identifies "很好" (good) and "合适" (suitable) as adjectives. 

Adjectives often play a crucial role in sentiment analysis (e.g., words like "good" or "suitable" that directly reflect 

sentiment polarity), we set 𝜆 > 1 to amplify their attention weight. For example, if 𝜆 = 2, the weight of the adjective 

will be doubled, encouraging the model to focus more on these words, and the attention score for these adjectives will 

be amplified, giving them a stronger influence on the model's prediction. 

3.4. Conjunction with Adjective Enhanced Multi-Head Attention 

The overall model of this study adopts the architecture of Conjunction with Adjective Enhanced Multi-Head Attention 

(CAE-MHA), which aims to optimize the Transformer model's understanding of the semantics of sentences modified 

by conjunctions and adjectives. By introducing the information of adjective and conjunction annotations on the basis 

of the original attention mechanism and adjusting the attention weight, the MHA mechanism boasts a number of 

clear advantages when it comes to the processing of natural language. This is due to the mechanism's ability to take 

into account both local and contextual features, thereby enhancing the model's understanding. 

 

Figure 4. Details of conjunction with adjective enhanced multi-head attention 
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From the Figure 4, we can see that the input text "这款产品的质量非常好，但是价格不是很美丽。("This product is 

of great quality, but the price is not attractive enough")", is converted into a vector representation𝑥1, 𝑥2, … , 𝑥𝑛 , with 

additional grammatical information (e.g., conjunctions 𝑑𝑖 and adjectives 𝐴𝑖). The attention mechanism is a process 

which calculates weights based on queries and generates attention distributions with the objective of focusing on the 

Queries (𝑄), Keys (𝐾), and Values (𝑉). 

The model introduces conjunction POS 𝑑𝑖 and adjective POS 𝐴𝑖 and modifies the attention distribution through the 

weight adjustment function. The information of adjectives and conjunctions is weighted by weight factors 𝛼𝑖  and 𝑅𝑃, 

which reflect how much the model pays attention to words related to adjectives or conjunctions. If a word is an 

adjective or modified by an adjective, its attention value will be amplified by the adjective enhancement weight 𝜆, if 

a word is a conjunction, then the local semantic features before and after the conjunction will be affected by the 

relative position of the conjunction. The final formula for conjunction with adjective enhanced attention becomes: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
+ 𝜔(𝛼𝑖 + 𝑅𝑃)) 𝑉        (6) 

Through attention distribution (Softmax) adjustment, the influence of conjunctions and adjectives on contextual 

information is weighted, ultimately forming a more semantically sensitive feature representation. The key semantic 

features of the optimised attention information are further refined by the subsequent processing of the feedforward 

neural network. Concurrently, residual connection technology can effectively alleviate the problem of gradient 

disappearance in deep networks and maintain the integrity of information. Moreover, the introduction of a layer 

normalisation module ensures data stability, improves the efficiency of training and the robustness of the model. 

3.5. Learnable Residual Structure 

The neural network demonstrates a high level of proficiency in feature expression, and the backpropagation 

algorithm enhances its architecture through gradient optimisation, thereby improving overall performance. However, 

during backpropagation, gradients may either diminish to near zero or grow exponentially, leading to ineffective 

parameter updates or gradient explosion. Additionally, deeper networks often face degradation issues. The residual 

learning technique employs the residual connection method to efficiently address the gradient problems that arise 

during the training of deep neural networks. These problems include gradient disappearance and explosion. In the 

domains of natural language processing and computer vision, this technology has been demonstrated to enhance the 

expressiveness of models and accelerate the development of related disciplines. Each component of the Transformer 

encoder is embedded with a hierarchical normalized residual design, which helps Transformer pre-trained variables 

optimize residual connections in a more efficient manner. This study proposes an innovative scheme that 

incorporates a configurable learning-based residual structure enhanced by conjunctions and adjective-induced self-

attention features, while enabling flexible adaptive adjustments by assigning trainable parameters to each branch. 

The learnable residual structure is shown in Figure 5. 

 

Figure 5. Residual Structure in Conjunction with Adjective Enhanced multi-Head Attention(CAE-MHA) 

As posited by the residual design philosophy embedded in each layer of the Transformer architecture (Figure 5 (a)), 

the central role of layer normalisation in enhancing the overall performance of the model is widely acknowledged. It 

aids in optimizing nonlinear transformations to some extent. As posited by the concept of employing weight factors 

to dynamically adjust the branches of the residual network previously outlined, the core mechanism of the residual 
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structure is to flexibly regulate the branch output with the assistance of weight factors. This is done in order to address 

the challenges posed by information flow barriers and gradient disappearance: 

𝒴 = 𝐿𝑁(𝛼𝑥 + 𝛽ℱ)        (7) 

As shown in Figure 5 (b), the trainable residual element underscores the residual architecture of the multi-head 

attention mechanism. Incorporating learnable parameters 𝛼 and 𝛽 enables the model to autonomously learn and 

promptly adjust the optimal proportional coefficient between the input branch 𝑥 and the residual branch ℱ. This 

mechanism enhances the flexibility and adaptability of the model, optimises the flow of information and the 

presentation of features, and consequently contributes novel approaches and insights to the performance 

enhancement of deep neural networks. The enhanced attention mechanism facilitates the optimisation of scale 

setting during the dissemination of information. In this process, the scale factor successfully reduces the noise 

introduced by the positional characteristics of conjunctions and the syntactic attributes of adjectives, thus improving 

the accuracy of semantic representation and enhancing the efficiency of the model in dealing with complex language 

structures and deep semantic parsing. The scaling factors 𝛼 and 𝛽 jointly govern the distribution balance between 𝑥 

and ℱ. Additionally, layer normalization is applied to maintain consistency in the distribution across each layer, 

preventing issues like gradient vanishing or explosion that could arise due to changes in the learnable parameters. 

3.6. Sentiment Classification and Optimization 

The Transformer encoder extracts sequence features layer by layer, and finally maps the features to the category 

space through fc1. The result of the ultimate classification task is generated by the model's final fully connected 

layer (fc1), often referred to as the linear classifier. This process can be expressed using the following: 

𝑌 = 𝑊 ∙ 𝑋⊺ + 𝑏                (8) 

𝑌 is the output matrix, representing the scores for each category for all input samples in the batch. The weight matrix, 

denoted by 𝑊, is responsible for the accurate mapping of the input data to the feature domain, which is defined by 

the number of categories required. Additionally, the weights are adjusted through the training process. 𝑏 is the bias 

vector, providing a bias term for each output category. The output of the encoder provides a concise summary of the 

sequence's characteristics. The fully connected layer directly employs these features for classification, thereby 

eliminating the necessity for global pooling. This approach enhances the efficiency of the classification process while 

preserving its accuracy. The model uses the features at each position for classification instead of globally aggregating 

the sequence. This layer maps the output features of the encoder to the dimension of the category probability 

distribution through a linear transformation. This output is usually passed to a loss function to calculate the loss for 

classification tasks. 

Adam optimizer is a widely used optimization method in deep neural networks, mainly because its adaptive learning 

rate and momentum mechanism can effectively deal with challenges in model training, such as gradient sparsity, 

gradient disappearance or explosion, and high-dimensional parameter optimization. The Adam optimisation 

algorithm is a machine learning algorithm that automatically adjusts the parameter learning rate according to the 

first-order and second-order statistics of the gradient. This enables it to adapt to changes in the gradient, thereby 

enhancing the efficiency and robustness of the optimisation process, and improving training efficiency. It performs 

well in models such as Transformer and BERT and is the default optimizer.  

3.7. Loss Function 

In the process of model training, a special loss function is utilised to enhance the expressiveness of the model. 

Specifically, for the execution of the standard classification task, the standard cross entropy function is utilised for 

the evaluation of the loss. A custom additional penalty term based on the model output is introduced to adjust the 

final loss. The final weighted total loss combining standard cross entropy and additional penalty terms: 

𝐿 = 𝐿𝑐𝑒 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦      (9) 

Where cross-entropy loss is: 

𝐿𝑐𝑒 = −
1

𝑁
∑ 𝑙𝑜𝑔𝑃𝑖,𝑦𝑖

𝑁
𝑖=1     (10) 
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Ο ∈ ℝ𝑁×𝐶 is the model's output (logits) represents the prediction of N samples for C categories. 𝑦 ∈ {1,2, … , 𝐶}𝑁 is the 

true labels. 𝑃 ∈ ℤ𝑁 is the replication count array corresponding to the label indicates the number of replications for 

each label. Where generate a copy tensor is: Using the number of replications 𝑃 and the model output 𝑂, dynamically 

generate an expanded tensor 𝑅. 

𝑅 = 𝑠𝑡𝑎𝑐𝑘(𝑂1,𝑦1,…,𝑂1,𝑦1,…,𝑂𝑁,𝑦𝑁,…,𝑂𝑁,𝑦𝑁)              (11) 

Assume that the total number of samples after the expansion is 𝑀 = ∑ 𝑝𝑖
𝑁
𝑖=1 , then the penalty can be calculated for 

the probability value of each sample in the expanded tensor 𝑅. 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝛽 ∙
1

𝑀
∑ ∑ (1 − 𝑅𝑗,𝑘)𝐶

𝑘=1
𝑀
𝑗=1          (12) 

Where, 𝑅𝑗,𝑘 indicates the projected probability of the 𝑘th category for the 𝑗th instance in the enhanced tensor 𝑅. 

Dynamic adjustment of the penalty term can strengthen the learning of certain categories or samples in a targeted 

manner. The hyperparameter 𝛽 controls the effect of the penalty term on the total loss, balancing the main task 

(classification) with additional features (such as the prediction confidence of the model). The replication mechanism 

can handle complex sample weighting requirements, such as enhancing the focus on important categories or samples. 

4. Experiment 

4.1. Evaluation criteria 

To further verify the model’s superior performance, we use Accuracy, Precision, Recall, and F1 as evaluation metrics. 

For a classification problem with n categories, let 𝑇𝑃𝑖/𝐹𝑃𝑖 denote the True/False Positive of its class, and 𝑇𝑁𝑖/𝐹𝑁𝑖 

represent the True/False Negative of the 𝑖th class, then some evaluation criteria to measure the model performance 

can be defined as follows. 

In order to comprehensively evaluate the performance of the model, the following evaluation metrics were adopted: 

accuracy, precision, recall and F1 score. For the N-category classification task, the following basic statistics were set 

as the foundation for index calculation: 𝑇𝑃𝑖/𝐹𝑃𝑖  𝑎𝑛𝑑 𝑇𝑁𝑖/𝐹𝑁𝑖. 

Acc: The ratio of accurately identified samples to the overall number of samples, indicates the overall accuracy of the 

model. 

𝐴𝑐𝑐 =
∑ (𝑇𝑃𝑖+𝑇𝑁𝑖)𝑛

𝑖=1

∑ (𝑇𝑃𝑖+𝑇𝑁𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖)𝑛
𝑖=1

               (13)  

P: The model's capacity to predict Type I positive samples is determined by comparing the proportion, with a high 

proportion indicating a low misjudgement, which is a crucial indicator for evaluation, 

𝑃𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
                        (14)   

R: Within the subset of true positive samples, the model accurately identifies them as Class I positive samples, 

𝑅𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
               (15)   

F1: The harmonic mean of precision and recall, which combines the efficacy of both metrics, for the th class. When 

Precision and Recall are unbalanced, F1 is a better indicator, 

𝐹1𝑖 =
2×𝑃𝑖×𝑅𝑖

𝑃𝑖+𝑅𝑖
                     (16)    

In this study, the model's effectiveness is evaluated using two key performance indicators: accuracy and F1 score. 

Accuracy is used to measure the overall accuracy of the model's predictions, while F1 score integrates accuracy and 

recall rate to provide a more comprehensive evaluation of the model's performance. 

4.2. Datasets 

The objective of this study is to undertake a comprehensive evaluation of the performance of the proposed method 

across a range of sample sizes and variations in text length. In accordance with this objective, the Ctrip dataset, the 

“merge” dataset and the takeout dataset have been selected as the experimental materials. Please refer to Table 1 for 

detailed descriptions of these datasets. 
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Table 1 Specific Information of Three Datasets 

No Datasets Category Number Class 

1 ctrip Positive 

Negative 

Neutral 

24,662 

2,940 

881 

3 

2 merge Positive 

Negative 

6000 

6000  

2 

3 waimai Positive 

Negative 

4,000 

7,988 

2 

 

The “ctrip” dataset: The Ctrip dataset comprised 28,483 hotel reviews that were sourced from Ctrip and annotated, 

but not segmented. Following the pre-processing of the text with Jieba segmentation technology and the removal of 

invalid data, the dataset consisted of 24,662 positive instances, 2,940 negative instances, and 881 neutral instances 

using "1", "0", and "2" as sentiment labels, respectively, as illustrated in Figure 6. 

 

Figure 6. Sentiment label distribution of ctrip dataset 

The “merge” dataset: The construction of this dataset entailed the integration of three distinct subsets derived from 

disparate social media platforms, namely tongcheng_hotel_4000, Dangdang_book_4000, and Jingdong_nb_4000. 

Each dataset has about 4,000 comments, and after merging, there are a total of 12,000 valid comment data. Among 

them, there are 6,000 positive comments and 6,000 negative comments. tongcheng_hotel_4000 is a hotel review 

dataset from ly.com, Dangdang_book_4000 is a book review dataset from Dangdang.com, and Jingdong_NB_4000 

is a laptop review dataset from JD.com.  

The “waimai” dataset: This dataset is a take-away food review corpus. After cleaning and removing invalid and 

sensitive data, it has 11,988 samples. The data comes from Baidu waimai, a Chinese food delivery platform (now 

acquired by Ele.me, China's largest food delivery platform).  The present dataset encompasses all emotionally 

annotated comments (4,000 positive and 7,988 negative), derived from the CSDN platform and published for the 

purpose of natural language processing research in the domain of Chinese text sentiment analysis. In the construction 

of the dataset, the number "0" is assigned to negative emotions and the number "1" to positive emotions, as illustrated 

in Figure 7. 
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Figure 7. The sample content of waimai dataset 

4.3. Text embedding and pre-training 

In the text embedding part, the first step is to build a vocabulary and extract pre-trained word vector embeddings to 

provide basic word representations for subsequent text classification or Sentiment analysis, a branch of natural 

language processing, can be divided into several elements, firstly is vocabulary construction, the script processes a 

specified Excel dataset by extracting text data from a given column “text”. A tokenizer, defaulting to character-level 

segmentation, splits the text into tokens. Token frequencies are then calculated, and only those with a frequency 

above min_freq and within the maximum vocabulary size (max_size, default 10,000) are retained. Two special 

tokens, <UNK> (unknown words) and <PAD> (sequence padding), are appended to handle unseen words and 

sequence alignment. The resulting vocabulary, mapping tokens to unique indices, is serialized into a .pkl file for 

future use. Secondly is loading pre-trained embeddings, the code integrates pre-trained word embeddings 

sgns.sogou.char, a character-level embedding file. For tokens in the vocabulary, it retrieves their corresponding 

embeddings from the pre-trained model. If a token's embedding is unavailable, its vector is initialized randomly. The 

embedding size (emb_dim) is set to 300 by default, ensuring consistency across tokens. The final embedding matrix, 

aligning each token index to a pre-trained or randomly initialized vector, is saved in a compressed .npz file. This 

ensures efficient storage and reuse during downstream model training. 

By filtering tokens based on frequency and vocabulary size constraints, the script constructs a compact and task-

relevant vocabulary. The inclusion of <UNK> and <PAD> ensures robustness against out-of-vocabulary tokens and 

supports variable-length sequence alignment, which is crucial for deep learning models. Leveraging pre-trained 

embeddings, such as character-level embeddings from sgns.sogou.char, provides rich semantic representations for 

known tokens, improving model performance and convergence speed. Random initialization for missing tokens 

ensures completeness of the embedding matrix, maintaining consistency. By serializing the vocabulary and 

compressing the embedding matrix, the reusability and storage efficiency of resources are optimized, providing 

standardized input for subsequent deep-learning models. 

 

4.4. Training details 

The embeddings are converted to a PyTorch tensor (torch.tensor) for model compatibility. In this study, the model 

configuration was set to utilise 300-dimensional word vectors to represent the semantic information of vocabulary. 

Furthermore, the learning rate was adjusted to 5e-4 with a view to enhancing the training efficiency. Concurrently, 

to mitigate the risk of overfitting, a dropout ratio strategy of 0.5 was adopted. Furthermore, an early stop training 

mechanism was introduced, whereby if the validation set performance does not improve significantly within 500 

consecutive training batches, the training process is automatically terminated. The model trains for a maximum of 

20 epochs, controlling the number of complete passes over the dataset. Mini-batch size is set to 128. If pre-trained 

embeddings are used, their dimension is derived automatically. Otherwise, it defaults to 300. The dimensionality of 

input and output embeddings passed to the transformer layers (300). In this study, the hierarchical structure of the 

model is meticulously delineated. The middle hidden layer is endowed with 1024 neurons, while the final hidden 

layer is furnished with 512 neurons. To enhance the model's capacity to discern intricate details, a multi-head 

attention mechanism is implemented, comprising five attention heads. Moreover, to optimise the trade-off between 

model performance and computational cost, a two-layer encoder design is adopted for the transformer architecture. 
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Table 2 Hyper Parameters of Experiment 

Hyper Parameters Description Number 

Size of word vector 

Learning rate 

Dropout rate 

Require_improvement 

Num of epochs 

Mini-batch size 

Pad size 

Hidden size 

Number of head 

Number of encoder 

300 

5e-4 

0.5 

500 

20 

128 

32 

1024 

5 

2 

In accordance with the ratio of 6:2:2, the review text of each data set was randomly assigned to the training set, the 

verification set and the test set, with a view to maximising data utilisation. Concurrently, the adoption of unbalanced 

data partitioning methods served to enhance the generalisation capability of the model, thereby effectively reducing 

the likelihood of overfitting. Consequently, this ensured that the stability and accuracy of the evaluation results were 

significantly improved. 

5. Result Comparisons 

5.1. Accuracy and Loss comparison 

In this study, the proposed model is compared with the transformer encoder and LCEM models on Ctrip, merged 

and outsourced datasets. The pre-trained model implements character-level processing, and the data sets are 

randomly divided and distributed in a 6:2:2 ratio. Table 3 shows the comparison of test accuracy to provide data 

support for performance evaluation. 

Table 3. Comparison of Model Test Accuracies on Three Public Datasets 

Datasets ctrip merge waimai 

Acc(%) Acc(%) Acc(%) 

Transformer 88.71% 76.75% 86.57% 

LCEM 

Mymodel 

89.24% 

90.19% 

77.17% 

78.33% 

87.90% 

88.61% 

 

Table 3 shows the test accuracy comparison of three models (Transformer, LCEM and MyModel) on three public data 

sets. An analysis of Ctrip data sets reveals distinctive characteristics, with the text exhibiting a high degree of 

coherence and incorporating extensive classification details. These characteristics not only augment the complexity 

of data processing but also furnish valuable data resources and practical opportunities for the development of high-

performance classification models. The transformer's accuracy is 88.71%, which is slightly weaker on this dataset. 

LCEM improves to 89.24%, capturing more semantic information by improving the model structure. MyModel 

achieved 90.19% and further improved the classification performance by introducing specific features such as the 

weight of adjectives and conjunctions. MyModel's position weighting and feature engineering work remarkably well 

on this dataset. 

The characteristics of the merge data sets are that they may contain more complex or sparse feature distributions. 

The Transformer's accuracy is 76.75%, which is a weak performance and may not fully learn complex features. LCEM 

improved to 77.17%, and the improvement was limited, indicating that its feature-capturing ability has certain 

limitations. MyModel reaches 78.33%, which is 1.16% higher than LCEM, indicating that its targeted feature 

enhancement method is more suitable for processing complex text data. The advantages of MyModel are still 

significant in this dataset. 
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The characteristic of the waimai dataset is that it may involve more intuitive features, such as emotional tendencies 

in user comments. With an accuracy of 86.57%, Transformer performs relatively well on this dataset, but there is still 

room for improvement. LCEM improves to 87.90%, which is a large improvement, probably due to its enhanced 

feature modelling capabilities. MyModel reaches 88.61%, further improving accuracy, but the improvement (0.71% 

compared to LCEM) is not as significant as other datasets. MyModel's improvement on this dataset is mainly due to 

its model optimization and fine-grained feature extraction capabilities. 

The above test accuracy shows the overall performance of the three models in three datasets. MyModel achieved the 

highest accuracy on all datasets, demonstrating the effectiveness and adaptability of its design. LCEM ranked second, 

indicating that its model structure has improved to a certain extent compared to Transformer. Transformer 

performed the weakest, indicating that the basic Transformer architecture is not sufficiently optimized for these 

specific tasks. The MyModel innovation has been shown to enhance text processing performance through two core 

technological solutions. Firstly, the integration of weight features of conjunctions and adjectives has been 

demonstrated to improve the model's capacity to identify and capture key text information. Secondly, the 

employment of a location-sensitive attention mechanism enables the model to focus on specific word groups in the 

text with greater precision. The improvement of LCEM may be reflected in more complex embedding layers or 

optimization algorithms, but the effect is limited. MyModel has significant improvements on the ctrip and “merge” 

datasets, indicating that it is suitable for processing complex text features and long-distance dependencies. The 

improvement on the waimai dataset is slightly smaller, probably because the features of this dataset are simple and 

the existing methods are close to the upper limit of performance. 

As demonstrated in Figure 8, the training and verification accuracy of MyModel on three distinct data sets, namely 

Ctrip, Merge and Takeout, exhibit a clear trend of stability in its learning performance and strong potential for 

generalisation across diverse data sets. The experimental outcomes substantiate the model's adeptness in discerning 

the inherent characteristics of the data during the training phase, accompanied by a steady enhancement in 

verification accuracy. This validates its efficacy and broad adaptability across a range of data sets: 

 

Figure 8. Train and Validation comparison in accurate of MyModel 

In the context of the Ctrip data set, Mymodel demonstrated a swift escalation in accuracy during the initial phase of 

training, readily attaining and surpassing the stringent precision criterion of 0.9. Despite the variability in accuracy 

during the subsequent stage, the model maintained a consistently high level of accuracy, thereby underscoring its 

effective learning capability and its capacity for precise data feature identification. The verification accuracy 

(verification acc) shows a slow growth trend and eventually stabilizes at around 0.85. The model quickly reaches a 

high accuracy on the training set, indicating that the learning effect of the training data is good. The verification 

accuracy is stable, but it is always lower than the training accuracy, which may be due to some overfitting. 

The training accuracy (train acc) of MyModel on the combined dataset demonstrated considerable fluctuation in the 

early phases, but gradually increased and stabilized (about 0.85) as the training progressed. The verification accuracy 

(verification acc) gradually increased with less fluctuation, and finally approached the training accuracy (about 0.82). 

The training accuracy of the combined data set exhibits significant fluctuations, which may be indicative of the high 

complexity of the data set or the escalation of the difficulty of the model learning task. However, the verification 

accuracy is closely aligned with the training accuracy, indicating that the model effectively reduces overfitting and 

possesses excellent generalisation capabilities.  

In the context of the Waimai dataset, MyModel exhibited optimal learning efficiency, demonstrating a rapid 

enhancement in accuracy at the commencement of the training process. It effectively surpassed the stringent 

precision standard of 0.9, thereby substantiating the efficacy and precision of the model. Although there were some 
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fluctuations, it was generally stable. The verification accuracy (verification acc) showed a steady upward trend, 

eventually approaching 0.88, with small fluctuations. The training of the model on the waimai dataset was carried 

out smoothly, without any major complications, the verification accuracy performed well, and the gap between 

training and verification was small, indicating that the generalization ability was strong.  

The verification accuracy of MyModel exhibited excellent stability across all the examined data sets, demonstrating 

a high degree of consistency with the training accuracy. This effectively substantiated the model's capacity to 

circumvent severe overfitting, its superlative generalisation capability, and its remarkable stability. These findings 

provide substantial validation for subsequent scientific research and practical applications. On the waimai dataset, 

MyModel performs best, with both training and validation accuracy reaching a high level (validation accuracy is close 

to 0.88). On the “merge” dataset, the training process of MyModel is still complicated, but the stability of validation 

accuracy is significantly improved. MyModel's performance on the merge data set is significantly smoother, and the 

verification accuracy curve oscillates less. The model demonstrates robust performance on the Waimaai dataset, 

exhibiting comparable efficacy to the reference model. Of particular note is its superior generalisation capability and 

heightened stability across all data sets, particularly in the context of merge and Waimaai data sets. Furthermore, the 

accuracy curve is found to be smooth, thereby establishing a reliable foundation for subsequent optimisation and 

extensive utilisation of the model.  

As illustrated in Figure 9, the training and validation losses of MyModel on the Ctrip, merge and Waimai datasets 

demonstrate a rapid decrease over time, eventually stabilising, thereby substantiating the model's merits through its 

expeditious learning, robust convergence and substantial generalisation capabilities: 

 

Figure 9. Comparison of the accuracy of training and verifying MyModel 

The training loss of the MyModel model on the ctrip dataset drops rapidly from an initial value of about 1.6, stabilizes 

after 500 batches, and finally converges to close to 0.1. The validation loss drops rapidly at the beginning, then 

approaches the training loss, and finally stabilizes at around 0.2. In the model training stage, an increase in the 

number of batches has been shown to result in a gradual decrease in both the training loss and the validation loss. 

An analysis of the early training stage reveals a sharp decrease in the training loss, suggesting that the model is 

capable of efficient learning. Subsequent analysis shows that, although the training loss experienced small 

fluctuations, the overall trend of decline remains clear, indicating that the model is undergoing a process of 

continuous self-adjustment to find a better solution. The validation loss fluctuates greatly, but generally shows a 

downward trend, and gradually approaches the training loss in the later stage. The experimental results show that 

the model has a certain degree of overfitting on this dataset. In some batches, the training loss is lower than the 

validation loss. 

During the training stage of the combined data set, both the training loss and validation loss of MyModel underwent 

a significant decrease from a high to a low level, ultimately converging to a near-low level. Furthermore, the loss 

curves of both converged to a similar point. This finding serves to provide robust verification that MyModel possesses 

not only excellent fitting ability and the capacity to accurately capture the inherent characteristics of training data, 

but also exhibits excellent generalisation capability and the ability to maintain stable prediction accuracy on unseen 

data. The dataset is complex (the initial loss is as high as 5.0), but the model successfully overcame the data 

complexity through training and reached a stable convergence state. The model did not show overfitting or 

underfitting on this dataset, and the optimization process was effective. 

The training loss of MyModel on the waimai dataset decreases swiftly from an initial value of approximately 3.5, and 

stabilizes after about 500 batches, eventually converging to close to 0. The validation loss also drops rapidly from the 

initial high value, then stabilizes, and finally remains in the range of 0.2-0.3. In the training and validation process 
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of the waimai dataset, we noticed that the validation loss was slightly higher than the training loss, but the difference 

was slight and the trend was the same. This reflects the excellent performance of the model on the waimai dataset, 

with strong generalization ability, and no obvious overfitting phenomenon. The model can quickly cope with the 

initial high-complexity data set and promote the steady decline of the loss value, which fully proves the effectiveness 

and robustness of the model, and lays a solid foundation for the subsequent application on complex data sets. 

On all three datasets, the model showed high training efficiency, and the training loss dropped rapidly. The “merge” 

dataset had the highest initial loss (5.0), but it dropped quickly, and the final convergence effect was consistent with 

the other datasets.  

5.2. Ablation study 

As illustrated in Table 4, the results of the Mymodel ablation experiments on three datasets are presented in a 

comprehensive manner, with particular emphasis placed on several core optimisation strategies. Specifically, the +𝛼𝑖 

symbol indicates the integration of adjective-weight masking in the self-attention mechanism of the baseline model; 

on the basis of +𝛼𝑖 , +𝜔𝛼𝑖  further incorporates weighted adjective weight masking; and +𝜔𝑅𝑃  indicates that 

weighted relative position information is included in the baseline model. The symbol +𝐿𝑅𝑆  denotes the 

implementation of a learnable residual design in the Transformer coding layer.It is noteworthy that these alphabetic 

optimisation elements are of paramount importance, collectively providing a robust foundation for a comprehensive 

evaluation of Mymodel performance and a solid basis for subsequent model enhancement efforts. 

Table 4 Results of ablation experiment 

Datasets ctrip merge waimai 

Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) 

(Baseline)Transformer 

+𝛼𝑖 

+𝜔𝛼𝑖 

+𝐿𝑅𝑆 

+ 𝛼𝑖&𝐿𝑅𝑆 

+ 𝜔𝑅𝑃&𝐿𝑅𝑆 

+ 𝜔𝛼𝑖&𝐿𝑅𝑆 

+ 𝜔𝛼𝑖&𝜔𝑅𝑃&𝐿𝑅𝑆 

88.85 

87.38 

87.13 

87.89 

88.85 

89.57 

89.73 

90.26 

87.57 

81.49 

82.95 

86.47 

86.11 

87.60 

87.88 

88.18 

76.42 

78.17 

78.12 

75.17 

76.21 

78.25 

78.96 

79.79 

76.94 

78.92 

77.14 

74.40 

75.71 

77.17 

78.35 

80.72 

87.36 

86.86 

86.65 

85.98 

86.73 

87.69 

86.98 

88.57 

78.97 

79.79 

79.70 

78.71 

79.43 

81.62 

80.88 

81.97 

First, A comprehensive and in-depth analysis of the performance of baseline model transformers (encoders) is 

provided on three distinct data sets: ctrip Accuracy = 88.85%, F1 = 87.57%; merge: Accuracy = 76.42%, F1 = 76.94%; 

waimai: Accuracy = 87.36%, F1 = 78.97%. Through observation and analysis, we can see that the baseline values of 

Accuracy and F1 of the ctrip dataset are both high, indicating that the ctrip dataset has a better adaptability to the 

Transformer model, and the feature distribution may be simpler or the data quality is higher. The “merge” dataset 

has the lowest Accuracy and F1, which are 76.42% and 76.94% respectively, indicating that the “merge” dataset may 

contain more complex features or greater noise.  

In the ablation experiment, the performance of each single module after being added separately is as follows. The  

+𝛼𝑖 module performance changes: ctrip Accuracy = 87.38%, F1 = 81.49%, F1 dropped significantly. merge Accuracy 

= 78.17%, F1 = 78.17%, slight improvement. waimai Accuracy = 86.86%, F1 = 79.79%, slight improvement. The  +𝛼𝑖 

module has an unfavourable effect on the ctrip data set, with a decrease in both Accuracy and F1, which may indicate 

that the  +𝛼𝑖 module is not sensitive to specific characteristics of the ctrip data. On the “merge” and “waimai” data 

sets, the performance improvement brought by the  +𝛼𝑖 module is small, indicating that its independent effect on 

feature extraction is limited. +𝜔𝛼𝑖  module performance changes: ctrip Accuracy = 87.13%, F1 = 82.95%, slightly 

decreased. merge Accuracy = 78.12%, F1 = 77.12%, slightly improved. waimai Accuracy = 86.65%, F1 = 79.70%, 

slightly improved. The +𝜔𝛼𝑖 module performs better than ai, but the overall improvement is still limited. On the ctrip 

data set, although the F1 score drops slightly, its stability is slightly stronger than  +𝛼𝑖  module. +𝐿𝑅𝑆  module 

performance changes ctrip Accuracy = 87.89%, F1 = 86.47%, close to the baseline. merge Accuracy = 75.17%, F1 = 

75.17%, basically the same as the baseline. waimai Accuracy = 85.73%, F1 = 78.70%, close to the baseline. The +𝐿𝑅𝑆 
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module has significant results on the ctrip data set, especially the improvement in F1 score, which shows that it has 

certain advantages in enhancing recall rate. On the “merge” and “waimai” data sets, the effect of LRS is slightly stable, 

and the performance improvement is limited. 

Ablation experiments further verified the effect of multiple module combinations. +𝛼𝑖&𝐿𝑅𝑆 module performance 

changes: ctrip Acc = 88.85%, F1 = 86.11%, slightly lower than the baseline. merge Acc = 78.12%, F1 = 78.12%, 

significant improvement. waimai Acc = 86.98%, F1 = 80.88%, the performance is significantly improved. It shows 

that the combination of +𝛼𝑖 and +𝐿𝑅𝑆 has a large performance improvement on the “merge” and “waimai” data sets. 

In particular, the F1 score of the “waimai” data set reaches 80.88%. The performance of the ctrip data set dropped 

slightly, possibly because these two modules have redundant modelling of ctrip features. +𝜔𝑅𝑃&𝐿𝑅𝑆  module 

performance change: ctrip Acc = 89.57%, F1 = 87.60%, exceeding the baseline. merge Acc = 78.25%, F1 = 77.17%, 

significant improvement. waimai Accuracy = 87.69%, F1 = 81.62%, performance further improved. The combination 

of +𝜔𝑅𝑃 and +𝐿𝑅𝑆 has a relatively stable improvement effect on the three data sets, especially on the “waimai” data 

set, which shows that +𝜔𝑅𝑃  can effectively capture feature relationships and optimize recall.+𝜔𝛼𝑖&𝐿𝑅𝑆  module 

performance changes: ctrip Accuracy = 89.73%, F1 = 87.88%, significant improvement. merge Accuracy = 78.96%, 

F1 = 78.35%, a huge improvement. waimai Accuracy = 86.98%, F1 = 81.62%, excellent performance. The combination 

of +𝜔𝛼𝑖 and +𝐿𝑅𝑆 further enhances the feature extraction capability and outperforms the single module on the three 

datasets.+𝜔𝛼𝑖&𝜔𝑅𝑃&𝐿𝑅𝑆 module performance changes: ctrip Accuracy = 90.26%, F1 = 88.18%, reaching the highest. 

merge Accuracy = 79.79%, F1 = 80.72%, significant improvement. waimai Accuracy = 88.57%, F1 = 81.97%, the best 

performance. This is the best-performing module combination, and its performance on the three data sets has 

reached the highest level in the experiment. This shows that the synergistic effect of +𝜔𝛼𝑖, +𝜔𝑅𝑃 and +𝐿𝑅𝑆 can 

maximize the classification ability of the model. 

The combination of +𝜔𝛼𝑖&𝜔𝑅𝑃&𝐿𝑅𝑆 brings Accuracy and F1 to 90.26% and 88.18%, which are the highest values in 

all experiments. The “merge” is the data set with the weakest performance, but the effect of module combination is 

significantly improved on this data set. The combination of +𝜔𝛼𝑖&𝜔𝑅𝑃&𝐿𝑅𝑆 increases Accuracy and F1 to 79.79% 

and 80.72% respectively, indicating that the synergy between modules is more effective in enhancing the ability to 

model complex features. The baseline performance on the “waimai” dataset is good, but the baseline value of F1 

(78.97%) is slightly lower than ctrip. After multi-module combination, the F1 of 𝜔𝛼𝑖&𝜔𝑅𝑃&𝐿𝑅𝑆 increased to 81.97%, 

showing high robustness. 

In summary，introducing +𝛼𝑖, +𝜔𝛼𝑖 or +𝐿𝑅𝑆 modules alone has a small improvement in performance, indicating 

that their optimization of feature modeling is limited when acting alone. The combination of multiple modules can 

greatly improve the performance, among which +𝜔𝛼𝑖&𝜔𝑅𝑃&𝐿𝑅𝑆  is the optimal combination, which significantly 

enhances the classification ability of the three data sets. In terms of cross-dataset adaptability, the improvement 

effects of the ctrip and waimai data sets are more prominent, while the merge data set is limited by its characteristics, 

and the improvement is relatively small. This hierarchical, cross-module ablation experiment provides reliable 

evidence that the combination of +𝜔𝛼𝑖, +𝜔𝑅𝑃, and +𝐿𝑅𝑆 can effectively optimize model performance, especially 

with significant advantages when dealing with complex tasks. 

5.3. Attention Visualization 

In order to demonstrate the model effect more intuitively and effectively, in this research we use the seaborn library 

and matplotlib library to visualize the distribution of word attention weights in sentences in the experimental part. 

This paper selects one paragraph of positive and one paragraph of negative comments for visualization experiment. 

文本 1：总体还是感觉很不错，房间十分干净、简洁、舒适。 

Text 1: The overall ambiance is delightful. The environment is neat, minimalist, and welcoming. 

文本 2：酒店前台小女孩的服务太不好了，态度十分差。 

Text 2: The service of the little girl at the hotel front desk is too bad and her attitude is very bad. 

For text 1 and text 2, We start by utilizing the Jieba word segmentation tool to segment the sentences, subsequently 

removing punctuation and stop words to isolate the individual terms "总体 overall", "感觉 feeling", "还 still", "不错

good", "房间 room", "很 very", "干净 clean", "简洁 simple", "舒适 comfortable" and "酒店 hotel", "前台 front desk", "
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小 small", "女孩 girl", "服务 service", "太 too", "次 bad", "态度 attitude", "很差 very bad", and then draw the word-

level attention weight heat map as shown in Figure 9 and Figure 10. As illustrated in the figure, a positive correlation 

exists between the colour depth and the grey value, which intuitively reflects the distribution of lexical weights. 

 

Figure 9 Text 1 word attention weight heatmap 

After jieba word segmentation and the removal of stop words and punctuation, text 1 contains 9 words. From Figure 

9, we can seethat the model allocates greater emphasis to the words "还 still", "不错 good", "很 very", "干净 clean", "

简洁 simple", and "舒适 comfortable", which are all words related to positive comments, and 4 of these 6 words that 

express emotions are adjectives; text 2 also contains 9 words after jieba word segmentation and the removal of stop 

words. From Figure 10, it is clear that the model assigns a higher significance to specific words "太 too", "次 bad", "

很差 very bad", which are all words related to negative comments, and 2 of these 3 words that express emotions are 

adjectives. 

  

Figure 10 Text 2 word attention weight heatmap 

In this paper, we utilise the attention weight visualization technique to examine the function of the attention 

mechanism in sentiment analysis. The findings demonstrate that the attention mechanism possesses the capacity to 

precisely identify and prioritize words that exert a substantial influence on the outcome of sentiment analysis. These 

words are adeptly captured in both positive words in positive comments and negative statements in negative 

comments. Going further, increasing the weight of adjectives in the attention mechanism is helpful for extracting 

sentiment features and enhancing the effect of sentiment classification. 

6. Conclusion 

In this paper, an innovative model is proposed, which combines adjective and conjunction reinforcement strategies 

to achieve significant improvements in the Chinese sentiment analysis task. This is achieved by integrating local 
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features and contextual semantic information, adopting weighted relative location features and adjective-importance 

masks, and a flexible adaptive residual structure. The efficacy of this model is evidenced by its ability to reduce noise 

interference, deepen the learning of location-sensitive grammatical features, improve the performance of the self-

attention mechanism, and enable the model to focus on core features more accurately and generate deeper semantic 

expressions. Consequently, this enhances the accuracy and stability of emotion classification. In the field of Chinese 

sentiment analysis, a novel approach involves the incorporation of an adjustable residual structure, predicated on a 

pre-trained language model. This innovation facilitates a nuanced adjustment of the interaction between the residual 

and input branches, thereby enhancing the model's adaptability. Empirical validation substantiates that by 

integrating relative location features with the adaptive residual structure, the model's capacity to discern salient text 

information is notably augmented, thus ensuring a more pronounced focus on the fundamental principles of 

sentiment analysis. 

Despite the optimisation of local feature recognition and contextual semantic information extraction in Chinese text 

by this model, through an increased emphasis on conjunctions and adjectives, improvements in text emotion 

classification tasks remain inadequate. In comparison to conventional Chinese emotion classification techniques, 

which incorporate syntactic structure features, this model employs a novel approach, eschewing the use of such 

features. In the context of processing Chinese social media data sets, the existing Chinese text feature extraction 

techniques are inherently constrained. To address this limitation, we propose an integrated approach that combines 

deep learning methodologies with conventional syntactic dependency analysis techniques. This integration aims to 

enhance the utilisation of text features that are distinctive to Chinese social media, such as emoticons and Internet 

slang. This approach is expected to enhance the classification accuracy, thereby leading to substantial improvements 

in the performance of Chinese social media text emotion classification. 
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