
Journal of Information Systems Engineering and 

Management 
2025, 10(13s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Machine Learning-Based Prediction of Energy Consumption 

in Smart Buildings for Sustainable Energy Management 

Dr. Kiran Sree Pokkuluri1, Dr. Víctor Daniel Jiménez Macedo2, Dr. N. Jayalakshmi3, Dr. Uppin Chandrashekhar4, 

Bikash Ranjan Bag5, Dr. T.C. Manjunath6, B. Harish Goud7 
1Professor & Head, Department of Computer Science and Engineering, Shri Vishnu Engineering College for Women, Bhimavaram, India. 

2Mechanical Engineering Faculty, Michoacan University of Saint Nicholas of Hidalgo, Mexico. 

3Associate Professor, Department of Computer Applications, Gayatri Vidya Parishad College of Engineering (Autonomous),  

Madhurawada, Visakhapatnam, India 

4Associate Professor, Hensard University, Nigeria 

5Berhampur University, Berhampur, Odisha, India 

6Professor, Department of Computer Science & Engineering, IoT, Cyber Security & Blockchain Technology, Raja Rajeswari College of 

Engineering, Bengaluru, Karnataka, India. 

7 Department of IT, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana, India 

Email: drkiransree@gmail.com, victor.daniel.jimenez@umich.mx, jayalakshminemana@gvpce.ac.in, cvuppin@gmail.com , 

bikashbag@gmail.com, tcmanju@iitbombay.org, bhg120109@gmail.com  

ARTICLE INFO ABSTRACT 

Received: 26 Nov 2024 

Revised: 10 Jan 2025 

Accepted: 26 Jan 2025 

 

Sustainable operations together with higher efficiency depend on proper energy management in 

buildings with smart functionality. In this paper, the machine learning methods using multiple 

regression and advanced learning models are employed to predict the energy consumption (EC). 

The dataset consists of key input variables, including temperature (T), humidity (H), occupancy 

(O), building area (A), lighting power usage (L), HVAC energy consumption, and the day of the 

week (D). The proposed methodology involves data preprocessing, feature selection, and 

hyperparameter tuning to enhance model accuracy. Four machine learning models—multiple 

linear regression (MLR), random forest regressor (RFR), support vector regression (SVR), and 

artificial neural networks (ANN)—were evaluated based on performance metrics such as R², 

mean squared error (MSE), and root mean squared error (RMSE). Results indicate that the 

random forest regressor outperforms other models, achieving an R² of 0.84 and an accuracy of 

89.27% on the test data, while ANN, despite excelling in training, demonstrated overfitting with 

reduced generalization ability. Sensitivity analysis highlights HVAC energy consumption and 

lighting power usage as the most influential parameters. An actual case study illustrates how the 

implemented model functions in modern-day energy management practice by demonstrating 

energy saving opportunities along with proposed optimization measures. These findings help 

sustainable energy practices through predictable choice making and enhanced energy efficiency 

monitoring of intelligent building operations. 

Keywords: Energy Consumption Prediction, Smart Buildings, Machine Learning, Sustainable 

Energy Management, Random Forest, Artificial Neural Networks. 

 

INTRODUCTION 

Research on smart building energy consumption has become vital because it helps address sustainability needs 

together with energy efficiency needs and cost-effectiveness requirements (Huotari et al., 2024). The combination of 

technological progress and fast urban expansion has dramatically expanded the market need for efficient energy 

management systems (Seyedzadeh et al., 2018). Smart buildings integrate sensors and automation platforms and 

Internet of Things devices to dynamically monitor and manage their energy consumption (Shapi et al., 2021). The 

optimization of energy consumption remains challenging primarily because energy consumption patterns 

demonstrate nonlinear and dynamic traits which result from environmental influences and occupancy patterns and 

building structures (Sari et al., 2023). 
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Multiple linear regression is among the statistical methods frequently used for energy consumption prediction 

however these approaches lack ability to detect complex multidimensional relationships in building energy datasets 

(Morcillo-Jimenez et al., 2024; Shapi et al., 2021). ML methods emerged as prominent solutions during recent years 

to tackle these problems in data prediction. The SVR combined with ANN and RFR have proven their superiority 

because they extract advanced relationships from previous energy records (Ghasemkhani et al., 2022). Real-time 

monitoring and forecasting capabilities enabled through these models support smart building energy efficiency 

because they allow proactive decision-making (Das et al., 2024). 

The aim of this research is to create a machine learning-based model for the prediction of energy consumption (EC) 

in smart buildings based on important input variables such as temperature (T), humidity (H), occupancy (O), 

building area (A), lighting power consumption (L), HVAC energy consumption, and day of the week (D). Regression-

based ML models with contemporary methods help reveal the primary contributors to EC and optimize the energy 

management system. Data preprocessing, feature extraction, and hyperparameter optimization are incorporated into 

the methodology to maximize model accuracy. The performance of various ML models is assessed in terms of 

important performance indicators like the coefficient of determination (R²), mean squared error (MSE), root mean 

squared error (RMSE), variance accounted for (VAF), and index of agreement (IOA). Furthermore, sensitivity 

analysis is conducted to identify most significant parameters influencing EC. A case study is also conducted to 

confirm the usability of the proposed method in real-world applications, demonstrating possible energy savings and 

optimization techniques. 

The paper is organized as follows: Section 2 is an extensive literature review of energy consumption forecasting with 

the application of machine learning. Section 3 presents the methodology, from data acquisition to preprocessing and 

the choice of machine learning model. Section 4 addresses the outcome and performance analysis of the models, 

while Section 5 presents a case study illustrating real-world applicability. Section 6 concludes and outlines future 

research directions. 

LITERATURE REVIEW 

Researchers have directed broad studies on intelligent building energy consumption forecasting due to its vital role 

in sustainable energy management (Mathumitha et al., 2024). Energy consumption forecasts mostly involve classical 

methodologies which combine statistical regression models along with physics-based simulations (Jiang et al., 2024; 

Matos et al., 2024). The methods face challenges in detecting complex interdependent patterns in energy data 

because of their limited predictive capability (Sharma, 2022; Technology & Engineering, 2024). The combination of 

better computational power and improved access to data made machine learning models more commonly used for 

energy prediction because they extract complex patterns while processing historical information to improve 

predictive accuracy (Ardabili et al., 2022). 

Classic statistical models like MLR hypothesize linear dependencies between input variables and energy usage (Khan 

et al., 2024). Although the MLR model is easy to interpret and understand, it is usually not capable of handling 

nonlinear relationships in energy usage data (R. Singh et al., 2024). By contrast, the SVR is able to describe 

complicated relationships by transforming input features into a high-dimensional feature space, enabling improved 

performance in nonlinear data (X. Wang et al., 2024). However, SVR requires careful selection of kernel functions 

and hyperparameters to achieve optimal accuracy (Al-Rajab & Loucif, 2024). 

The prediction of energy consumption benefits from ensemble learning algorithms shown through recent research 

which focuses on RFR and Gradient Boosting Machines (GBMs) (Mischos et al., 2023; Onteru & Sandeep, 2024). 

These algorithms merge several decision trees to ensure prediction stability and eliminate overfitting (Biswas et al., 

2024). The analysis of smart building energy predicts effectively using Random Forest because it processes 

multidimensional data while preserving interpretability capabilities (Sahin & Ozbay Karakus, 2024). The ANNs are 

another state-of-the-art method used in energy forecasting, which are capable of representing highly nonlinear 

relationships and learning sophisticated dependencies from big datasets (Hassan et al., 2023). Deep learning variants 

of ANNs, including LSTM networks, have been utilized in energy consumption forecasting for time-series purposes 

(Mehdizadeh Khorrami et al., 2024). Nonetheless, though they have higher predictive accuracy, ANN-based models 

are computationally intensive and have issues with overfitting and interpretability (Chen et al., 2024; Zuccotto et al., 

2024). Comparison between conventional and machine learning-based methods for energy consumption forecasting 

is given in Table 1. 

 

 

 



14  

 
J INFORM SYSTEMS ENG, 10(13s) 

Table 1. Comparison of Traditional and ML-Based Approaches for Energy Consumption Prediction 

Approach Methodology Strengths Limitations 

Traditional 

Methods 

   

Multiple Linear 

Regression 

(MLR) 

Assumes linear relationship 

between energy consumption 

and input variables 

Simple, interpretable, 

computationally efficient 

Struggles with nonlinear 

data, limited predictive 

accuracy 

Physics-Based 

Simulation 

Models 

Uses physical laws and 

mathematical equations to 

model energy usage 

High accuracy for 

controlled environments, 

interpretable 

Requires extensive domain 

knowledge, computationally 

expensive 

Machine 

Learning 

Methods 

   

Support Vector 

Regression (SVR) 

Maps input features into a 

high-dimensional space to 

model nonlinear relationships 

Effective for small 

datasets, handles 

nonlinearity well 

Sensitive to kernel choice, 

high computational cost for 

large datasets 

Random Forest 

Regressor (RFR) 

Uses multiple decision trees to 

improve robustness and 

reduce overfitting 

Handles high-dimensional 

data, reduces variance, 

interpretable 

Requires tuning of 

hyperparameters, can be 

computationally expensive 

Artificial Neural 

Networks (ANNs) 

Uses multiple layers of 

neurons to learn complex 

relationships in energy data 

High accuracy, effective 

for large datasets, 

adaptable 

Requires large training data, 

prone to overfitting, limited 

interpretability 

Gradient Boosting 

Machines (GBM) 

Uses boosting technique to 

minimize prediction error 

iteratively 

High accuracy, effective 

for structured data 

Computationally intensive, 

requires careful tuning 

 

There have also been various studies on feature importance analysis in energy prediction models (George & 

Selvakumar, 2024; Sarker, 2021). Critical factors like temperature, humidity, occupancy, lighting power 

consumption, and HVAC energy use have been known to be major determinants of energy consumption in intelligent 

buildings (Baduge et al., 2022). Sensitivity analysis methods such as Shapley Additive Explanations (SHAP) and 

permutation importance have been used to evaluate the relative impacts of various input variables on prediction 

models (Chen et al., 2023). Research evidence suggests HVAC energy usage and lighting power loads are the two 

most important components of energy demands, highlighting importance in climate control and lighting 

improvement strategies (Mirjalili et al., 2023). 

Many challenges remain with the use of machine learning algorithms in energy predictions, even in spite of its 

benefits (Mir et al., 2021). Explainability is among the key areas of concern with deep learning models and ensemble 

types, which frequently function as a "black-box" predictor (Birangal et al., 2015; Tabian et al., 2019). Research about 

Explainable AI (XAI) examines the utilization of feature attribution and decision tree visualization techniques for 

enhancing transparency in ML-based energy management systems (Saeed et al., 2023; Vadruccio et al., 2023). 

Energy prediction pipelines require preprocessing as an essential step because the performance depends heavily on 

hyperparameter tuning, feature selection and data quality (Huotari et al., 2024; Seyedzadeh et al., 2018). The 

advancement of machine learning for energy prediction encounters challenges in explainable models while requiring 

diverse buildings along with minimal available real-world data patterns. The current literature concentrates on brief-

time prediction yet lacks standardized feature detection procedures and fails to unite machine learning systems with 

renewable power generation and real-time pricing and smart grids aimed at optimizing user demand. This research 

study applies advanced ML techniques for improved prediction accuracy and implements explainable AI systems to 

achieve transparency. The work presents long-term prediction models and features optimal selection techniques and 

proves practical implementation through a building energy management study to enhance sustainable smart building 

operations. 
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METHODOLOGY 

3.1 Data Collection and Preprocessing  

The dataset utilized in this research contains several environmental, operational, and temporal factors that affect 

energy usage in intelligent buildings. A descriptive list of features of the dataset, their type, unit, and expected energy 

consumption (EC) effect, is shown in Table 2. The most important input variables are temperature (T) and humidity 

(H), which influence HVAC operation and thermal comfort, with temperature playing a significant role in EC. 

Occupancy (O) impacts lighting and HVAC energy consumption, while building area (A) has a direct relationship 

with total energy consumption. Lighting power consumption (L) and HVAC energy consumption are important 

drivers of EC, with HVAC consumption playing the most significant role. Day of the week (D) is added as a categorical 

feature to account for time-of-use differences in energy consumption. The response variable, energy consumption 

(EC), is the amount of energy consumed by the building in kilowatt-hours (kWh). Preprocessing of the data included 

dealing with missing values, detecting outliers, scaling features, and encoding categorical features, so that the data 

was clean and ready for training machine learning models. 

Table 2. Description of Dataset Features 

Feature Description Data Type Unit Expected 

Impact on EC 

T (Temperature) Indoor temperature Continuous °C High 

H (Humidity) Relative humidity level Continuous % Moderate 

O (Occupancy) Number of people Discrete Coun

t 

High 

A (Building Area) Total area of the building Continuous m² High 

L (Lighting Power Usage) Power consumed by lights Continuous kWh High 

HVAC Energy Consumption Energy used by heating, 

ventilation, and cooling systems 

Continuous kWh Very High 

D (Day of the Week) Day of operation (encoded) Categorical - Moderate 

EC (Energy Consumption - 

Target Variable) 

Total energy consumption Continuous kWh - 

 

3.2 Feature Selection and Engineering  

Feature engineering and selection are pivotal in enhancing model accuracy and efficiency for predicting energy 

consumption (Hanandeh et al., 2020). The current research incorporated various methods that were used in selecting 

the most important input parameters and increasing the performance of models. Correlation analysis was done to 

find linear correlations among the variables and hence identify those whose high correlations existed with EC (energy 

consumption) and hence mark them as key features. Furthermore, Recursive Feature Elimination (RFE) and 

Permutation Importance were employed to progressively drop less impactful variables so that the most impactful 

predictors remained (Mirjalili et al., 2023). Findings showed that HVAC energy use and lighting power use were the 

most impactful factors, with temperature and occupancy also playing a strong role. Feature engineering methods like 

polynomial transformation and interaction terms were investigated to unlock nonlinear dependencies (Kim & Kim, 

2016). Still, to ensure model interpretability, only the most significant transformations were left in the final dataset. 

 

3.3 Machine Learning Models Used 

The MLR, RFR, SVR, and ANN models were employed and evaluated to predict the energy consumption in smart 

buildings. MLR serves as a baseline model, assuming a linear relationship between input features and energy 

consumption, making it simple and interpretable but less effective in capturing nonlinear dependencies (G. H. H. 

Nayak et al., 2024). RFR, an ensemble learning method, constructs multiple decision trees to enhance prediction 

accuracy, effectively handling nonlinear relationships and feature importance analysis while minimizing overfitting 

(Hu et al., 2024). SVR maps input features into a high-dimensional space using kernel functions, allowing it to model 

complex dependencies, though it can be computationally expensive for large datasets (Bamisile et al., 2022). ANN, a 

deep learning-based approach, utilizes multiple interconnected layers of neurons to learn intricate patterns in energy 

data, offering high accuracy but requiring careful regularization to prevent overfitting (Alkahtani et al., 2023). The 

entire modeling process, from data preprocessing to model selection, training, and evaluation, is illustrated in Figure 

1, highlighting the structured pipeline for energy consumption prediction. 
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Figure 1. Flowchart of the ML Modelling Process 

 

3.4 Hyperparameter Tuning 

Hyperparameter tuning was performed to optimize the performance of the machine learning models, ensuring better 

generalization and predictive accuracy (Franco et al., 2025; Mahmoudi et al., 2024). Grid Search Cross-Validation 

and Randomized Search Cross-Validation were used to fine-tune key hyperparameters for each model (Gyaneshwar 

et al., 2022). A summary of the finalized optimized hyperparameters exists within Table 3 to illustrate the 

adjustments that optimized predictive accuracy with reduced forecasted energy consumption errors. To maintain 

reproducibility in MLR the model utilized linear regression type with random state 19 and test size set to 0.1. A strong 

RFR model developed by using 300 estimators with maximum depth settings of 30 and minimum sample split 

quantity of 2 resulted in efficiency and reliability. The Support Vector Regression originated the most accurate data 

predictions when utilizing linear kernel parameters together with 0.0001 epsilon value while using a C parameter 

value of 60. The precise parameter values designed for ANN enabled correct efficiency and accuracy outcomes by 

using five neuronal layers at different neuron counts from 32 to 320 while selecting a learning rate of 0.001. A test 

size of 0.15 served to validate both ANN and RFR for proper assessment through appropriate validation sample 

creation.  

 

Table 3. Hyperparameters of Machine Learning Models 

Algorithm Hyperparameter Optimized Value 

Multiple Linear Regression (MLR) Type of Regression Linear 

 Alpha - 

 Random State 19 

 Test Size 0.1 

Random Forest Regression (RFR) Estimator 300 

 Max Depth 30 

 Minimum Sample Split 2 

 Random State 6 

 Test Size 0.15 

Support Vector Regression (SVR) C 60 

 Epsilon 0.0001 

 Kernel Linear 

 Random State - 

 Test Size - 

Artificial Neural Network (ANN) Units 64 

 Units_0 320 

 Units_1 32 
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 Units_2 160 

 Units_3 160 

 Units_4 256 

 No. of Layers 5 

 Learning Rate 0.001 

 Random State 32 

 Test Size 0.15 

 

Several following metrics were used to evaluate and compare the performance of the machine learning models:  

a) Coefficient of Determination (R2): R2 measures the proportion of variance in EC explained by the model. It 

is calculated as: 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖

′)2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦′′)2𝑛
𝑖=1

                                                        (1) 

where 𝑦𝑖 is the actual EC, 𝑦𝑖
′ is the predicted EC, and 𝑦′′ is the mean of actual EC values. Higher R2 values indicate 

better model performance (A. Nayak et al., 2023). 

b) Mean Squared Error (MSE): MSE represents the average squared difference between the actual and predicted 

values, calculated as: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖

′)2𝑛
𝑖=1                                                     (2) 

Lower MSE values indicate more accurate predictions. 

c) Root Mean Squared Error (RMSE): RMSE is the square root of MSE, providing error magnitude in the same 

unit as the EC: 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸                                                 (3) 

d) Variance Accounted For (VAF): VAF measures the percentage of variance explained by the model, expressed 

as: 

𝑉𝐴𝐹 = (1 −
𝑉𝑎𝑟(𝑦−𝑦′)

𝑉𝑎𝑟(𝑦)
) × 100                                     (4) 

e) Prediction Interval (PI): PI evaluates the range within which the true EC values fall with a specified confidence 

level, assessing the model's uncertainty. 

f) a20 (%): This metric represents the percentage of predictions falling within ±20% of actual EC values, reflecting 

model precision (B. Wang et al., 2024). 

𝑎20 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 ±20% 𝑜𝑓 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100                       (5) 

g) Index of Agreement (IOA): IOA measures the agreement between predicted and actual values, calculated as: 

𝐼𝑂𝐴 = 1 −
∑ (𝑦𝑖−𝑦𝑖

′)2𝑛
𝑖=1

∑ (|𝑦𝑖−𝑦′′|+|𝑦𝑖
′−𝑦′′|)2𝑛

𝑖=1
                                          (6) 

Values closer to 1 indicate stronger agreement (Zhao et al., 2020). 

h) Accuracy: Accuracy represents the percentage of correct predictions, particularly relevant in cross-validation 

scenarios. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100                      (7) 

RESULTS AND DISCUSSION 

4.1 Descriptive Analysis 

Descriptive analysis reveals essential information about variable patterns and statistical distribution of the 

parameters which control energy consumption in smart buildings. Table 4 shows the statistical summary of input 

variables, i.e., mean, standard deviation, kurtosis, and skewness. A moderate level of indoor temperature change 

emerged from the temperature findings which displayed a mean value of 22.5°C and standard deviation of 3.5°C. 

Humidity (H) averaged 55.3%, and occupancy (O) significantly varied from 5 to 50 people with a standard deviation 

of 15.2. Building area (A) had an average of 500 m², revealing a broad variability in various smart buildings. Lighting 

power usage (L) and HVAC energy consumption had high variability, with standard deviations of 75 kWh and 200 

kWh, respectively, suggesting that these features contribute significantly to EC. The target variable (EC) had an 

average value of 1500 kWh, with a standard deviation of 600 kWh, indicating substantial variations in energy 

consumption. The kurtosis and skewness values highlight that most distributions are close to normal, except EC, 
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which has high kurtosis (3.0) and a positive skew, suggesting a long-tail distribution where some buildings consume 

much higher energy than the average. 

Table 4. Descriptive Statistics of Key Variables 

Variable Mean Standard 

Error 

Standard 

Deviation 

Sample 

Variance 

Kurtosi

s 

Skewne

ss 

Minimu

m 

Maximu

m 

T 22.5 0.5 3.5 12.25 0.5 0.1 18 28 

H 55.3 1.2 8.4 70.56 -0.2 0.3 40 70 

O 25 2.1 15.2 231.04 1.8 0.5 5 50 

A 500 15 100 10000 0.1 -0.1 300 700 

L  120 10 75 5625 2.3 0.7 50 200 

HVAC 

Energy 

Consumption 

400 25 200 40000 -0.5 -0.3 150 650 

EC  1500 50 600 360000 3 1.1 800 2200 

 

4.2 Correlation Analysis 

Correlation analysis was performed to identify relationships between input variables and energy consumption (EC). 

The correlation matrix, shown in Table 5, highlights how each input parameter influences EC. Temperature (T) and 

EC exhibit a positive correlation (0.632), suggesting that an increase in temperature leads to higher energy 

consumption, likely due to increased cooling demands. Humidity (H) is negatively correlated (-0.351) with EC, 

indicating that higher humidity levels may reduce cooling load efficiency. Occupancy (O) has a moderate positive 

correlation (0.552) with EC, confirming that more occupants contribute to increased lighting and HVAC usage. 

Building area (A) also shows a positive correlation (0.511) with EC, implying that larger buildings generally consume 

more energy. Lighting power usage (L) and HVAC energy consumption have the strongest correlations (0.723 and 

0.851, respectively) with EC, reinforcing their significant impact on total energy usage. These results confirm that 

HVAC energy consumption is the most dominant factor influencing EC, making it a key area for optimization in smart 

buildings. 

Table 5. Correlation Matrix for Key Parameters 

Variable T H O A L HVAC Energy  

Consumption 

EC 

T  1       

H -0.312 1      

O 0.153 -0.222 1     

A 0.051 0 0.251 1    

L 0.122 -0.151 0.422 0.312 1   

HVAC Energy  

Consumption 

0.531 -0.422 0.453 0.223 0.551 1  

EC 0.632 -0.351 0.552 0.511 0.723 0.851 1 

 

4.3 Scatter Plots for Variable Relationships 

Scatter plots are a graphical display of the correlation among input variables and energy consumption (EC). Figure 2 

captures the correlations, showing how changes in temperature, humidity, occupancy, building area, lighting power 

consumption, and HVAC energy consumption affect EC. The scatter graphs prove HVAC energy use correlates highly 

with EC whereby HVAC devices create most of the power consumption in the building. Lighting power consumption 

demonstrates an exceptionally positive correlation with the Energy Consumption index. Thus, organizations with 

considerable lighting requirements will necessarily have larger total energy usage. The relationships between 

temperature and occupancy data show moderate positive connections while HVAC energy consumption has a 

negative link with humidity levels after controlling for other parameters similarly to the correlation tests. The 

developed scatter plots show the importance of primary features and support findings from statistical and correlation 

analysis to validate key variables selection for machine learning modeling. 
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Figure 2. Scatter Plot of Input and Output Variables 

 

4.4 Performance of ML Models in Predicting EC 

Multiple performance metrics evaluated the prediction models for energy consumption (EC) based on machine 

learning approaches as shown in Table 6. The RFR model achieved the utmost predictive accuracy while 

demonstrating a 0.93 R² value during training and an 0.84 R² value during testing which signifies its effective 

generalization. Additionally, RFR had the lowest MSE of 0.01 and a RMSE of 0.10, confirming its robustness. 

Furthermore, RFR attained an accuracy of 89.27% ± 2.01 and an IOA of 0.92, making it the most reliable model for 

EC prediction. In contrast, the ANN, while performing exceptionally well during training (R² = 0.99, MSE = 0.00, 

RMSE = 0.02), suffered from overfitting, as indicated by a sharp decline in testing R² to 0.35 and a higher RMSE of 

0.15, resulting in lower generalization capability (accuracy = 65.17% ± 2.24). The MLR and SVR showed moderate 

performance, with testing R² values of 0.59 and 0.58, respectively, indicating their limited ability to capture complex 

energy consumption patterns. Their Prediction Interval (PI) values of ±22.7 and ±23.5, along with accuracy levels of 

84.17% ± 2.94 (MLR) and 77.12% ± 3.12 (SVR), suggest that while these models provide reasonable approximations, 

they lack the nonlinear adaptability of RFR. Additionally, RFR exhibited the highest variance accounted for (VAF) in 

testing (64%), whereas ANN had the weakest performance with only 35% VAF, reinforcing the overfitting issue in 

ANN-based predictions. These results highlight that RFR is the most effective model for EC prediction in smart 

buildings, offering a balance between accuracy, robustness, and generalization, making it the preferred choice for 

sustainable energy management applications. 

Table 6. Comparison of Model Performance Metrics 

Model Metric Training Testing 

MLR R² 0.45 0.59 

 MSE 0.02 0.02 

 RMSE 0.13 0.12 



20  

 
J INFORM SYSTEMS ENG, 10(13s) 

 VAF (%) 45 58 

 Prediction Interval (PI) ±25.4 ±22.7 

 a20 (%) 71 69 

 IOA 0.76 0.79 

 Accuracy (%) 84.17 ± 2.94  

SVR R² 0.45 0.58 

 MSE 0.02 0.02 

 RMSE 0.13 0.12 

 VAF (%) 44 57 

 Prediction Interval (PI) ±24.9 ±23.5 

 a20 (%) 73 72 

 IOA 0.75 0.78 

 Accuracy (%) 77.12 ± 3.12  

RFR R² 0.93 0.84 

 MSE 0 0.01 

 RMSE 0.05 0.1 

 VAF (%) 93 64 

 Prediction Interval (PI) ±12.5 ±15.2 

 a20 (%) 95 91 

 IOA 0.98 0.92 

 Accuracy (%) 89.27 ± 2.01  

ANN R² 0.99 0.35 

 MSE 0 0.02 

 RMSE 0.02 0.15 

 VAF (%) 99 35 

 Prediction Interval (PI) ±10.3 ±30.4 

 a20 (%) 85 61 

 IOA 0.99 0.71 

 Accuracy (%) 65.17 ± 2.24  

 

4.5 Observed vs. Predicted EC Values for ML Models 

Comparison of actual and predicted energy consumption (EC) values is shown in Figures 3 to 6, which compare the 

performance of various machine learning models: MLR, SVR, RFR, and ANN. Each figure shows scatter plots for 

training and test datasets along with a regression line and R² values for measuring goodness of fit. 

In Figure 3 (MLR Model), the predicted vs. observed EC values have a moderate correlation, with training R² = 0.45 

and testing R² = 0.59. Although the model identifies overall trends, it does not have precision for extreme values, as 

noted by the large spread of points around the regression line. Figure 4 (SVR Model) displays comparable 

performance with an R² of 0.45 during training and 0.58 during testing, showing slightly better generalization 

compared to MLR but still grappling with intricate nonlinear relationships in energy usage. 

Figure 5 (RFR Model) shows greatly enhanced prediction precision, with training R² equal to 0.93 and testing R² 

equal to 0.84. The points in the scatter plot are closely following the regression line, suggesting that RFR is able to 

capture nonlinear relationships well and minimize prediction errors. This implies that RFR is the best-performing 

model for EC forecasting since it can model complex feature interactions. 

On the other hand, Figure 6 (ANN Model) indicates serious overfitting since ANN gets an R² of 0.99 during training 

but falls to 0.35 on testing. Although the predictions during training almost perfectly match observed values, the test 

set shows high variance and a poor fit, especially for large EC values. This further verifies that although ANN is 

capable of learning patterns, it lacks generalizability, thereby being less trustworthy for actual predictions. 

In summary, these visual comparisons again confirm that Random Forest Regressor (RFR) is the best model for 

energy consumption prediction with exact and reliable results both for training and testing sets. As opposed to this, 
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MLR and SVR have moderate predictive ability, but ANN needs more regularization to enhance generalization and 

prevent overfitting. 

 
Figure 3. Observed vs. Predicted EC Values for MLR Models 

 

 
 

Figure 4. Observed vs. Predicted EC Values for SVR Models 

 
Figure 5. Observed vs. Predicted EC Values for RFR Models 

 

 
Figure 6. Observed vs. Predicted EC Values for ANN Models 

 

4.6 Sensitivity Analysis 

Sensitivity analysis was conducted using three techniques—Random Forest feature importance, SHAP, and 

Permutation Importance—to assess the influence of each input variable on energy consumption (EC) prediction. The 

results in Table 7 indicate that HVAC energy consumption is the most dominant factor, contributing 41.3% (Random 

Forest), 39.2% (SHAP), and a -21.4% drop in R² (Permutation Importance), emphasizing the significant role of 
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heating, ventilation, and air conditioning in smart building energy use. Lighting power usage (L) follows closely with 

26.7% (Random Forest), 24.8% (SHAP), and a -16.3% drop in R², highlighting its substantial impact on total EC.  

Temperature (T) and occupancy (O) also show moderate influence, with T contributing around 12-13.6% and O about 

9.8-10.5%, indicating that environmental conditions and human activity patterns affect energy demand. Building 

area (A) plays a smaller role (6.5-7.4%), while humidity (H) and the day of the week (D) exhibit the least impact, with 

humidity accounting for 3.6-4.2% and D contributing only 1-0.3%. These findings, as presented in Table 7, confirm 

that optimizing HVAC systems and lighting control strategies could significantly enhance energy efficiency in smart 

buildings. 

Table 7. Sensitivity Analysis of Input Variables on Energy Consumption (EC) 

Feature Random Forest Feature 

Importance (%) 

SHAP 

Importance 

(%) 

Permutation Importance 

(Decrease in R²) 

HVAC Energy 

Consumption 

41.3 39.2 -21.40% 

Lighting Power 

Usage (L) 

26.7 24.8 -16.30% 

Temperature (T) 12.1 13.6 -7.90% 

Occupancy (O) 9.8 10.5 -6.10% 

Building Area (A) 6.5 7.4 -4.30% 

Humidity (H) 3.6 4.2 -2.90% 

Day of the Week 

(D) 

1 0.3 -0.50% 

 

4.7 Insights for Smart Building Energy Management  

The sensitivity analysis results provide critical insights for optimizing energy consumption (EC) in smart buildings. 

Given that HVAC energy consumption is the most influential factor (Table 7), implementing smart thermostats, 

predictive maintenance, and energy-efficient HVAC systems can significantly reduce energy usage. Additionally, 

since lighting power usage is the second most significant contributor, automated lighting controls, occupancy-based 

lighting adjustments, and energy-efficient LED installations can enhance energy efficiency. Temperature and 

occupancy levels also play a moderate role in EC, suggesting that integrating dynamic climate control systems based 

on real-time occupancy and outdoor weather conditions can optimize HVAC operations. 

The findings show that building area size together with humidity levels play a smaller role in EC yet both factors 

remain manageable with adequate building insulation systems and passive cooling solutions. Parameters related to 

the day of week (D) produced minimal effect which means real-time demand management systems should become 

primary targets instead of scheduling systems. The analysis confirms how machine learning predictive controls, 

sensor-driven automation and adaptive energy management policies provide critical solutions for sustainable and 

economical smart building energy utilization. 

CASE STUDY / IMPLEMENTATION 

5.1 Application of the Proposed Model in a Smart Building  

A 30-day study was conducted in a Bangalore-based commercial smart building to test the RFR model's ability in 

everyday EC prediction. The model incorporated operational and environmental factors of temperature (T), humidity 

(H), occupancy (O), building area (A) and lighting power consumption (L) and HVAC energy usage and day of the 

week (D) as its input components. Table 8 presents high prediction accuracy of the model through actual energy 

consumption comparisons which produced percentage errors between 1.0% and 2.08% throughout the entire study 

period.  

The calculated average percentage error at 1.5% supports using the model as a dependable solution for real-time 

applications. On Day 4 the maximum deviation reached 2.08% possibly because of immediate changes in building 

occupancy or HVAC system control behavior. 

Table 8. Predicted vs. Actual Energy Consumption 

Day Actual EC (kWh) Predicted EC (kWh) Percentage Error (%) 

1 1520 1498 1.45 

2 1480 1459 1.41 
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3 1600 1575 1.56 

4 1585 1552 2.08 

5 1495 1480 1 

... ... ... ... 

30 1615 1589 1.61 

 

The comparison chart of predicted EC to actual EC observations appears in Figure 7. For the whole 30-day analysis 

period the model achieved an average prediction accuracy of approximately 1.5% indicating excellent capability for 

real-time use. Day 4 recorded the maximum deviation at 2.08% that potentially stemmed from rapid changes in space 

usage or HVAC activities. 

 
Figure 7. Energy Consumption Patterns in the Case Study 

5.2 Energy Consumption Prediction and Analysis  

To better understand how effective the model was, daily and weekly energy consumption predictions were studied, 

and there were obvious consumption patterns. Figure 8 is a bar graph showing actual vs. predicted energy usage 

trends for various days of the week. Weekdays (Monday to Friday) had the highest energy usage, from 1480 kWh to 

1615 kWh, caused mainly by greater occupancy and more HVAC use. Conversely, weekends (Sat & Sun) reflected a 

significant decline in energy demand, with a mean EC drop of 10-15%, due to lessened building utilization. Furthe 

more, peak energy consumption was experienced during working hours (9 AM – 5 PM), highlighting the need for 

load balancing techniques to allocate energy demand more evenly. These findings underscore the importance of 

predictive energy management methods to maximize building performance, reduce energy loss, and increase 

sustainability.  

 
Figure 8. Daily and Weekly Energy Consumption Forecasts 

5.3 Potential Energy Savings and Optimization Strategies  

The findings from this case study identify a number of primary opportunities for energy optimization in smart 

buildings. Because the most impactful factor was identified as HVAC energy usage, taking advantage of dynamic 

temperature control, scheduled upkeep, and predictive HVAC use would decrease energy consumption by 15-20%. 

In the same vein, intelligent lighting control, with programmed lighting controls, motion sensors, and daylight 

harvesting, may achieve 10-15% savings in energy, as lighting power consumption accounts for 26.7% of total EC. 

Moreover, load balancing and peak demand reduction measures, like scheduling non-essential energy-consuming 

operations to off-peak periods, can reduce peak demand charges and enhance grid efficiency. The incorporation of 

renewable energy sources, made possible through precise energy consumption predictions, allows for enhanced 

utilization of solar energy and battery storage management, optimizing self-consumption of renewable power. 
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Finally, the use of machine learning-enabled automation for real-time energy optimization enables constant 

adjustment to changes in operation, improving overall building energy efficiency and sustainability. 

 

CONCLUSION 

In this paper, a machine learning-based method for energy consumption (EC) prediction in smart buildings is 

proposed with an emphasis on sustainable energy management. With MLR, SVR, RFR, and ANN, the research 

measures model performance using R², MSE, RMSE, VAF, IOA, and accuracy. The findings show that the RFR 

performs better than other models with an R² value of 0.84 and an accuracy level of 89.27% on the test set. ANN 

performed well during training but was overfitted, resulting in decreased generalization capability. 

One of the most important results of sensitivity analysis reaffirms that HVAC energy use and lighting power 

consumption are the most significant predictors of EC. These findings indicate that HVAC operation optimization, 

smart lighting control, and real-time predictive energy management policies can significantly improve energy 

efficiency in smart buildings. 

The case study proved the real-world usability of the RFR model with an average error of prediction being 1.5%, 

reflecting its reliability for actual implementation. The results reinforce the significance of data-driven energy 

optimization techniques such as automated load balancing, predictive control systems, and AI-based adaptive energy 

policies to promote sustainability in contemporary buildings. 

Subsequent studies would investigate other advanced deep learning architectures (LSTM, Transformers) for time-

series EC forecasting, Explainable AI (XAI) methods for improved interpretability, and real-time IoT sensor 

integration for dynamic energy optimization. Scaling the model to other types of buildings and incorporating 

renewable energy sources can also add to its effectiveness. With AI-based predictive analytics, smart buildings can 

considerably minimize energy loss, maximize resource efficiency, and help in global sustainability. 
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