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In today’s wireless communication era, Cognitive radio systems (CRS) report two pressing 

problems: the shortage or scarcity of usable frequencies and second is the efficient use of those 

frequencies by the legal (or "licensed") users. Spectrum sensing (or “Spectrum detection”) is the 

key process in the CRS that allows these systems to be "cognitive." Demand of wireless 

communications is not narrowing and in fact, it is accelerating day by day, particularly in 

emerging economies. An increasing number of methods, both classical and modern, are being 

developed for the robust and timely spectrum sensing. Classic methods for spectrum sensing, 

like MLP, CNN, and LSTM, routinely encounter difficulties in a balancing between two main 

design targets as: accuracy and computational efficiency. The real-time nature of typical 

application scenarios makes this operational challenge particularly noticeable. In this paper's 

introduction and the review of related work we underline the same. Thus, a very strong approach 

should use to explore the new deep learning techniques which preferably have relatively low in 

required computational overhead at same time secure high detection accuracy. The application 

of Deep Belief Networks (DBNs) and Self-Organizing Maps (SOMs) for enhanced spectrum 

sensing in CRNs is the subject of our study. The critical task is to evaluate these two models for 

accuracy and speed in detecting spectrum availability. Insights into the trade-offs between 

detection performance and computational efficiency are especially vital concerning SOM and 

DBN models because they are fairly new as compared to traditional spectrum sensing methods. 

Challenging conditions for spectrum sensing were utilized to assess the performance of DBN and 

SOM models, and the results were compared to benchmarks established by traditional methods. 

The obtained results shows that SOM gets to an amazing accuracy of 95.77% with an execution 

time of only 0.02 seconds, makes it extremely suitable for real-time applications. Meanwhile, 

DBN achieves a supreme accuracy of 99.85%, but with a moderate execution time of 147.08 

seconds, demonstrating its ability to extract features hierarchically and in a very deep way. Both 

models outperform traditional methods, and they strike a superior balance between accuracy 

and computational requirements with modern hardware. These gained results spotlight SOM 

and DBN based methods are next-generation CRN system competitors. SOM’s architecture 

required low processing and power, and DBN’s near-perfect detection capabilities. This meant 

that CRN systems using deep learning could handle the RF spectrum under even the worst 

conditions also. Their potential gains offered insights into several key trade-offs. 

Keywords: Cognitive Radio Networks, Spectrum Sensing, Deep Belief Networks (DBN), Self-

Organizing Maps (SOM), Time-Efficient Algorithms, Real-Time Processing, Wireless 

Communication, Dynamic Spectrum Access. 

 

INTRODUCTION 

A new technology called cognitive radio (CR) was created to encounter the increasing need for wireless 

communication services despite the limited availability of spectrum [1]. Conventional wireless networks use preset 

frequency bands that are allotted by regulatory bodies, which results in inefficient use of the spectrum and congestion 
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in some frequency ranges [2]. Conversely, cognitive radio provides dynamic spectrum access by guaranteeing that 

devices do not interfere with licenced users while taking use of underutilised spectrum bands [3].  

Cognitive radio networks rely heavily on efficient spectrum sensing because it allows devices to identify and take 

advantage of available spectrum possibilities without interfering negatively with core users. The identification of 

spectrum white spaces, or frequency regions where primary users are not actively transmitting and can be used by 

secondary users, is made possible in large part by spectrum sensing techniques. These methods include 

cyclostationary feature detection, which makes use of periodic properties in the received signals, and energy 

detection, which monitors the power level of received signals. 

A CR must choose between two hypotheses based on its recorded observations for solving the detection/classification 

problem that is the core of the spectrum sensing challenge [4]. The scenario in which a PU is absent is represented 

by the null hypothesis, and the scenario in which a PU is present is represented by the alternate hypothesis. Stated 

differently, data collected beneath the null hypothesis is noise-only, but in such scenarios, data collected in the 

presence of PU includes both noise and the PU signal [5]. A CR's performance is frequently hampered by shadowing, 

fading, noise statistics, and receiver uncertainty. For a certain specified value of the chances of false alarms, the 

effectiveness of a Spectrum Detection algorithm is often gauged by the probability of detection [6]. 

Many detectors have been suggested to carry out Spectrum Sensing. Energy detector (ED) – which based on principle 

of energy of signal [7], Matched filter detector (MFD) -works with filters principle, Cyclostationary feature-based 

detector- works with stationarity of signal, geometric power detector- works with power principle [8], and differential 

entropy detector- works with differential entropy are a few examples of signal processing techniques that have 

been investigated For above each of technique which has some advantages and disadvantages. For instance, it is well 

known that the likelihood of finding ED declines with low signal-to-noise ratio (which is commonly called as SNR) 

and noise variance uncertainty. To employ MFD, the PU signal information must be available at CR, which is 

impractical. Despite outperforming ED, the cyclostationary detector has a high computational cost. 

Deep learning approach which is subset of Artificial Intelligence has become a potent method for cognitive radio 

network spectrum sensing in recent years. In feature extraction, pattern recognition, and classification tasks, deep 

learning models like Convolutional Neural Network (commonly known as CNNs), Recurrent Neural Network 

(RNNs), and Long Short-Term Memory (LSTM) network have confirmed to be remarkably effective. The large 

volume of data produced by cognitive radio systems can be efficiently selected to find complex patterns and 

relationships by using deep learning algorithms. This makes more accurate and reliable spectrum sensing result.  

As compared to traditional spectrum detection methods, an addition of deep learning methods in spectrum sensing 

shows several benefits. These stand up mainly from the practice of deep learning models instead of conventional 

detection methods. From the raw spectrum data, deep learning algorithms automatically learn distinct features in an 

unsupervised manner. This approach removes the human aspect of feature engineering. This offers a clear advantage 

of deep learning methods over traditional methods, which require well-defined features to accomplish for effective 

detection.  

In Wireless communication, spectrum insufficiency problem is being improved by Cognitive Radio Networks (CRNs). 

The use of CRNs allows for secondary users to make use of licensed spectrum frequencies which are be underutilized, 

while still ensuring that interference levels remain low enough to protect the primary users of those same bands. 

There are a number of core functionalities that CRNs perform. One of the most important is spectrum sensing or 

detection, where the main goal is to detect spectrum slots that are currently vacant/unused. There are traditional 

signal processing methods that have been in use for a long time like energy detection and cyclostationary feature 

detection. These methods are fairly well understood within the research community. These techniques have a number 

of limitations, and most of them based on the problem of operating in noisy environments. Deep learning algorithm-

based approaches, including SOMs and DBNs, provide promising solutions to these challenges by offering robust 

data-driven methodologies. 

LITERATURE REVIEW 

Using the prime structure data of the modulated signals, the authors in paper has proposed a deep learning based 

signal detection and classification that provides cutting-edge detection performance without any previous 

understanding of a channel state evidence or ambient noise. It is important to note that the suggested strategy works 
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noticeably better than other well-known cooperative sensing techniques. The authors of propose applying DRL 

method to CSS to resolve the challenges in cognitive radio network.  

In [9], the spectrum detection problem is transformed into image processing related task as- an image recognition 

task, and the real world and noise are distinguished using machine learning approach. Signal's presence uses a 

training dataset of a few hundred samples. The CNN method's effectiveness is then compared to the throughput of 

further traditional energy detection methods as well as previously published outcomes of machine learning used for 

signal detection. 

An attempt is made to assess the efficiency of cooperative based spectrum sensing (commonly known as CSS), which 

combines deep learning with data fusion techniques [10]. We study the performance of CSS based on convolutional 

neural networks in dynamic channel scenarios. 

A hybrid approach of deep learning (DL)-based technique for spectrum detection was developed in [11] that 

effectively learns the statistical time series spectrum data which changes with respect to time. The cutting-edge 

testbed that obtains unprocessed spectrum data for a wide range of frequency patterns and signal’s SNR levels. Then 

corresponding evaluation is carried out and for this performance metrics like Pd & Pfa are examined and contrasted 

with other existing learning-based spectrum detection techniques. Studies reveal that even in low SNR situations, the 

proposed framework outperformed the alternative method in standings of better sensing accuracy as well as a better 

detection ratio. 

This study in [12] provided a novel spectrum sensing technique for cognitive radio systems. The proposed approach 

uses the RNN- recurrent neural network, a popular deep learning technique, to determine the empty spectrum.  

The recommended approach computes Cooperative spectrum sensing (CSS) is proposed in [13] using an ELM i.e. 

Extreme Learning Machine based method. ELMs stand feed forward neural networks where the hidden layer 

parameters are not optimized, only the output weights are. It was possible to replicate both a transient and persistent 

environment. These results suggest that ELM might be superior to traditional methods. 

In [14], the authors test several signal-to-noise ratios in order to confirm that the recommended method performs 

better. The presence of a modulation format indicates the presence of an associated modulation format for the PU 

signal. 

The results in [15] show that by reducing the sensing time (which is defined as time needed for spectrum sensing) 

and applying traditional fusion principles, the recommended technique is effective in decreasing the sensing cost. 

Additionally, the benefits of fusion centre (FC) are- lower energy consumption, better output, and enhanced detection 

capability with a low mistake probability by using improved sensing samples as the foundation for a global decision. 

In [16, 17], the temporal series data of the signal are fed into an LSTM in order to extract the signal's temporal 

correlation characteristic. 

Transfer learning approach which is one of the innovative theories in deep learning. In which a residual neural 

network (Res-Net) model has been applied for spectrum detection purpose [18]. 

The multilayer perceptron (MLP), which is one of the types of deep learning came under feed forward ANN category. 

In MLP, information bits are flows in a single direction only i.e. from the input layer to the output layer and passing 

through the hidden layers, and it is one of the most widely used ANNs. With the exception of the input layer, every 

layer is made up of neurons which are also called neural processing units, which add non-linearity to the model by 

calculating the weighted total of the associates between neurons and passing the result via an activation function [19]. 

The input signal values flow through the network's layers during the forward pass, usually as a multidimensional 

vector. Each layer's input neuron's value is multiplied by its associated weight before being added together. After that, 

a nonlinear activation function, like Sigmoid or ReLU, is applied to this total [20]. 

Every hidden layer in the FCN is the equal length as the input layer. To maintain this equal alignment, zero padding 

method is used in which appending of length (kernel size −1) is added to succeeding layers. Rather than using regular 

convolutions, the TCN uses causal convolutions [21] to stop future information leaks. An output signal obtained 

through hidden layer processing at time 𝑡 is only convolved with items from time 𝑡 and signal which is earlier in the 

previous layer of the causal convolution. Additionally, in order to facilitate an exponentially broad receptive field, the 
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TCN employs dilated convolutions [22-25]. Dilated convolutions, in contrast to regular convolutions, add a fixed step 

in between each pair of neighboring filter taps. 

SOMs, introduced by Kohonen, are neural networks designed for unsupervised learning machine learning approach. 

They map high-dimensional data onto low-dimensional grids, preserving the topological structure of the input data 

[26].  Self-Organizing Maps shows better result in interpretation the spectrum occupancy and recognizing the 

spectrum usage in a dynamic or fast-changing environment. Their lightweight building facilitates real-time 

processing of the large amounts of data that must be handled for making quick decisions in a CRN. Recent work in 

spectrum detection has verified that self-organizing maps not only perform this essential task but also do so with a 

significant reduction in the amount of computation time while maintaining a respectable level of accuracy in a 

network of sensors. 

Whereas Deep Belief Networks are generative models consist of layers of Restricted Boltzmann Machines (called as 

“RBMs”) stacked on top of another [27, 28]. They are superb at pulling out hierarchical features from the input data. 

Because of this makes them very good at spectrum classification like spectrum is used or unused. With this approach 

they can achieve classification accuracies higher than what is typically accomplished using MLP (Multilayer 

Perceptron) or CNN (Convolutional Neural Network) frameworks. Moreover, they get these results not only with 

better accuracy but also seem to achieve these results in less time than traditional approaches. All these observations 

are also seen from [29-36]. 

SPECTRUM SENSING 

The spectrum sensing in cognitive radio is the identification and description of the spectrum bands surrounding the 

immediate environment and their occupancy status. This essential cognitive radio function allows it to find open 

frequency bands for opportunistic spectrum access while minimising interference with licensed incumbents and 

other primary users. 

To detect RF signals, analysis of electromagnetic spectrum is required. For this signals and noise must be 

distinguished, and underutilized or underused frequency regions must be located. For this purpose, frequent 

methods are used, such as eigen value-based sensing, energy detection matched filtering detection, and 

cyclostationary feature detection. But what if we could use these methods not just to see if a signal is coming through, 

but also to see if the signal were coming through better than it usually does? Then, as now, the cognitive radio that 

can do this sort of thing is a very good radio indeed. Being a very good radio is no easy task. 

Cognitive radios can optimize their transmission characteristics, frequency bands, and communication protocols to 

maximise spectral efficiency while minimising disturbance to incumbent users by continuously monitoring the 

spectrum environment and adjusting to changing conditions.  

When the primary transmitter in a primary user network sends signals to the P.U., the secondary transmitter ensures 

that the primary user's communication with the primary transmitter is not harmed in any way. To find out if a P.U. 

receiver is inside its service area, the S.U. transmitter must conduct spectrum sensing. Spectrum sensing is a crucial 

prerequisite for the creation of cognitive radio spectrum sensing algorithms, which are required to be aware of and 

sensitively adjust to changes in their environment.  

This is why CR networks cannot be realised without it. By identifying currently unoccupied spectrum sections, 

spectrum sensing allows CR users to adjust to the radio environment without interfering with the principal network.  

Since main users get priority when it comes to using the bands, unlicensed users must always keep an eye on what 

the licenced users are doing to prevent interference and collisions [21]. The following equation shows hypothetical 

assumption of transmitter section-   

X(t) = n(t)                       H0 

                             h (s(t)) + n(t)          H1                                                                                                                        (1) 

here n(t) represents a zero-mean Additive White Gaussian noise (commonly name as AWGN), h is the channel's 

amplitude gain, s(t) is the primary user's broadcasted signal, whereas the term X(t) represents the signal that the CR 

user received. The null hypothesis, or H0, asserts that a certain spectrum band is devoid of any licenced user signals.  

A notion called H1 suggests that there may be a primary user signal. 
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In general, there are four categories into which spectrum sensing techniques can be divided: First parameter is 

Detection of the primary transmitter, secondly it is considered as detection of the cooperative transmitter, third 

parameter is detection of the primary receiver, and finally management of interference temperature. The principal 

transmitter detection method, which is frequently used to identify the primary user, is the main topic of this study. 

Once more, three methods are employed to find the main transmitter signals. These include the following: feature 

detection, matching filter detection, and energy detection .  

The adoption of SOM and DBN for spectrum sensing in CRNs represents a significant advancement over traditional 

methods. By leveraging their unique strengths real-time processing in SOM and hierarchical feature extraction in 

DBN this study underscores their potential to transform spectrum sensing. These findings provide a strong 

foundation for developing intelligent CRNs capable of meeting the demands of next-generation wireless networks. 

I. Dataset 

Passive scanning is one easy way to gather information for Cognitive Radio smart spectrum sensing. To perform this, 

Cognitive Radio devices must be placed in different areas and given permission to passively scan the spectrum 

without actively sending out signals. The gadgets have the ability to gather data on things like neighbouring radio 

systems' modulation methods, signal intensity, and frequency occupancy. In order to determine accessible spectrum 

bands, identify interference, and maximize spectrum use for Cognitive Radio networks, this data can then be 

combined and examined. We have collected the data as per the specified principle above. 

Dataset Description is provided in experimental setup part. 

II. Proposed Spectrum Sensing Mechanism 

The method of predicting a channel's future state using data that has already been collected is known as spectrum 

prediction. Below equation (2) is based on the spectrum model of the channel that Ref. [23] suggested.  

Tt =Pi +Si +Ti                                                                                                                                    (2) 

here the entire transmission time of Secondary User-SU (Tt) is composed of first parameter prediction time (Pi), then 

calculated sensing time (Si), and transmission time (Ti). K channels are included in the wireless spectrum under 

consideration in this work. One network (PU) has a licence for the K channels, while numerous unlicensed networks 

(SU) keep an eye on them in case of opportunistic use. The SU observes and learns each of these channels 

independently. 

We take up, the spectrum data as X at frequency band over a specific time slot is which is denoted as Xf,t which 

is shown in below Equation (3). 

Xf,t = ρf,t +⍵f,t                                                                                                                      (3) 

here the term ρf,t represents the obtained signal power value and ⍵f,t signifies the noise power value. Figure 1 And 

then measured signal data strength are compared with a threshold  value denoted by symbol λ which is used to 

calculate the channel’s occupancy as either 1 (this status indicate channel is occupied) or 0 (this state indicate channel 

is idle/non-occupied) is the toggle or binary output yi and is denoted as in following Equation (4). 

yi =  1  (if xf,t ≥λ) 

0  (if xf,t < λ)                                                                                                                                    (4) 
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Fig. 1. Proposed Spectrum Prediction Model 

III. Proposed Deep Neural Network Architectures 

We outline the DNN architectures that were taken into consideration for SS in this section.  

A. Self-Organizing Map (SOM) 

An unsupervised deep learning neural network-based framework is primarily employed for clustering and 

visualization tasks with high-dimensional data. To accomplish this Self-Organizing Map (SOM) is used. The SOM 

itself includes a grid-like arrangement of neurons residing in a lower-dimensional space (usually two-dimensional). 

These neurons work together to learn and capture the essential structure of the input data. 

i. Input Layer: The input layer of a Self-Organizing Map consists of neurons that represent features of the data. 

Each input vector, representing a data- point in a high-dimension space, is fed into the SOM. The neurons 

present in the input layer receive the values of these features, and the purpose is to map these high-

dimensional vectors into a lower-dimensional representation through a process of competitive learning. 

ii. Neuron Grid (SOM Map): The majority of the computation in a SOM occurs in the grid of neurons, which 

typically forms a 2D or 3D lattice. The neurons in the grid represent different regions of the input space, and 

during training, each neuron updates its weights to better match the input vectors. The neurons in the grid 

compete to represent the input data, with the most similar neuron (the "winner") updating its weights and 

those of its neighboring neurons. The number of neurons in the grid and the dimensions of the grid depend 

on the complexity and structure of the input data. 
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iii. OutputRepresentation: 

The output of the SOM is a 2D or 3D map where similar data points are represented closer to each other on 

the grid, effectively grouping similar patterns. The network can disclose innate structures and clusters within 

the data. The output neurons are not classifying but rather mapping topologically—that is, organizing in a 

way that reflects the similarities between the data points entering the different output neurons. Neuron 

weights are updated according to an unsupervised algorithm that nudges them toward the winning neuron 

based on a neighbourhood function. Through this competitive process, the SOM organizes the data in a way 

that reflects the underlying distribution of the data. Once trained, the SOM can be used to visualize clusters 

and relations within the data—often a step preceding further analysis or classification. 

 

Fig. 2. Kohonen Self Organizing Map: An overview 

Self-Organizing Map (SOM) network architecture consists of 2 layers: first one is an input layer and second layer is 

the output layer. Both layers contain the feature map whereas the SOM has no hidden layers, which is a configuration 

typical of most neural networks. In the working principle of SOM, weight values are passed to the output layer without 

applying an activation function in the neurons. The direction path begins from the input layer and ends to the output 

layer which makes the SOM feed-forward direction. Neurons in the network are assigned weights based on the input 

space, and the 2D grid of nodes in the output layer is fully connected to the neurons in the input layer. Figure 2 

illustrates the SOM architecture and provides an overview of Kohonen's work. 

SOM make use of competitive learning for weight adjustment. The nano-architecture has three main stages as 

Competition stage, Cooperation stage, and lastly Adaptation stage. 

In the first stage, all neurons in the Kohonen layer compete to be the "best matching unit" (which is also called as 

BMU), based on the calculated distance from the input vector. The neuron with the smallest distance is the winner. 

After this, the second stage starts—Cooperation, in which nearby neurons (those that are neighbors to the winning 

neuron) help out the winner to give a better response for similar input vectors in future presentations. 

B. Deep Belief Network (DBN) 

DBN i.e. Deep belief network is a generative model that employs numerous layers of stochastic, latent variables to 

model the probability distribution of input data. It is a sort of deep neural network made up of several layers of 

restricted Boltzmann machines (RBMs), where each layer learns a sort of hierarchical representation of the input 

data. DBNs can be trained in an efficient, layer-by-layer, unsupervised manner. 

i. Input Layer: 

A DBN model has an input layer that includes neurons which representing the features of the input data. 

Each neuron corresponds to one specific element of the input vector. Then the data is fed into the network 

layer by layer. The model architecture learns complex, hierarchical patterns and dependencies in the data 

through multiple layers of representation. The first layer captures low-level information and simple features 

whereas the deeper layers capture the more complex, high-level patterns in the data. 
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ii. Hidden Layers: 

Composed of several hidden layers, the DBN learns more and more abstract representations of the input 

data. The layers in the DBN are typically RBMs, which are type of generative model. As you read, the neurons 

in the hidden layers of the DBN, which are RBMs, are learning a weighted sum of their inputs followed by a 

probabilistic activation. This activation function is learned in parallel by all the neurons in a layer during pre-

training. The kind of activation function learned by an RBM gives it a certain "contrastive" quality, which is 

an essential ingredient in the backbone of "deep learning" models. 

iii. Output Layer: 

The final output produced after all the hidden layers is passed through occurs at the output layer of a DBN. 

For classification tasks, the output layer typically consists of neurons corresponding to the number of classes, 

and the activations of these neurons are used to determine the predicted class. For regression tasks, the 

output neurons represent the predicted continuous values. The output layer, unlike the previous layers, is 

trained using supervised learning. In this case, the weights are tuned such a way that to minimize the error 

value among the predicted output and the actual target values. The DBN is trained in two phases. Each layer 

is pre-trained in an unsupervised manner and then all layers are fine-tuned together using gradient-based 

methods. After these phases, the DBN can perform various tasks, including classification and regression, 

using the unsupervised hierarchical feature representation it has formed. Figure 3 The DBN can arrange 

high-dimensional input data into a manageable structure and then output predictions at the layer farthest 

from the input. 

 

Fig. 3 DBN Architecture 

IV. Experimental Setup 

A. Dataset Description 

Table 1. Dataset description 

Parameter Description 

Spectrum GSM 900 

Band 890 MHz–915 MHz (GSM uplink) 

Channels 1 - 124 RF channels 

Signal Power (for each channel) (-40 dBm) to (-120 dBm) 

Noise Power (for each channel) (-15 dB) to 15 dB 

Total channel setup N =51 

Total samples 13465 

The band used for experimentation is the GSM 900. In which encompasses the frequencies from 890 MHz to 915 

MHz used for GSM uplink purpose. We set up our experiment with 124 RF channels out of which we actually used 51 
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channels. Table 1 Which are used with controlled signal power from -40 dBm to -120 dBm. Noise power was 

controlled between -15 dB and 15 dB. This experimental setup allowed us to collect an adequate number of 13,465 

samples over the course of the evaluation. Performing this setup in an acoustic chamber provides an opportunity to 

rigorously assess the performance of spectrum sensing models. 

B. Hyperparameters of Models 

Table 2. Hyperparameters of the Models 

Hyperparameter 
Deep Belief Network 

(DBN) 

Self-Organizing 

Map (SOM) 

Number of 

Layers 

2 RBM layers + 1 Neural 

Network 

2D grid (10x10 

nodes) 

Hidden Units 
64 (1st RBM), 32 (2nd 

RBM) 

Not applicable 

(nodes in grid) 

Epochs (Pre-

training) 
10 (for each RBM) 100 

Epochs (Fine-

tuning) 
50 Not applicable 

Batch Size 32 Not applicable 

Activation 

Function 

ReLU (hidden layers), 

Softmax (output layer) 
Not applicable 

Learning Rate 

Adaptive (Adam 

optimizer for NN fine-

tuning) 

0.5 

Weight 

Initialization 

Random (RBM: scaled by 

1 / sqrt(n_visible + 

n_hidden)) 

Random 

initialization 

Neighborhood 

Function 
Not applicable Gaussian 

Sigma Not applicable 1 

Optimization 

Method 

Contrastive Divergence 

(RBM pre-training), 

Backpropagation (NN) 

Competitive 

learning 

Validation Split 20% Not applicable 

Input 

Dimensionality 

Depends on dataset (e.g., 

X_train_scaled.shape[1]) 

Same as input 

feature length 

(X_train_scaled) 

The DBN model has two RBM layers with 64 and 32 hidden units respectively. Which is followed by a neural network 

for fine-tuning purpose. Table 2 For this model, ReLU was used as the activation function for hidden layers and 

Softmax - used as activation function for the output layer. The RBMs were pre-trained for 10 epochs each. The neural 

network was fine-tuned for 50 epochs having a batch size of 32 and a validation split of 0.2. The optimizer used for 

fine-tuning was Adam. The weights of the RBM were initialized randomly according to the input dimensions. 
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The Self-Organizing Map (SOM) model is a 2D grid of 10x10 nodes with a Gaussian neighborhood function. For this 

model, we kept a learning rate of 0.5 and a sigma value of 1.0 was used for neighborhood size. The SOM was trained 

using competitive learning over 100 iterations with random weight initialization based on the input features 

C. Evaluation Metrics for Spectrum Sensing 

For SOM and DBN models, the evaluation metrics accuracy, precision, recall, F1 score and time were considered for 

evaluating the performance of spectrum sensing in cognitive radio. 

Accuracy: Computes the percentage of cases that are correctly classified out of all the samples. 

Precision: Shows how relevant the positive predictions are by assessing the model's capacity to detect true positives. 

Recall: Shows how well the model identified every genuine positive occurrence in the sample. 

F1 Score: Shows the harmonic mean of precision and recall, providing a balanced metric even with imbalanced 

datasets. 

Time: In order to evaluate computational efficiency- a crucial component for real-time applications- the amount of 

time it took for each model to finish training and assessment was noted as a distinct metric 

V. Performance analysis 

A. Accuracy, Precision, Recall and F1 Score 

The obtained results prove that the Deep Belief Network (DBN) achieved a F1 score, accuracy, precision, recall of 

99.85%, highlighting its exceptional performance in classification tasks. The Self-Organizing Map (SOM), while 

slightly less accurate, still achieved strong results with a F1 score, accuracy, precision, recall of 95.77%, showcasing 

its effectiveness in clustering and pattern recognition. These metrics confirm the reliability and robustness of both 

algorithms in their respective tasks, with the DBN excelling in classification and the SOM offering efficient clustering 

with a shorter training time. 

In Table 3, we present the evaluation metrics for both algorithms, providing a clear comparison of their effectiveness 

in handling the given data. 

Table 3. Evaluation parameter values for Algorithms 

Algorithm 
Deep Belief 

Network (DBN) 

Self-Organizing 

Map (SOM) 

Accuracy 0.9985 0.9577 

Precision 0.9985 0.9578 

Recall 0.9985 0.9577 

F1 Score 0.9985 0.9577 

B. Detection Probability vs SNR 

Additionally, we analyzed the Detection Probability vs. SNR graph, shown in Figure 4, to understand the performance 

of the algorithms under varying Signal-to-Noise Ratios (SNR). This graph provides insights into how well the models 

perform in challenging noise conditions, showcasing their adaptability and robustness. The advantages of this 

analysis include improved understanding of model performance in real-world scenarios and the ability to optimize 

algorithms for deployment in dynamic environments. 

Together, the tabular metrics and graphical analysis underline the potential of these deep learning models for 

accurate and efficient spectrum sensing in cognitive radio systems. 
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Fig 4. Detection Probability vs SNR 

From the above graph we got the idea - The DBN proves to be a more robust and accurate model for detection tasks 

across varying SNR levels, particularly in low-SNR scenarios where noise significantly impacts detection accuracy. 

Table 4 While the SOM demonstrates reasonable performance, its limitations in higher detection probabilities at high 

SNR make it less suitable for applications requiring precision. 

C. Execution Time 

The time taken for the training and evaluation of each algorithm is summarized in Figure 5. The Self-Organizing Map 

(SOM) was the fastest, taking only 0.02 seconds, owing to its simpler architecture and competitive learning 

mechanism. In contrast, the Deep Belief Network (DBN) required 147.80 seconds due to the additional complexity 

of pre-training multiple Restricted Boltzmann Machine (RBM) layers and fine-tuning a neural network. 

This evaluation highlights the trade-off between model complexity and computation time.  Table 5 While the SOM 

offers rapid training and evaluation, it may not achieve the same level of accuracy as the DBN, which performs 

significantly better in terms of detection metrics but at the cost of increased computational time. These time 

measurements emphasize the need to balance computational efficiency with performance, depending on the specific 

requirements of the task. 

 

Fig 5. Execution Time Analysis 

CONCLUSION 

From the evaluation of the two algorithms—DBN and SOM—it is evident that both models performed effectively in 

their respective tasks. The DBN achieved exceptional performance with accuracy, precision, recall, and F1 score 

values exceeding 99%, as shown in Table 3. This highlights its reliability and robustness for classification tasks. 

Meanwhile, the SOM demonstrated solid clustering capabilities with accuracy and other evaluation metrics around 

95.77%. 

The time analysis, summarized in Figure 5, emphasizes the computational efficiency differences between the two 

algorithms. The SOM was significantly faster, requiring only 0.02 seconds for training and evaluation due to its 
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simpler architecture. In contrast, the DBN, being more complex with its pre-training and fine-tuning steps, required 

147.80 seconds. 

For applications where computational time is critical and simplicity is prioritized, SOM is an ideal choice due to its 

rapid execution. However, for tasks requiring high precision and reliability in classification, the DBN is the better 

option despite its longer computational time. 

Additionally, the Detection Probability vs. SNR graph, shown in Figure 4, provides valuable insights into the 

robustness of the models under varying SNR conditions. The DBN consistently outperformed the SOM across all SNR 

levels, demonstrating superior detection reliability, particularly in low-SNR environments. 

Overall, the choice between DBN and SOM depends on the specific requirements of the application, balancing the 

trade-offs between accuracy, computational efficiency, and strength under challenging conditions. 
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