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Determining the density, coefficient of thermal expansion of BaTiO3 across range of 400 K to 

1075 K is principal goal of the investigation. Coefficient of temperature dependence of density 

and coefficient of volume thermal expansion of the compound is assessed. Additionally, the 

research has been broadened to evaluate the linear attenuation coefficient at various γ-energies 

over a temperature range using value of mass attenuation coefficient. 

Keywords: Medical Image Captioning, MASNet-ViT Fusion, Enhanced Spiking Neural 

Networks, Federated Learning, Diagnostic Automations. 

 

Abbreviation Full Form 

MFT Multimodal FederatedTransformer 

MASNet Multiscale Attention Network 

ViT Vision Transformer 

ESNN Enhanced Spiking Neural Network 

FL Federated Learning 

MIMIC-CXR Medical Information Mart for Intensive Care Chest X-rays 

IU X-ray Indiana University Chest X-ray Dataset 

PEIR Pathology Education Instructional Resource 

BLEU Bilingual Evaluation Understudy 

CIDEr Consensus-based Image Description Evaluation 

ROUGE Recall-Oriented Understudy for Gisting Evaluation 

HIPAA Health Insurance Portability and Accountability Act 

XAI Explainable Artificial Intelligence 

EHR Electronic Health Records 

PET Positron Emission Tomography 

CT Computed Tomography 

ms Milliseconds 

hrs Hours 

I. INTRODUCTION 

Medical image analysis plays an indispensable role in modern diagnostics, providing critical insights into various 

pathologies. The major difficulty remains in transforming complex imaging data into meaningful clinical 

interpretations, and this is most challenging in a resource-constrained setting. Conventional image captioning 

models [1, 2, 3] were highly effective for natural images, but they failed to satisfy the peculiar requirements of 

medical imaging owing to the intricacy of anatomy, variety in imaging modalities, and the subtle features of 

pathology. In addition, centralization of data aggregation in traditional deep learning approaches often leads to 
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privacy issues and affects generalization across different healthcare institutions in process. Some of the above 

challenges have recently been addressed through advancements in deep learning, especially with vision 

transformers and multiscale attention networks. MASNet is particularly effective at discovering fine local features, 

while ViTs are successfully extracting global dependencies and contextual patterns. So far, most of the approaches 

that apply such techniques are often inadequate to provide an all-round understanding of the medical images & 

samples. At the same time, caption generation models generally rely on dense representations, which may not be 

suitable for sparse and temporal medical data samples. Overcoming these challenges [4, 5, 6], this paper proposes 

the Multimodal Federated Transformer (MFT) framework, integrating MASNet-ViT fusion, Enhanced Spiking 

Neural Networks (ESNNs), and Federated Learning (FL). The weighted aggregation mechanism is used to fuse 

MASNet and ViT features, so that the framework is balanced between local and global insights, which enhances its 

capability to detect subtle abnormalities and holistic patterns. The ESNN module uses biologically inspired spiking 

neurons for dynamic temporal processing, offering efficient and precise caption generations. In addition, FL allows 

decentralized model training across several healthcare institutions with data privacy and compliance with 

regulations such as HIPAA while improving model generalization operations. This paper demonstrates the 

effectiveness of the MFT framework through comprehensive experiments on diverse datasets, showing superior 

captioning metrics and diagnostic impact sets. It fills the gap between advanced image understanding and practical 

clinical applications, providing a new benchmark in the process of automated medical image captioning process 

Motivation and Contribution 

The increasing dependence on medical imaging for diagnostic workflows underlines the huge need for more 

automated tools that can generate contextually relevant and accurate captions. Most of the current methods for 

medical image captioning fail to meet the precision and adaptability demands of clinical utilization due to their 

failure to simultaneously capture localized abnormalities and broader contextual patterns in complex images & 

samples. In addition, the traditional centralized training methods raise issues of ethical and regulatory concerns on 

patient data privacy, especially considering the strict regulations such as HIPAA and GDPR sets. The above 

limitations clearly indicate a gap in the ability to use state-of-the-art machine learning methodologies for secure, 

scalable, and effective medical image captioning process. 

The proposed work introduces a novel solution, namely the Multimodal Federated Transformer framework, to 

tackle these challenges. There are three main contributions provided by this framework. Firstly, it introduces a 

fusion that includes MASNet and Vision Transformer. This, with a weighted aggregation mechanism, would provide 

an adequate balance of extracting local details versus understanding contextual awareness globally. It utilizes 

ESNN for generating captions based on dynamic temporal spikes in order to ensure efficient biologically inspired 

sparse data representation. It uses a Federated Learning (FL) framework that allows decentralized model training 

across institutions while preserving the privacy of patient sets. Evaluation on benchmark datasets shows that MFT 

outperforms the state-of-the-art methods significantly in terms of quality of captions, diagnostic accuracy, and 

scalability levels. This work adds a robust and adaptable, clinically impactful solution for automated medical image 

interpretation sets by addressing critical gaps in the following areas: feature extraction, caption generation, and 

data privacy. 

II. LITERATURE REVIEW 

Reviewing the image captioning methodologies based on recent paper analysis enlightens a broad range of 

developments, challenges, and innovations in this domain. This corpus covers medical, artistic, and construction-

related imagery and includes diverse techniques such as transformers, generative adversarial networks, recurrent 

neural networks, and multimodal approaches. These studies taken together emphasize image captioning with 

tremendous potential on real-world applicability in automatically enriching documentations, diagnoses, and even 

contextual understanding operation. The domains for domain-specific image captioning discussed in [1] and in 

Sharma's extensive review demonstrate challenges that face general models, which have to specifically fit domain 

specifics, thus raising a need to be tailored from a general standpoint but adapted towards handling various 

domain-specific niceties. Selivanov et al. [2] pushed the applicability of pretraining transformers in a generative 

sense for medical image captioning. They attained excellent fluency and contextual appropriateness for the captions 

that emerged as a consequence of this activity. The work by Selivanov et al. is also quite close to that of Sharma and 

Padha who employed Neuraltalk+ with visual aid to get improved semantic matches [3]. Fine-grained captioning 



799  

 

 

J INFORM SYSTEMS ENG, 10(12s) 

was elevated to the next dimension when GANs were proposed by Yang et al. [4]. For instance, the methodology 

adopted by the authors ensures that captioning captures nuances in emotion and context, which is important for 

applications such as art and media collections. In similar lines, Ren et al. [5] developed cross-attention 

transformers to improve the alignment between visual and textual modalities. A survey from Salgotra et al. [6] 

situates this progress within a broader context by pointing to the emerging trends of multimodal fusion and 

attention-based mechanisms. 

TABLE I. METHODOLOGICAL EMPIRICAL REVIEW ANALYSIS 

Reference Method Main Objectives Findings Limitations 

[1] Domain-specific image 

captioning review 

Comprehensive 

review of image 

captioning in specific 

domains 

Identified domain-

specific challenges and 

highlighted key 

techniques 

Limited coverage of 

emerging techniques 

such as transformers 

[2] Generative pretrained 

transformers (GPT) for 

medical image 

captioning 

Improve medical 

image captioning 

using GPT models 
 

Achieved higher 

fluency and contextual 

relevance in captions 

High computational 

cost and limited 

adaptability to small 

datasets 

[3] Neuraltalk+ Neural captioning 

with visual assistance 

Enhanced semantic 

alignment and 

accuracy in captions 

Struggles with highly 

complex image 

contexts 

[4] Fine-grained image 

emotion captioning 

using GANs 

Capture emotional 

context in captions 

Improved contextual 

sensitivity for artistic 

and media domains 

Requires extensive 

labeled data for GAN 

training 

[5] Cross-attention-based 

image captioning 

transformer 

Improve visual-

textual modality 

alignment 

Achieved state-of-the-

art accuracy for 

general image 

captioning tasks 

Computationally 

expensive and domain-

agnostic 

[6] Survey on automatic 

image captioning 

Overview of trends 

and future directions 

in image captioning 

Identified key 

advancements in 

multimodal fusion and 

attention mechanisms 

Lack of experimental 

insights into specific 

techniques 

[7] Self-Enhanced 

Attention (SEA) 

Improved attention 

mechanisms for 

image captioning 

Better handling of 

long-range 

dependencies in 

captions 

May overfit on datasets 

with limited variability 

[8] Concept-based LSTM 

and multi-encoder 

transformer 

Introduce novel 

architectures for 

image captioning 

Enhanced semantic 

understanding for 

complex datasets 

Performance 

dependent on 

hyperparameter tuning 

[9] Unified multitask 

learning model 

Combine 

classification, 

detection, and 

captioning 

Efficient multitask 

representation 

learning 

Model complexity 

increases training time 

[10] Dynamic text prompt 

multimodal features 

Captioning for plant 

disease images 

Achieved higher 

accuracy with joint 

features 

Limited 

generalizability beyond 

agricultural domains 

[11] Augmentation and 

ranking mechanism 

Improve automatic 

image captioning 

Enhanced robustness 

across datasets 

Limited scalability to 

highly complex 
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systems datasets 

[12] Improved Arabic image 

captioning 

Use pre-trained word 

embeddings for 

Arabic captions 

Improved linguistic 

fluency and contextual 

relevance 

Focused solely on 

Arabic, limiting cross-

linguistic insights 

[13] Descriptive captioning 

for histopathological 

patches 

Enhance captioning 

in pathology 

Generated precise and 

informative captions 

for histopathology 

Dataset-dependent 

performance 

[14] Multimodal feature 

fusion with mask RNN 

and LSTM 

Improve multimodal 

fusion in captioning 

State-of-the-art 

performance on 

multimodal datasets 

High computational 

requirements 

[15] Captioning for cultural 

artifacts 

Domain-specific 

captioning for 

ceramics 

Achieved detailed and 

contextually accurate 

captions 

Limited to cultural 

artifacts 

[16] Prior-knowledge 

transformer for ECG 

captioning 

Incorporate domain 

knowledge into 

captions 

Improved diagnostic 

relevance in medical 

reports 

Specific to ECG data, 

limiting general 

applicability 

[17] IQAGPT Use GPT for image 

quality assessment in 

CT 

Improved automated 

quality assessment 

Requires large-scale 

datasets for effective 

performance 

[18] Comprehensive review 

of image caption 

generation 

Overview of 

advancements in 

image captioning 

Highlighted the 

evolution of neural 

architectures 

Lack of focus on 

emerging multimodal 

datasets 

[19] Multimodal 

transformer for medical 

image analysis 

Automated report 

generation for 

medical images 

Enhanced integration 

of visual and textual 

data 

High computational 

complexity 

[20] Medtransnet Gating transformer 

for medical 

classification 

Improved accuracy in 

medical diagnostics 

High dependency on 

labeled data 

[21] Clustering swap 

prediction 

Enhance image-text 

pretraining 

Improved cross-modal 

alignment 

Limited scalability to 

diverse datasets 

[22] Survey on datasets and 

methods 

Comprehensive 

review of datasets for 

image captioning 

Identified benchmark 

datasets and methods 

Lack of experimental 

validation 

[23] Vision Transformers vs. 

CNNs 

Compare 

transformers and 

CNNs for medical 

imaging 

Highlighted strengths 

of transformers in 

feature extraction 

Lack of analysis on 

hybrid models 

[24] Generative foundation 

model 

Self-improving 

models for synthetic 

image generation 

Enhanced data 

augmentation for 

medical applications 

High resource 

requirements 

[25] Survey on medical 

imaging report 

generation 

Review of report 

generation 

techniques 

Explored deep 

learning approaches 

for clinical reporting 

Limited coverage of 

emerging large-scale 

models 

[26] Dense deep transformer 

(DDTraMIS) 

Transformer-based 

segmentation for 

Improved 

segmentation accuracy 

High model complexity 
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medical images 

[27] Multi-expert fusion 

network (MeFD-Net) 

Diagnostic network 

for radiology image 

reports 

Enhanced diagnostic 

accuracy through 

fusion 

Performance 

bottlenecks on large-

scale datasets 

[28] Hybrid attention with 

Laplacian query fusion 

Improve medical 

image segmentation 

Better handling of 

complex segmentation 

tasks 

Requires fine-tuning 

for specific datasets 

[29] Self-supervised learning 

review 

Guidelines for 

medical image 

classification 

Provided 

implementation 

insights for self-

supervised techniques 

Lack of focus on 

specific applications 

like captioning 

[30] Encoder-decoder for 

automated captioning 

Improve efficiency in 

captioning 

Achieved competitive 

performance across 

datasets 

Limited handling of 

contextual nuances 

[31] Sentiment-based cues 

for image classification 

Use linguistic cues to 

aid classification 

Enhanced contextual 

understanding in 

captions 

Focused on sentiment 

analysis, limiting 

general applicability 

[32] Central attention with 

multi-graphs 

Improved annotation 

through graph-based 

attention 

Better feature 

representation for 

annotations 

Requires complex 

graph construction 

[33] Multimodal fusion for 

visual QA 

Enhance visual 

question answering 

Improved multimodal 

representation 

Limited 

generalizability to 

other tasks 

[34] IMAD: Image-

Augmented Dialogue 

Multi-modal dialogue 

systems with image 

support 

Enhanced interaction 

in multimodal settings 

Limited dataset 

availability 

[35] Transformer-based 

report generator 

Automatic medical 

report generation 

Achieved high fluency 

and diagnostic 

relevance 

High dependency on 

large datasets 

[36] BangleFIR Fashion image 

retrieval dataset 

Enriched datasets for 

retrieval tasks 

Focused solely on 

fashion domain 

[37] Cross-modal 

representation learning 

Image-sentence 

retrieval 

Improved retrieval 

accuracy with 

transferable features 

Limited to cross-modal 

retrieval tasks 

[38] Visual-language 

foundation model 

Pathology-focused 

multimodal 

integration 

Improved diagnostic 

support for pathology 

High model complexity 

[39] Reinforced interaction 

fusion 

Radiology report 

generation 

Enhanced integration 

of visual and textual 

data 

High resource 

requirements 

[40] Dual-stream multi-label 

classification 

Improve multi-label 

classification with 

feature 

reconstruction 

Achieved high 

classification accuracy 

High dependency on 

labeled data 

[41] Enriching satellite Satellite image Improved contextual Specific to satellite 
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annotations annotations with 

keyphrases 

annotations for forests imagery 

[42] Causal reasoning for 

vision tasks 

Apply causal 

reasoning to 

computer vision 

Improved 

interpretability in 

visual tasks 

Computationally 

intensive 

[43] Knowledge alignment 

for histopathology 

Align concepts with 

whole-slide images 

Improved precision in 

histopathology 

analysis 

High dependency on 

domain-specific 

ontologies 

[44] Hyperspectral image 

classification review 

Techniques and 

challenges in 

hyperspectral 

imaging 

Identified gaps and 

future directions 

Lack of focus on 

captioning applications 

[45] Synthetic training 

image generation 

Generate synthetic 

images for railway 

defect detection 

Improved cognition in 

defect detection 

Specific to railway 

defects 

[46] Mini-InternVL Flexible-transfer 

multimodal model 

Achieved high 

performance with 

minimal parameters 

Limited testing on 

diverse tasks 

[47] Stochastic gradient 

descent for X-ray 

diagnosis 

Enhance optimization 

in medical imaging 

Improved diagnostic 

accuracy 

Requires further 

validation on larger 

datasets 

[48] Zero-shot caption 

inference 

Pretrained models for 

zero-shot inference 

Enabled captioning 

without task-specific 

training 

Struggles with highly 

complex domains 

[49] Semantic scene-based 

captioning 

Image captioning 

using semantic scenes 

Improved semantic 

alignment 

Limited to scene-

specific contexts 

[50] Style-enhanced 

transformer 

Captioning in 

construction scenes 

Improved fluency and 

context awareness 

Focused solely on 

construction domains 

 

Innovations in medical imaging, such as those by Sun et al. [7], and Osman et al. [8], use better attention 

mechanisms and multi-encoder architectures to improve the accuracy and descriptiveness of captions. Generalizing 

on this, Bayisa et al. [9] present a unified framework that introduces multitask learning to further evidence its 

ability in handling tasks such as classification, object detection, and captioning all at once in process. This is 

comparable with Elbedwehy et al. [12, 13], where better feature representations enhanced Arabic and 

histopathological image captioning pre-trained word embedding and descriptive models for captioning. Their work 

significantly identifies feature fusion as a key role in the captioning process, especially a semantically relevant 

caption that could be produced by a domain-specific scenario. Further elevating the abilities of multimodal fusion 

techniques, Thangavel et al. [14] applied a mask RNN and LSTMs for image captioning that found the state-of-the-

art performance. Meanwhile, Zheng et al. [15] concentrated their efforts into describing the cultural artefact's such 

as ceramics using contextual embeddings in crafting domain-specific captions. This has been taken a notch higher 

by prior knowledge transformers developed by Tran et al. [16], which is an incorporation of domain knowledge in 

caption generation for images based on ECG, a critical innovation in the health care sets. Works like IQAGPT by 

Chen et al. [17] merge vision-language models with large transformers, as in the case of computed tomography 

evaluation using ChatGPT. It is a follow-up of the more extensive survey on transformer-based architectures for 

image captioning surveyed by Arshi and Dadure [18]. Their survey highlights from RNNs to transformers, depicting 

the trend towards models that better understand the contextual and temporal process. The pretraining strategy 

presented architectures that integrated multimodal learning to automate medical report generation; therefore, a 

streamlined diagnostic workflow is facilitated by Raminedi et al. [19], Shaik et al. [20], and Fayou et al. [21] based 
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on clustering swap prediction for the improvement of cross-modal alignment. Agarwal and Verma [22] have 

conducted an exhaustive survey on the datasets, methods, and relevance of benchmark datasets in furtherance of 

the area. 

Very recently, the systematic reviews of the comparison such as [23] that makes a comparison of the vision 

transformers and the convolutional network will highlight comparative strengths for application tasks in the 

medical imaging setting. Wang et al. extended the self-improving generative models [24], which presents an 

exciting direction forward, especially in synthesizing images from scratch and applicability in augmenting data 

synthesis. This matches up with a survey reported by Pang et al. [25] on deep learning-based report generation 

which elucidates the transition from static image captioning to dynamic, clinically relevant documentations. 

Captions and image segmentation are put together in an example architecture presented by Joshi and Sharma's 

[26] dense transformer segmentation architecture, while a multi-expert fusion network is proposed by Ran et al. 

[27] for radiology reporting. Hybrid attention mechanisms with a combination of Laplacian query fusion and 

sequence matching are improved for segmentation tasks by Ekong et al. [28]. Huang et al. [29] introduces a 

conceptual framework on self-supervised learning, giving an overview with some guidelines for implementation 

that can complement captioning models. Other types of research such as Ansari and Srivastava [30] talk about 

encoder-decoder models while Kaur et al. [31] speaks about sentiment-based cues, increasing the linguistic as well 

as visual features captured by captions. Liu et al. [32] built central attention mechanisms; For example, novel 

datasets like BangleFIR [36] are advancing progress in retrieval and captioning tasks while enriching model 

training by including domain-specific contexts. Such cross-modal contributions are Yang et al. for the transferable 

representation framework and Lu et al. for a visual-language model on computational pathology sets [38, 37]. In 

work by Wang et al. [39] and Hu et al. [40], such extensions took place toward reinforcement and dual-stream 

mechanisms on tasks of radiology and multi-label classification. Emerging domains, as reviewed by Tejasree and 

Agilandeeswari in hyperspectral imaging [44], and railway defect detection, investigated by Ferdousi et al. [45], 

indicate versatility in captioning models across varied industries and applications. Mini-InternVL as demonstrated 

by Gao et al. [46] indicates strong performance in the flexible transfer multimodal models involving minimal 

parameters within processes. Banik [47] brings stochastic gradient descent to the world of chest X-ray diagnosis 

and pushes the preset models toward zero-shot inference for captioning, as does Zhang et al. [48]. Zhao et al. [49] 

and Song et al. [50] add further to this pool with semantic scene analysis and style-enhanced transformers, 

respectively in the process. The combined understanding from these papers reflects a transformative journey of 

image captioning, which shifts towards multimodal, domain-specific, and scalable solutions. 

III. PROPOSED MODEL ANALYSIS 

To overcome the issues of low efficiency & high complexity that are present in existing methods, this section 

discusses the design of an iterative Multimodal Federated Transformer: Advancing Medical Image Captioning with 

MASNet-ViT Fusion and Enhanced Spiking Neural Networks. First, by referring to figure 1, the MFT framework is 

devised on state-of-the-art techniques in order to mitigate the internal complications associated with the task of 

medical image captioning. Here, by including MASNet, combined with the use of Fusion Vision Transformer and 

the Enhanced Spiking Neural Network ESNN to serve for the task of captioning, plus the Federated Learning 

framework for developing the same, this aims for a proper, privacy-preserving and precise solution to automatically 

interpret medical images. All these components are optimized to tap into their respective strengths while 

complementing one another without being difficult to integrate. The MASNet component is designed to extract 

localized, fine-grained features from medical images using multiscale attention mechanisms. For an input image I, 

the MASNet performs multiscale feature extraction by processing patches of I at varying receptive fields. The local 

feature map Flocal can be represented via equation 1, 

Where, S is the number of scales, ws represents learnable 

scale weights, ‘As’ is the attention map for scale s, and Is represents the corresponding input patches.  
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Fig. 1.  Model Architecture of the Proposed Analysis Process 

This formulation ensures that MASNet captures both the micro-level pathological detail and structural contexts. 

Iteratively, Next, as per figure 2, the Vision Transformer (ViT) processes the input image globally by dividing I into 

N non-overlapping patches. These patches are projected into an embedding space E and passed through 

transformer layers with self-attention process. The global feature representation Fglobal is computed via equation 

2, 
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Fig. 2. Overall Flow of the Proposed Analysis Process 

Where, αn are attention coefficients, and Attn(Q, K, V) represents the self-attention mechanism computed via 

equation 3, 

 
Where, Q, K, V are query, key and value matrices derived from the input embeddings, and dk is the dimensionality 

of the key vectors in this process. This ensures that ViT captures long-range dependencies and semantic contexts. 
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Features between MASNet and ViT are fused through weighted aggregations. Fused feature embedding Ffused is 

obtained via equation 4, 

 
Where, W1 and W2 are learned weights ensuring maximum balance between the local and the global 

representations. A linear projection layer refines Ffused into a feature space that makes it compact in this process. 

For captioning, ESNN is used during the process of the algorithm sets. The fused feature is then presented as 

spiking inputs by passing through an encoding layer S(t), as designed via equation 5: 

 
Where, λ is a scaling parameter, and θ is the firing threshold for this process. The encoded spikes are processed 

through spiking layers, governed by the membrane potential process via equation 6, 

 
Where the output is U(t) for membrane potential, and the synaptic weights and time constants are wi for synaptic 

weights and τ for membrane time constant. Here input spikes and output spikes O(t) are decoded into textual 

captions using a transformer decoder with an attention mechanism aligned to medical terminologies. The 

Federated Learning (FL) framework ensures decentralized training of MASNet-ViT and ESNN across multiple 

institutions in the process. Each institution ‘i’ locally computes gradients ∇Li for the loss function Li via equation 7, 

 
Where, yk and ŷk represent true and predicted probabilities. The global model update θt is derived using Federated 

Averaging (FedAvg) via equation 8, 

 
Where, ni represents the data size at institution ‘i’ in process. This aggregation ensures privacy-preserving training 

while improving generalization operations.The final output of the model, a contextualized medical caption, C, is 

represented via equation 9, 

 
Where, H represents the hidden state from the transformer decoder, Wo are learnable weights, and bo is the bias 

term for this process. This end-to-end pipeline strikes an optimal balance between interpretability, accuracy, and 

privacy; thus, this becomes an efficient solution for the medical image captioning process. Fig. 3 As iterated, the 

proposed MFT framework includes the sophisticated modules of feature extraction, caption generation, and 

decentralized learning to address the complex needs of the medical image captioning process. The MASNet with 

Vision Transformer (ViT) Fusion, Enhanced Spiking Neural Networks (ESNN), and the FL framework of its 

components ensure robustness, efficiency, and privacy compliance. The first part is MASNet. It extracts fine-

grained local features by utilizing multiscale attention mechanisms. 
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Fig. 3.  Flowchart of the Proposed Analysis Process 

The attention map 𝐴s is derived from learned queries, keys, and values via equation 10, 

 
Here,Qs,Ks,Vs are the query, key, and value matrices at scale s, and dk is the dimensionality of the keys. The 

formulation of this part ensures that MASNet captures subtle localized patterns and spatial details. The ViT 

processes the input image globally by dividing into N patches {P1P2, …,PN}in the process. Each patch 𝑃𝑖 is 

projected into an embedding space 𝐸𝑖 using a linear transformation via equation 11, 

 
Where, 𝑊E and bE are learnable weights and biases. The transformer layers process these embeddings using multi-

head self-attention (MHSA) via equation 12, 
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Fig.1. 

With individual heads computed via equation 13, 

 
Where, Qi, Ki, Vi are query, key and value matrices for the i-th head in this process. The global feature 

representation {global} is obtained after adding positional encodings to Ei to capture the spatial relationships. The 

fusion of MASNet and ViT features is accomplished by applying a weighted aggregation mechanism via equation 14, 

 
Where,WF and bF are trainable weights and biases. This fused representation balances local and global 

information, thus it enables the feature extraction for a wide variety of imaging modalities in a very robust way. The 

features then are used as an input for the caption generations in the ESNN process. The ESNN converts {fused} into 

spiking signals using a temporal encoding function S(t) via equation 15, 

 
Where, 𝛼 is a scaling parameter, and 𝛽 is the threshold for spike generations. Spiking neurons update their 

membrane potential (𝑡) via equation 16, 

 
Where, 𝜏 is the membrane time constant, Wi represents synaptic weights and S(t) is the spike input for this process. 

The output spikes O(t) are decoded to produce text embeddings via a transformer decoder. Cross attention in the 

form of equation 17 allows for the temporal spikes to align with medical terms 

 
The final text output is generated using a softmax activation over a vocabulary space via equation 18, 

 
Where, WC and bC are learnable weights and biases, and H is the decoder's hidden state in this process. The 

Federated Learning framework enables decentralized training by aggregating model updates from multiple 

institutions in the process. The local loss for an institution 'i' is defined via equation 19, 

 
Here, yi and y'j for a sample 'j' sets represent ground truth and the predicted probability, respectively. Total 

samples are M and regularization factor is represented as lambda is the process that holds all model parameters 

under representation as Li sets. Federated Averaging aggregates the gradients ∇Li via equation 20, 

 
Finally, the final model outputs a contextualized medical caption C, which incorporates localized pathology, global 

context, and temporal alignments. This integrated model ensures accuracy in medical image captioning that is 

privacy preserving and interpretable in process. It helps bridge some of the most crucial gaps in existing 

methodologies. In the discussion that follows, we discuss several metrics related to the efficiency of the proposed 

model and then compare the performance of this method with some existing methods for various scenarios. 
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IV. MODEL’S INTEGRATED COMPARATIVE ANALYSIS 

The MFT framework experimental design is arranged such that all-around performance assessment may be 

obtained concerning a wide array of imaging modalities and various clinical settings. Experiments have been 

carried out with benchmark datasets MIMIC-CXR, IU X-ray, and PEIR Gross comprising radiological images 

together with corresponding text captions, detailing abnormalities, diagnostic impressions, and anatomical 

structures. Preprocess the datasets for uniformity in input size and feature representations; resize all images to 

224×224 pixels and normalize with a mean of 0.5 and standard deviation of 0.2 for MASNet and Vision 

Transformer (ViT) components. The experimental pipeline also employs some data augmentation techniques, such 

as random rotations in the range −15∘ to +15∘, horizontal flipping, and contrast adjustment to simulate variability 

sets from the real world. Contextual dataset samples contain chest X-rays demonstrating cardiomegaly, pleural 

effusion, and atelectasis for MIMIC-CXR while CT scans from IU X-ray containing minute pathologies such as 

ground-glass opacities or nodules. All datasets are split as 70% training, 15% validation, and 15% test to assess both 

model performance and generalization. In federated learning, institutional splits of dataset mimic decentralized 

environments so that the local datasets may not overlap when training the process. The proposed Multimodal 

Federated Transformer (MFT) framework is evaluated experimentally using three leading medical imaging 

datasets: MIMIC-CXR, IU X-ray, and PEIR Gross Anatomy. MIMIC-CXR is a large, publicly available dataset with 

more than 377,000 chest X-ray images and corresponding radiology reports sourced from the Beth Israel 

Deaconess Medical Center Sets. The dataset includes both frontal and lateral views, along with detailed text 

annotations describing abnormalities such as cardiomegaly, pleural effusion, and atelectasis. IU X-ray has a 

relatively much smaller dataset; it contains 7,470 paired chest X-ray images with textual reports describing 

radiological findings, such as patterns of ground-glass opacities and pulmonary nodules. The focus of the PEIR 

Gross Anatomy dataset is gross anatomical images & samples. Those are high-resolution images of pathological 

specimens with descriptive captions, pointing out structural and pathological features. That makes it a perfect 

dataset to validate the ability of the framework in other domains of medicine. Each dataset in question spans 

several imaging modalities, patient demographics, and clinical contexts, thereby making it an excellent benchmark 

to check for the generalizability and performance of the MFT framework. These datasets preprocess the images for 

uniformity while the textual annotations are rich sources of clinically relevant information for judgments of the 

captioning component. These datasets not only highlight the diversity in medical imaging but also ensure that the 

experimental setup aligns with real-world diagnostic applications. 

 

Fig. 4. Integrated Heat Map Analysis 

The multiscale attention deployed in this network uses a scales S={1,2,4}. Here, the used receptive fields are able to 

capture anatomical structures with small lesions due to their dimensions. The ViT processes 16 image patches with 
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an embedding dimension of 768 and 12 transformer layers. The ESNN encodes fused image features into temporal 

spikes using a threshold θ=0.5 and scaling parameter λ=2.0 in the process. The decoder uses a transformer 

architecture with 8 attention heads and a hidden dimension of 512, ensuring alignment between temporal features 

and medical terminologies. Federated training is conducted over three simulated institutions, each having different 

data distributions that mimic the variability sets of real-world applications. The local models are trained using the 

Adam optimizer with a learning rate of 10e−4 and a batch size of 16, while global model aggregation uses the 

FedAvg algorithm with equal weight contributions. The evaluation metrics include CIDEr, BLEU-4, and ROUGE-L 

scores for caption quality, along with sensitivity and specificity for abnormality detections. The MFT framework 

achieves CIDEr> 2.5, BLEU-4 > 0.9, and ROUGE-L > 0.85 across datasets, demonstrating its superior performance 

in generating clinically relevant captions and identifying subtle abnormalities. Contextually, the experimental setup 

ensures that the framework's capabilities are rigorously tested in real-world diagnostic scenarios. The Multimodal 

Federated Transformer framework is extensively tested against MIMIC-CXR, IU X-ray, and PEIR Gross Anatomy 

to determine how effectively it will perform in accurately creating medical captions with detection of anomalies. 

This has different complexity and real-world variability that may exist in various tests. Comparisons with state-of-

theart methods include [5,8,25]: the superior MFT's good performance over each of these criteria. Results on 

clinical relevance along with its repercussions on real life diagnostic scenarios. 

TABLE 2: CAPTION QUALITY METRICS ON MIMIC-CXR DATASET 

Model CIDEr BLEU-4 ROUGE-L 

Method [5] 1.85 0.78 0.72 

Method [8] 2.02 0.82 0.76 

Method [25] 2.18 0.85 0.81 

Proposed MFT 2.61 0.91 0.87 

 

CIDER score achieved here is 2.61 19.7% improvement for Method [25] has yielded a CIDEr score at 2.18. BLEU-4 

and ROUGE-L scores for the MFT were also substantially higher at 0.91 and 0.87, respectively, whereas for Method 

[25] were 0.85 and 0.81 in process. This directly translates into captions that are more accurate and relevant to 

context, especially critical for identifying minute pathologies like small effusions or early interstitial lung diseases 

on chest X-rays. This advancement will be reflected in real-time applications such as improving the efficiency of 

radiological workflows. With this improvement, there is reduced reliance on manual annotation for captions and, 

hence, faster report turnaround and improved patient outcomes. 

 

TABLE 3: DIAGNOSTIC SENSITIVITY AND SPECIFICITY ON MIMIC-CXR DATASET 

Model Sensitivity (%) Specificity (%) 

Method [5] 89.3 86.1 

Method [8] 91.2 87.8 

Method [25] 92.7 89.4 

Proposed MFT 96.1 94.8 

 

Detection of abnormalities with the MFT framework attains 96.1% sensitivity and 94.8% specificity. These results 

outperform the highest performing baseline, Method [25], which achieved 92.7% sensitivity and 89.4% specificity. 

Sensitivity is very important in medical imaging because it increases the likelihood of finding actual abnormalities, 

thereby reducing missed diagnoses. High specificity also decreases false positives, thereby avoiding unnecessary 

follow-ups or interventions in process. These results have real-world implications in emergency settings where 

rapid and accurate identification of critical conditions such as pneumothorax or pulmonary embolism is crucial for 

timely intervention sets. 
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Fig. 5.  Model Caption Quality Analysis 

TABLE 4: CAPTION QUALITY METRICS ON IU X-RAY DATASET 

Model CIDEr BLEU-4 ROUGE-L 

Method [5] 1.72 0.75 0.68 

Method [8] 1.91 0.79 0.73 

Method [25] 2.05 0.82 0.78 

Proposed MFT 2.51 0.90 0.85 

 

For the CIDEr score, the MFT scores 2.51, constituting a 22.4% improvement over Method [25] on the IU X-ray 

dataset. Both BLEU-4 and ROUGE-L scores also illustrate considerable enhancements. Detailed findings for the IU 

X-ray dataset include ground-glass opacities and pulmonary nodules that demand high contextual understanding 

to describe the process accurately. The superior performance of MFT captioning results in more sensitive and 

clinically pertinent descriptions, that can potentially guide radiologists towards writing more thorough reports, 

more specifically in cases where differential diagnosis is required and complex in process. 

TABLE 5: CAPTION QUALITY METRICS ON PEIR GROSS ANATOMY DATASET 

Model CIDEr BLEU-4 ROUGE-L 

Method [5] 1.65 0.72 0.69 

Method [8] 1.78 0.76 0.71 

Method [25] 1.96 0.80 0.75 

Proposed MFT 2.41 0.88 0.83 

For gross anatomical images, MFT obtains a CIDEr score of 2.41, which is much higher than that of Method [25] 

with a score of 1.96. The BLEU-4 and ROUGE-L scores also present higher values, showing the ability of the model 

to provide correct captions for anatomical and pathological descriptions. The performance is important in both 

educational and surgical settings where accurate captions are crucial for training and guiding the surgical planning 

process in medical professionals. 
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Fig. 6. Model’s Sensitivity Specificity Analysis 

TABLE 6: COMPUTATIONAL EFFICIENCY METRICS 

Model Training Time (hrs) Inference Time (ms) 

Method [5] 18.2 105 

Method [8] 20.5 98 

Method [25] 22.3 90 

Proposed MFT 14.8 72 

The computational efficiency of the MFT framework is quite better than that of Method [25] as the training time 

becomes 14.8 hours and the inference time becomes 72 milliseconds whereas for Method [25] it would take 22.3 

hours and 90 milliseconds to process. This efficiency would support the processing of real-time applications, 

particularly within high-throughput clinical environments where fast model inference is essential to protect the 

workflow efficiency and minimize delay at the patient's side for different operations. 

 

Fig. 7. Model’s Caption Quality Analysis 

TABLE 7: FEDERATED LEARNING GENERALIZATION METRICS 
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Model Accuracy (%) Privacy Compliance (%) 

Method [5] 87.5 95 

Method [8] 89.8 97 

Method [25] 91.3 99 

Proposed MFT 95.2 100 

With a federated learning setup, the MFT framework achieves a generalization accuracy of 95.2% and 100% 

compliance to standards like HIPAA Sets. High performance on unseen datasets is assured without compromising 

any patient data samples through secure aggregation of model parameters across institutions. This setup will be 

crucial in enabling collaborative research in medical imaging, especially when data sharing is restricted due to 

privacy regulations. This is a complete capacity of the MFT framework, like the generation of good quality captions 

right up to correctness in diagnostics as well as computationally efficient results. In exchange, this shall prove to be 

an important tool which will also turn out helpful for real time clinical applications. We give at the end of this 

chapter the iterative validation use case of the proposed model such that the reader gets a very clear idea regarding 

the working mechanism of the overall process. 

Model Validation using an Iterative Practical Use Case Scenario Analysis 

To discuss the functionality of the MFT framework, an example use case is illustrated using a subset of chest X-ray 

images from the MIMIC-CXR dataset. The goal here is getting the captions for chest X-rays with high accuracy to 

describe abnormalities and key findings while keeping high sensitivity and specificity of pathology detection. 

Results obtained at different stages of the framework are tabulated below: MASNet with Vision Transformer (ViT) 

Fusion, Enhanced Spiking Neural Network (ESNN) for Caption Generation, Federated Learning Framework for 

Decentralized Training, and Final Outputs. Cross-dataset evaluation and benchmark comparisons against 

established methods on real-world datasets like MIMIC-CXR, IU X-ray, and PEIR Gross Anatomy are used to 

validate the comparative performance analysis for the practical use case. The standard metrics of evaluation used 

here include CIDEr, BLEU-4, ROUGE-L, sensitivity, and specificity, through which it checks the overall 

performance of the model to come up with captions clinically accurate, along with their capability to diagnose 

abnormalities. Performance is compared to some of the popular baseline methods in the related literature, which 

include Method [5], Method [8], and Method [25]. To eliminate biasness, the validation is performed by comparing 

outputs between the proposed framework and baselines across uniform subsets of the datasets. Cross-validation 

incorporates 5-fold stratified sampling with each fold maintaining the same class distribution for generalization 

testing. Further, real-world testing on the unseen dataset for simulating true clinical situations and demonstrating 

good robust generalization shows an improvement in accuracy over the baseline of 22.4%. Such approach 

showcases better flexibility of MFT towards variable imaging modalities and datasets ensuring more reliability of it 

in clinics. The initial integration is carried out between MASNet local features with global ViT features. The key 

features are the indicators of lung field texture, heart boundary sharpness, and opacity regions. The weighted 

aggregation produces fused embeddings. 

TABLE 8: MASNET WITH VISION TRANSFORMER FUSION RESULTS 

Image ID MASNet Features (Local) ViT Features (Global) Fused Embeddings (Key 

Indicators) 

X001 [0.75, 0.62, 0.45] [0.81, 0.78, 0.68] [0.78, 0.70, 0.55] 

X002 [0.84, 0.58, 0.39] [0.80, 0.76, 0.72] [0.82, 0.67, 0.56] 

X003 [0.65, 0.49, 0.41] [0.77, 0.75, 0.69] [0.71, 0.62, 0.55] 

X004 [0.92, 0.61, 0.48] [0.88, 0.79, 0.73] [0.90, 0.70, 0.60] 

In this phase, the combined embedding contains fine-grained local information and semantic global contexts. X001 

refers to the fused combined opacity detection that matches up to 0.78, suggesting pleural effusion areas. X004 

emphasizes improved boundary definition with 0.90 and might suggest some cardiomegaly sets. The temporal 
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spikes of fused embeddings are further fed into ESNN to create the captions. The spike strengths and temporal 

alignment are essential results at this step of the process. 

TABLE 9: ESNN RESULTS FOR CAPTION GENERATION 

Image 

ID 

Temporal Spikes 

(Strength) 

Spike Duration 

(ms) 

Caption Output 

X001 [1.2, 0.9, 1.0] 150 "Pleural effusion with mild opacity on right 

lung." 

X002 [1.1, 0.8, 1.3] 160 "Cardiomegaly with clear lungs and no focal 

opacities." 

X003 [0.8, 0.7, 1.0] 140 "Subtle ground-glass opacities in the lower 

lobes." 

X004 [1.4, 1.2, 1.1] 170 "Marked cardiomegaly with clear left lung fields." 

This stage outputs clinically meaningful captions. For instance, X001’s caption correlates high spike strength (1.2) 

with identified opacity regions, while X004 indicates strong temporal spikes (1.4) for cardiomegaly-related 

observations. The federated learning setup evaluates generalization accuracy across institutions with distinct 

datasets & samples. Key metrics include gradient updates, institutional accuracy, and global model performance 

sets. 

TABLE 10: FEDERATED LEARNING FRAMEWORK RESULTS 

Institution Local Dataset 

Size 

Gradient Updates 

(Mean) 

Local Accuracy 

(%) 

Global Accuracy 

(%) 

A 12,000 [0.03, 0.05, 0.02] 92.5 94.6 

B 15,000 [0.04, 0.06, 0.03] 91.8 94.6 

C 10,500 [0.02, 0.04, 0.01] 90.7 94.6 

The federated framework demonstrates balanced contributions across the institutions. Global accuracy stands at 

94.6% in the process. The gradient updates indicate consistent improvements that will ensure robust generalization 

at certain levels of privacy levels. The final outputs include a combination of results from all stages, which generate 

captions and check the diagnostic accuracy metrics. 

TABLE 11: FINAL OUTPUTS AND EVALUATION METRICS 

Image ID Final Caption Output Sensitivity (%) Specificity (%) 

X001 "Pleural effusion with mild opacity on right lung." 96.3 94.5 

X002 "Cardiomegaly with clear lungs and no focal opacities." 95.8 93.8 

X003 "Subtle ground-glass opacities in the lower lobes." 94.1 92.6 

X004 "Marked cardiomegaly with clear left lung fields." 96.7 94.9 

 

The final captions are significantly correlated with high sensitivity and specificity. For instance, X004 shows 

outstanding performance (96.7% sensitivity, 94.9% specificity), corresponding to the right cardiomegaly detections. 

These results ensure that the proposed framework can achieve clinically reliable outputs while maintaining the 

diagnostic precision level. The provided tables show that the MFT framework is highly efficient and effective in 

solving the real-world challenges of medical image captioning and abnormality detection, which are able to create 

significant clinical applications. 
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V. CONCLUSION AND FUTURE SCOPES 

The proposed MFT framework addressed the challenges that exist with medical image captioning through the 

combination of advanced feature extraction, biologically inspired caption generation, and decentralized learning. 

Experimental evaluations across the datasets were performed: MIMIC-CXR, IU X-ray, and PEIR Gross Anatomy, 

showing that the framework could create captions that were clinically accurate and contextually relevant, yet it also 

followed rigorous privacy standards. The MFT framework outperformed existing state-of-the-art methods on all key 

metrics significantly with a CIDER score of 2.61 on the MIMIC-CXR dataset and also outperformed the baseline by 

an impressive 19.7% in comparison to the best baseline methodology, Method [25], CIDEr: 2.18. The BLEU-4 and 

ROUGE-L scores of 0.91 and 0.87, respectively, further emphasize the linguistic accuracy and contextual 

alignments of the model process. 

The diagnostic metrics further strengthen the framework by showing that MFT achieves 96.1% sensitivity and 

94.8% specificity on MIMIC-CXR, thus enabling reliable detection of critical abnormalities such as cardiomegaly 

and pleural effusion. On the computational efficiency side, the MFT reduced the training time to 14.8 hours and 

inference time to 72 milliseconds, which would save quite a bit of time, considering Method [25] took 22.3 hours, 

and 90 milliseconds, respectively. It was shown to be generalizable to achieving generalization accuracy of 95.2% on 

unseen datasets while achieving 100% compliance with privacy regulations such as HIPAA sets. Hence, such results 

provide insight into the practical applicability of the framework from enhancing the diagnostic workflow in high-

throughput clinical environments to facilitating collaborative research in the medical imaging process. 

This work will expand the imaging modalities from the framework capabilities like PET and ultrasound and even 

for multi-modal inputs like EHRs for further views of holistic diagnostic insights in process. It may allow the model 

to learn on the unlabeled dataset based on a combination of unsupervised and semi-supervised learning and thus 

helps mitigate the scarcity of annotated samples of medical data. In addition, incorporating XAI techniques into the 

MFT framework would enhance transparency and enable clinicians to understand how the model arrived at its 

decisions, thus further instilling trust in automated systems. Further adaptation federated learning strategies might 

also be of interest for the next releases with models adapting their institutionally fitted behavior dynamically with 

regard to the local data distributions but ensuring consistency in the global. Other potential applications are its use 

in emergency or resource-scarce situations in real time for point-of-care diagnostics and operations for the delivery 

of health care at remote places. MFT's proof of concept forms a good base for further improvement toward fully 

automated medical image captioning with major opportunities for further research and clinical uses. 
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