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The software requirements selection process, a crucial step in software development, is a 

complex task. It involves identifying the most beneficial set of requirements for a software 

release while adhering to budget constraints. This problem, known as the next release problem 

(NRP), is challenging and classified as a non-deterministic polynomial (NP) hard problem. 

Interdependencies and other limitations further complicate the specified criteria. Selecting a 

specific set of requirements for the upcoming software release is a computationally 

challenging issue, falling under the category of NP-Hard problems. This paper proposes a 

hybrid method called MO-ACO-DE, which combines Multi-Objective Ant Colony Optimization 

with Differential Evolution to solve the multi-objective NRP. This work defines the NRP as a 

multi-objective optimization problem with two challenging objectives: customer satisfaction 

and development cost. Additionally, three constraints are introduced to address two real-

world instances of the NRP. The proposed approach combines the management techniques of 

ant colony optimization (ACO) with the operators of the differential evolution (DE) algorithm 

to balance the exploitation and exploration stages of the optimization process. Both 

benchmark and real-world classic and realistic datasets were used for the experimental 

analysis of the proposed model. The results indicate that MO-ACO-DE outperforms other 

methods and enhances the fairness of requirement selection, especially when budget 

limitations are decreased. 

Keywords: software requirements, multi-objective, next release problem, NP-hard, ant 

colony optimization, differential evolution. 

 

INTRODUCTION 

Requirement elicitation and determination are the initial stages in software engineering that are crucial for 
software development. Requirement engineering is the systematic procedure of collecting, examining, and 
recording client software requirements. A sequential elicitation process produces a list of software 
development needs. Getting accurate search results that meet client needs is a major obstacle for requirement 
engineers. This problem arises from inadequate communication, leading to poor satisfaction rates and 
increased project costs. The incremental development technique is a highly renowned strategy for software 
development in the field of software engineering, and it is particularly well-suited for projects of a large scale. 
This process is employed to create the program in several iterations. Each release corresponds to a certain set 
of requirements exclusively established by the software firm. Developing all of the provided needs is 
challenging due to limitations in the project budget, project delivery timeline, technology, and inherent 
requirement conflicts [2]. Choosing an appropriate subset of criteria is exceedingly challenging and prone to 
mistakes in large-scale projects. Hence, it is important to have a technique to determine the suitable subset of 
requirements that may aid the development team in making more informed choices [3]. Numerous 
applications have extensively utilized artificial intelligence and stochastic learning [4-10]. Optimization plays a 
significant role, directly or indirectly, in several applications of artificial intelligence and stochastic learning 
[11–18]. Challenges with software could be seen as exemplary instances of these applications. It is well-
recognized that in today's corporate environment, consumer relationships and requirements are subject to 
ongoing change and increasing complexity [19]. To thrive in today's highly competitive marketplace, software 
businesses must regularly update their current software versions. Selecting the appropriate needs for inclusion 
in the next software version is a crucial aspect of the requirements analysis process for a software project. This 
ensures that the firm maximizes its profits while controlling costs [20]. Sometimes, a client may make a 
request that contradicts another client's request. Needs are classified based on the necessary characteristics 
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and relationships [21, 22]. The interdependencies between requirements, the firm budget, and the constrained 
timeline make it impossible to satisfy all client demands. What are the prerequisites for the next software 
release? The Next Release Problem (NRP) is a single objective issue that was initially posed by Bagnall in 2001 
and is NP-Hard (NPH) [23]. As a result, meta-heuristic algorithms are often used to tackle these problems. 
Heuristic search employs stochastic elements to discover optimal solutions for optimization problems without 
exhaustively exploring the full search space [24]. As mentioned in [25], population-based algorithms are 
meta-heuristic algorithms that work with a set of solutions throughout each iteration. Nature-inspired 
optimization algorithms are a substantial subset of population-based algorithms. Their motivation stems 
from natural evolution, and their objective is to manage a set of solutions in each generation of the 
optimization process [26]. Nature-inspired optimization algorithms, such as evolutionary, physics, and 
swarm-based algorithms, can tackle complex problems in several fields [27]. 

Multi-objective optimization is a process that simultaneously optimizes two or more objective functions. The 
multi-objective optimization problem results in a collection of answers known as the Pareto optimal solutions 
set [5]. Search-based software engineering has experienced significant expansion in recent years. This 
approach uses search-based algorithms to address a range of difficulties. This research presents a method for 
addressing the Multi-Objective Network Routing Problem (MNRP) using a combination of a multi-objective 
ant colony optimization and a differential evolution algorithm (MO-ACO-DE). The MO-ACO-DE method 
integrates the features of ant colony optimization (ACO) and differential evolution (DE) algorithms. The 
hybridization method facilitates the optimization process's efficient use, exploration, and convergence. 
Furthermore, this novel method improves multi-ACO performance by efficiently balancing global and local 
search capabilities. The aim is to showcase that the suggested methodology successfully acquires optimal 
solutions for MO-NRP while preserving the variety of choices on the Pareto front. To accomplish efficient 
requirement selection, MO-ACO-DE integrates many objectives and constraints. The MO-ACO-DE method 
achieved superior results to DE, ACO, and other state-of-the-art algorithms. The research's main contributions 
are succinctly outlined below: 

 The model effectively manages intricate requirement dependencies in NRP, leveraging ACO's 
combinatorial optimization strengths and DE's local search enhancements. 
 Combining ACO with DE leads to high-quality, diverse solutions, providing decision-makers with a 
wide range of optimal trade-offs. 

  The hybrid model speeds up convergence towards the Pareto front using DE's mutation and 
crossover, enhanced by ACO's guided search process.  
 The hybrid approach is scalable and adaptable, suitable for various NRP instances, from small projects 
to large software systems, ensuring broad applicability and practical utility in release planning. 

The subsequent sections of the article are structured as follows: Section 2 offers an overview of previous 
research and studies in the field. Section 3 delineates the Multi-Objective Next Release Problem (MO-NRP) 
and details the formulation of the multi-objective NRP. Section 4 introduces the proposed MO-ACO-DE 
algorithm tailored for MONRP. Section 5 discusses the dataset and evaluation measures and presents 
experimental results. Section 6 concludes the findings and insights derived from the study.  

LITERATURE REVIEW 

The next release issue was presented in SBSE as an optimization difficulty [28]. Conventional techniques 
including simulated annealing (SA), greedy algorithms, linear programming, and hill-climbing (HC) have been 
used to solve the NRP [28,29]. These approaches consider the NRP as a single-objective problem by 
combining the goals. The Multi-Objective Next Release Problem (MNRP) was subsequently defined using the 
Multi-Objective Programming (MOP) framework [30]. Various approaches to solving the MNRP problem have 
been investigated, including the use of multi-objective Genetic Algorithms (GA), Non-dominated Sorting 
Genetic Algorithm II (NSGA-II), Pareto Envelope-based Selection Algorithm (PESA), and Strength Pareto 
Evolutionary Algorithm II (SPEA2) [7,8]. Furthermore, the Whale Optimisation Algorithm (WOA), Grey Wolf 
Optimiser (GWO), NSGA-II, and SPEA2 [31,32] have been recently utilized in various studies. Genetic 
algorithms have effectively solved the NRP [33] and MNRP [34]. Evolutionary methods such as Teaching-
Learning-Based Optimisation (TLBO), multi-objective Artificial Bee Colony (MABC), and Ant Colony 
Optimisation (ACO) have been suggested to address certain cases of MONRP [35]. Chavez et al. [36] presented 
a bi-objective Teaching-Learning-Based Optimisation (TLBO) algorithm and created a multi-objective 
Differential Evolution (DE) approach utilizing Pareto tournaments [37]. 

In [38], the authors emphasize the applicability of NRP within a constrained goal model, highlighting the 
hierarchical nature of needs and their interdependencies. Their study focused on achieving specific goals using 
inference models to explore POSS. In another study, [39] the MONRP was addressed using an enhanced 
binary Particle Swarm Optimization (PSO) algorithm combined with a greedy-random swarm initiation 
technique. This enhancement incorporated priority relations among criteria and introduced additional 
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velocity vectors per particle. Their fitness function weighted overall satisfaction and development costs of 
chosen needs, aiming for specific optimal solutions rather than POSS. However, MOPSO algorithms, known 
for rapid convergence, face challenges of premature termination and false Pareto optimal solutions in multi-
objective optimization [40]. Researchers in [41] have presented a method by which a virtual savant (VS) can 
independently acquire the capacity to solve the fundamental NRP accurately and efficiently. This method 
encompasses a general problem-solving approach that integrates machine learning and heuristics to emulate 
the solution-generation process employed by a reference program for various problem instances. 

In [42], researchers proposed a hybrid approach that combines a multi-objective optimization strategy with 
the Monte Carlo simulation method. This method aims to find solutions that optimize multiple objectives 
while considering the uncertain and stochastic nature of the problem through simulation. In another study 
[43], an architecture for NRP was introduced. This approach incorporates interactive optimization and 
machine learning techniques to improve planning. Specifically, the method utilizes an interactive genetic 
algorithm, enabling decision-makers to interact with the optimization process. It leverages professional 
expertise to guide both the learning and decision-making processes effectively. The equation was modified by 
authors in [44] to include error detection and the learning curve. The optimum release problem is addressed 
in [45] using Bayesian approaches and expert insights. In [46], decision quality is assessed by analyzing the 
ratio between the cost of a release choice and the actual optimal solution, which can only be determined when 
all data is considered. Furthermore, they analyzed a more cautious approach that required the release 
recommendation to stay relevant throughout many observation periods. Kumar et al. [47] introduced a 
reliability growth model that uses software patching to improve the dependability and cost-effectiveness of the 
software system. An innovative method was introduced in [48] to assess the reliability of multi-release open-
source software (OSS) by using generic masked data. Their methodology differs from standard methods by 
employing an additive model, which can efficiently address various instances of obscured data. A methodology 
was proposed in [49] that utilizes both the real and anticipated release time to optimize the expense of timing 
the release during execution. 

Several software aspects possess qualitative characteristics that are challenging to measure. Estimating the 
program's cost is exceedingly challenging, even with rough approximation. Harman et al. devised a precise 
strategy known as OATSAC1 for conducting sensitivity analysis using rigorous procedures[50]. In 2019, 
Domínguez-Ríos et al. presented five novel precise algorithms. Unlike prior algorithms that did not consider 
spread solutions, they discovered a collection of well-distributed solutions during the search process [51]. In 
addition, precise techniques have been employed to address the challenge of selecting the most suitable 
requirement for a particular aim [29].  

[31] conducted a study using a mix of multi-objective grey wolf and whale optimization techniques, along with 
three additional evolutionary optimization algorithms, to tackle the MNRP problem. Their research includes a 
comparative analysis of Pareto fronts derived from eight distinct quality matrices.  

Consequently, their findings demonstrated that MOWOA outperforms other methods. A recent work 
introduced a new meta-heuristic method dubbed the binary artificial algae algorithm [52]. This approach was 
designed to pick the best subset of criteria. Their findings from two imprecise datasets illustrate that the 
proposed method generates sets without human errors. The Nautilus is a freely available tool introduced in 
[53] to tackle selecting needs that will be implemented in the upcoming release stage. This is utilized to 
showcase the main features of Nautilus and how they may be customized to address a software engineering 
challenge. 

In [54], a model using the Bezier Curve and multimodal delayed PSO [55] was proposed to create smooth 
pathways in a discrete environment instead of linking the center of the grids with linear segments. By 
employing this technique, the mobile robot may effectively track a curved trajectory instead of a segmented 
straight route, which is advantageous for several applications. The A∗  approach was utilized by authors in 
[56] to determine the best grids for creating a segmented linear route. Afterward, a least square policy 
iteration was used to optimize the placement of the selected grids within a defined radius and produce a 
smooth trajectory. Although the RRT is less effective, the hybrid approach produces much better outcomes. 
Nevertheless, the least square optimization is limited to a specified radius encompassing the pre-selected 
places. In addition, the authors neglected to provide a comparison study between A∗  and their suggested 
algorithm to demonstrate its effectiveness. 

The NRP has evolved from being treated as a single-objective problem with methods like simulated annealing, 
greedy algorithms, linear programming, and hill-climbing to being addressed as a MONRP. Various 
evolutionary algorithms have been explored for MONRP, including multi-objective Genetic Algorithms (GA), 
NSGA-II, PESA, SPEA2, Whale Optimization Algorithm (WOA), Grey Wolf Optimizer (GWO), Teaching-
Learning-Based Optimization (TLBO), and multi-objective Artificial Bee Colony (MABC). Recent 
advancements include hybrid approaches combining optimization strategies with Monte Carlo simulation, 
machine learning techniques, and interactive genetic algorithms to enhance decision-making. The studies 
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highlight the importance of balancing exploration and exploitation, handling uncertainties, and integrating 
expert knowledge to improve solution quality and dependability. Various models and algorithms have 
demonstrated the ability to handle the complex, hierarchical, and interdependent nature of NRP, yet 
challenges like premature convergence, false Pareto solutions, and computational efficiency remain. 

A hybrid multi-objective evolutionary optimization algorithm for NRP offers several advantages. Combining 
multiple evolutionary algorithms can balance exploration and exploitation more effectively, leading to higher-
quality and more diverse solutions. Integrating different optimization strategies, such as DE and ACO, can 
accelerate convergence and reduce computational time, making the algorithm suitable for large-scale 
problems. The hybrid algorithm can better handle the stochastic nature and uncertainties inherent in NRP by 
incorporating techniques like Monte Carlo simulation and machine learning. Additionally, leveraging 
interactive genetic algorithms allows decision-makers to dynamically guide the optimization process, 
incorporating their expertise and preferences to refine solutions continuously. The hybrid approach can be 
adapted to various problems, from small projects to complex software systems, ensuring broad applicability 
and practical utility in real-world scenarios. By combining multiple optimization techniques, the hybrid model 
can effectively manage and optimize the intricate dependencies between requirements, enhancing the 
robustness and adaptability of the solutions.  

Preliminary Concepts 

        Multi-Objective next release problem 

In practical situations, optimization problems include determining the values of decision variables that can 
achieve one or more objectives by minimizing or maximizing them. Single-objective problems can have a 
singular target or utilize weighted aggregation techniques to merge several objectives into a central objective 
[57]. When an issue has more than two objectives, the fundamental goal of the optimization problem is to 
combine these objectives and find a single solution. Conversely, challenges related to multi-objective 
optimization have a diverse range of solutions. Nevertheless, a set of options known as Pareto front solutions 
are regarded as non-dominated solutions (NDS). These systems may optimize many goal functions 
concurrently, even with competing objectives. Mathematically, multi-objective optimization problems can be 
represented by a vector encompassing constraints, objective functions, and decision variables. Decision-
makers aim to either minimize or maximize the goal functions. The multi-objective optimization problem 
seeks to determine the vectors that provide the optimal values for all objective functions while still adhering to 
the constraints of the job. For example, this issue has 𝑘 objectives and two solutions: 𝑘 = 𝑘1,𝑘2, . .𝑘𝑘and 

𝑘 = 𝑘1,𝑘2, . .𝑘𝑘 .𝑘is considered to dominate 𝑘 and be part of the Pareto front only if 𝑘 is superior to or 
equal to 𝑘 in all goals 1, 2,𝑘, and 𝑘 is certainly superior to 𝑘 in at least one objective. Alternatively, neither 
of the two solutions has a clear advantage; the Pareto front is the collection of alternatives that are not 
dominated by any other solution. 

        Formulation of Multi-Objective NRP 

Consider a group of consumers 𝑘 = {𝑘1,𝑘2, … ,𝑘𝑘}for a software organization responsible for addressing 
the requirements 𝑘 = {𝑘1,𝑘2, … ,𝑘𝑘}. The software system assumes that all the requirements are 
independent to avoid conflicts. It is necessary to allocate certain requirements to meet the consumer requests. 
The defined requirement's associated cost can be computed by translating the resources required to 
accomplish it into cost terms 𝑘 = {𝑘1,𝑘2, … ,𝑘𝑘} here, b denotes the budget. Each consumer is associated 
with a weight factor representing the degree of significance 𝑘 = {𝑘1,𝑘2, … ,𝑘𝑘}, the weights are between 0 

to 1 𝑘𝑘 =∈ [0,1], and the summation of weights is 1 ∑ 𝑘𝑘
𝑘
𝑘=1 =∈ [0,1]. Based on all the factors and objectives, 

the overall score for each consumer to satisfy the requirement is computed as the dot product between weights 
and consumer value 𝑘(𝑘𝑘,𝑘

𝑘
) shown in the below equation  

𝑘𝑘 = ∑ 𝑘𝑘

𝑘

𝑘=1

∙ 𝑘(𝑘𝑘,𝑘𝑘) 

Each client has a weight factor that may be used to show how important they are to the business and based on 

the decision vector 𝑘⃗⃗⃗⃗  the requirement is released, 0 represents no release and 1 represents release.   

MO-NRP refers to modifying the regular NRP to incorporate additional objectives while working within a 
limited budget. Existing research has covered several optimization approaches offered for two to three MO-
NRP. For instance, let's examine the Multi-Objective Nonlinear Resource Planning (MO-NRP) problem, which 
has two objectives: maximizing customer profit and minimizing cost. The MO-NRP follows the same 
technique as NRP, with the distinction that it optimizes two or multiple objective functions using the score 
function, as seen below.  
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𝑘𝑘𝑘 = ∑ 𝑘𝑘

𝑘

𝑘=1

∙ 𝑘𝑘 

𝑘𝑘𝑘 = ∑ 𝑘𝑘

𝑘

𝑘=1

∙ 𝑘𝑘 

In the above equation 𝑘𝑘𝑘 and 𝑘𝑘𝑘 represents two objectives, profit, and cost, respectively, 𝑘𝑘and 𝑘𝑘 
are score and cost. To enhance the selection of needs in the MO-NRP scenario, it is important to consider 
many objective aspects, such as maximizing consumer benefit, minimizing cost, ensuring equality, and 
selecting requirements appropriately. As mentioned before, the MO-NRP has only been considered for two 
purposes. In [58], a multi-objective optimization approach has been proposed, considering more than two 
objective parameters by enlarging the search area. The mathematical definition of MO optimization is as 

follows: � represents a generic variable, and 𝑘⃗⃗⃗⃗ represents the decision vector.  

𝑘⃗⃗⃗⃗  (𝑘)  =  [𝑘1(𝑘),𝑘2(𝑘), … …  𝑘𝑘(𝑘)]𝑘   

𝑘𝑘(𝑘)  =  0;  1 ≤  𝑘 ≤  𝑘 

𝑘𝑘(𝑘)  ≥  0;  1 ≤  𝑘 ≤  𝑘 

In the given equation, � denotes the number of objectives to be taken into account during the design of the 
NRP, while � and � represent the equality and inequality constraints, respectively.  

PROPOSED METHODOLOGY 
Ant Colony Optimization (ACO) 

ACO is a sophisticated and flexible metaheuristic algorithm. This approach draws inspiration from the 
foraging habit of ants. It has proven particularly effective in solving challenging optimization problems, such 
as the Next Release Problem (NRP) in software engineering. The NRP involves meticulously selecting high-
quality software features to be included in the next release to maximize customer satisfaction while 
considering constraints such as cost and resources. The issue may be precisely shown as a graph, where nodes 
represent attributes and edges indicate possible transitions between these attributes. 

Multi-Objective Ant Colony Optimization (MO-ACO) 

Multi-Objective Ant Colony Optimisation (MO-ACO) is a sophisticated method designed to address the 
complexities of choosing software features for the next release. It can optimize many competing objectives 
simultaneously in the Next Release Problem (NRP). The NRP is a prevalent issue in software engineering. It 
involves effectively managing several factors, such as optimizing customer happiness, minimizing expenses, 
and conforming to limitations on available resources. MO-ACO utilizes the behavior of ant colonies to navigate 
a complicated decision-making environment. It achieves this by utilizing pheromone trails and heuristic 
information to identify a collection of Pareto-optimal solutions. 

Problem Definition 

Within the framework of NRP, the multi-objective optimization issue entails choosing a subset of features 
�⊆ � from the pool of accessible features �. The objectives generally consist of optimizing customer 
satisfaction 𝑘1(S), minimizing development cost 𝑘2(S) and maybe extra objectives like minimizing risk or 
maximizing feature value variety. These objectives frequently clash, rendering it unattainable to optimize them 
concurrently to their maximum capacity. The proposed approach involves identifying a collection of Pareto-
optimal solutions, whereby no solution within the collection is superior to another in all goals, ensuring non-
dominance.In a multi-objective optimization problem, the goal is to optimize k objective functions 
simultaneously. Formally, it can be defined as: 

𝑘𝑘𝑘𝑘(𝑘) = (𝑘1(𝑘),𝑘2(𝑘), . . . ,𝑘𝑘(𝑘)) 

subject to𝑘 ∈ 𝑘, where Xis the feasible solution space, the objective is to find a set of non-dominated 
solutions that form the Pareto front. A solution is non-dominated if no other solution is better in all objectives. 

i. Initialization phase:  

The ACO algorithm starts with the initialization phase. During this stage, the graph's pheromone levels 𝑘ij on 

all edges (�,) are set to a modest positive constant 𝑘0. The initial pheromone value signifies the fundamental 
attractiveness of choosing a specific feature. During this step, many crucial parameters are established: the 
number of ants �, the significance of the pheromone trail �, the significance of heuristic information �, the 
pace at which the pheromone evaporates � and a factor that amplifies the pheromone �. These settings 
determine the behavior and effectiveness of the algorithm. 
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ii. Solution Construction Phase:  

During the solution creation phase, each of the � ants constructs a possible solution by probabilistically 
choosing features to include in the upcoming release. Every ant begins with an initial set of features �, which 
is empty, and gradually includes features using a decision algorithm that relies on probabilities. The likelihood 
The function 𝑘𝑘𝑘(𝑘) represents the probability of an ant transitioning from a feature 𝑘𝑘 to feature 𝑘𝑘 at 
time �. 

𝑘𝑘𝑘(𝑘) =
[𝑘ij(𝑘)]

𝑘
[𝑘ij]

𝑘

∑ [𝑘ij(𝑘)]
𝑘

[𝑘ij]
𝑘

𝑘𝑘𝑘\𝑘

 

This formula 𝑘ij(𝑘) represents the pheromone level on the edge connecting features 𝑘𝑘 and 𝑘𝑘, while 𝑘ij 

represents the heuristic information associated with moving to feature 𝑘𝑘. A common heuristic is the benefit-

to-cost ratio 
∑ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑘𝑘
, where 𝑘𝑘𝑘 is the benefit of the feature 𝑘𝑘 to customer 𝑘𝑘 and 𝑘𝑘 is the cost of 

implementing a feature 𝑘𝑘. The parameters 𝑘and 𝑘 control the relative importance of pheromone versus 
heuristic information. 

iii. Multi-Objective Heuristic Information: 

Define heuristic information 𝑘ij considering multiple objectives. For example, if minimizing both cost and 

time, the heuristic could be: 

𝑘ij =
1

𝑘1𝑘𝑘𝑘 +𝑘2𝑘𝑘𝑘

 

where 𝑘1 and 𝑘2 are weights, and 𝑘𝑘𝑘 and 𝑘𝑘𝑘 are cost and time, respectively. 

Each ant individually chooses features while ensuring that the combined cost of the selected features remains 
within the predetermined budget �. This feasibility assessment is essential to verify the validity of the 
implemented solution. The ant persists in incorporating more features until it is no longer possible to add 
more features without breaching the budget restriction. 

iv. Pheromone Update Phase: 

After all ants have completed their solutions, the pheromone levels on the edges are adjusted. This phase has 
two primary stages: pheromone dissipation and pheromone application.Pheromone evaporation is the gradual 
reduction of pheromone levels on all edges, imitating the natural dissipation over time. Mathematically, this 
may be expressed as: 

𝑘ij(𝑘+ 1) = (1− 𝑘)𝑘ij(𝑘) 

where 𝑘 is the evaporation rate (0<𝑘 < 1). This step prevents the algorithm from converging too quickly to a 
suboptimal solution by reducing the influence of previously laid pheromones. Next, each ant deposits 
pheromone on the edges it traversed, with the amount inversely proportional to the solution’s total benefit: 

𝑘ij(𝑘+ 1) = 𝑘ij(𝑘) + ∑ Δ𝑘ij
𝑘

𝑘

𝑘=1

 

Δ𝑘ij
𝑘

= {
𝑘

𝑘𝑘

 𝑘𝑘 𝑘𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘 (𝑘,𝑘)

0 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

 

where 𝑘𝑘 is the total benefit of the solution by ant𝑘. 

This iterative process of solution construction and pheromone updating continues for a predefined number of 
iterations or until convergence. Through these iterations, ants collectively explore the solution space, 
balancing exploiting known good solutions and exploring new possibilities, gradually leading to an optimal or 
near-optimal solution for the next release problem. 

v. Iterative Optimization 

The process of constructing the solution and updating the pheromone levels is continued for a predetermined 
number of iterations or until certain convergence conditions are satisfied. Throughout this iterative process, 
ants collaboratively investigate the solution space, maintaining a balance between strengthening the search 
around established effective solutions and diversifying to uncover new possible solutions. MO-ACO 
successfully navigates the complicated trade-offs in multi-objective optimization by using the interplay 
between exploration and exploitation. 
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vi. Storing and Returning Pareto-Optimal Solutions 

During each cycle, the ants discover non-dominated solutions and store them in an external archive. The 
archive showcases the dynamic Pareto front, offering various solutions that effectively balance numerous 
objectives. Upon completion of the optimization process, the ultimate collection of Pareto-optimal solutions is 
provided, presenting decision-makers with various trade-off possibilities for the upcoming software release. 

MO-ACO is a modified version of the traditional ACO framework that effectively addresses the multi-objective 
aspect of the Next Release Problem. MO-ACO systematically explores the solution space by repeatedly 
constructing, evaluating, and modifying pheromones. This approach allows it to uncover many Pareto-optimal 
solutions that address several objectives. This systematic methodology allows software planners to make well-
informed decisions, balancing several factors to deliver the most ideal software releases. 

Differential Evolution (DE) 

Differential Evolution (DE) is an effective evolutionary technique for global optimization in continuous areas. 
It resolves optimization issues with non-linear, non-convex, or noisy objective functions. DE can be 
successfully incorporated with MO-ACO in the Next-Release Problem (NRP) to improve the software feature 
selection process for next-release planning. Below is a detailed explanation of Differential Evolution (DE) and 
its integration with Multi-Objective Ant Colony Optimization (MO-ACO): 

i. Population Initialization: 

Differential Evolution (DE) starts by initializing a population of potential solutions. Each answer �� is 
denoted as a vector within the search space:  

𝑘𝑘 = (𝑘𝑘1,𝑘𝑘2, . . .𝑘𝑘𝑘) 

where d is the number of dimensions in the problem space; typically, these solutions are created randomly 
while adhering to the problem's requirements. 

ii. Mutation 
Mutation is an essential operator in DE that allows for exploring previously unexplored areas inside the search 
space. DE creates a mutant vector �� for each potential solution �� by perturbing the existing solutions in 
the population. The mutant vector �� is precisely specified as: 

𝑘𝑘 = 𝑘𝑘1 +𝑘. (𝑘𝑘2 −𝑘𝑘3) 

where 𝑘1,𝑘2,r1, and𝑘3 are distinct randomly selected indices from the population, and F is the mutation 
scaling factor (typically set between 0 and 2). 
iii. Crossover:  

Crossover merges data from the mutant vector 𝑘𝑘 and the target vector 𝑘𝑘 to generate a trial vector 𝑘𝑘. 
The trial vector 𝑘𝑘 is generated by a binomial crossover operation:  

𝑘𝑘𝑘 = {
𝑘𝑘𝑘 𝑘𝑘 𝑘𝑘𝑘𝑘() ≤ 𝑘𝑘 or j = rand() (1,d)  

𝑘𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
 

where rand()generates a random number between 0 and 1, and CR is the crossover probability (typically set 
between 0 and 1). 

iv. Selection 

The trial vector 𝑘𝑘 competes with the target vector 𝑘𝑘 based on their fitness values. The selection process 
determines which vector survives to the next generation based on a comparison of their objective function 
values𝑘(𝑘𝑘)and 𝑘(𝑘𝑘): 

𝑘𝑘𝑘
𝑘+1

= {
𝑘𝑘𝑘, 𝑘𝑘 𝑘(𝑘𝑘) < 𝑘(𝑘𝑘)

𝑘𝑘𝑘, 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
 

The MO-ACO algorithm is employed as a first step to systematically investigate and create a wide range of 
solutions for the Next-Release Problem. This algorithm effectively manages the trade-off between several 
competing objectives, such as optimizing customer happiness while minimizing development expenses. DE 
enhances MO-ACO by enhancing the solutions created during its exploration phase.  

Experimental Evaluation  
Dataset Description  

Greer and Ruhe introduced the initial dataset employed [25]. The dataset comprises five customers and 20 
requirements. Each requirement incurs a cost ranging from 1 to 10. The needs of each client are assigned a 
numerical value ranging from 1 to 5. Table 1 displays the cost, quantities, and relation among the 
requirements. Table 2 displays the significance of the consumers. 
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 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑘7 𝑘8 𝑘9 𝑘10 𝑘11 𝑘12 𝑘13  𝑘14 𝑘15 𝑘16 𝑘17 𝑘18 𝑘19 𝑘20 

C1 4 2 1 2 5 5 2 4 4 4 2 3 4  2 4 4 4 1 3 2 

C2 4 4 2 2 4 5 1 4 4 5 2 3 2  4 4 2 3 2 3 1 

C3 5 3 3 3 4 5 2 4 4 4 2 4 1  5 4 1 2 3 3 2 

C4 4 5 2 3 3 4 2 4 2 3 5 2 3  2 4 3 5 4 3 2 

C5 5 4 2 4 5 4 2 4 5 2 4 5 3  4 4 1 1 2 4 1 

Co
st 

1 4 2 3 4 7 10 2 1 3 2 5 8  2 1 4 10 4 8 4 

Table 2: Motorola datasetcustomer weight  

 C1 C2 C3 C4 C5 

Greer & Ruhe 1 4 2 3 4 

Motorola 1 1 1 1 - 

 

The Motorola dataset [29] is the second dataset. The dataset has a total of four customers and 35 
requirements. The customers refer to four mobile telephone carriers, each requiring a separate set of 
smartphone functionality. All clients have the same weight. Every demand is associated with a certain cost and 
income, measured as a score. Furthermore, we allocate each need to a client using a consistent distribution. 
Table 2 displays the significance of the consumers.Table 3 provides each demand's cost, income, and 
corresponding customer.  

Table 3: Motorola datasetcustomer request for requirements, cost, and revenue. 
Customers Requirements Cost Revenue 
C4 𝑘1 100 3 
C2 𝑘2 50 3 
C3 𝑘3 300 3 

C1 𝑘4 80 3 

C4 𝑘5 70 3 

C4 𝑘6 100 3 
C3 𝑘7 1000 3 

C1 𝑘8 40 3 
C3 𝑘9 200 3 

C4 𝑘10 20 1 
C3 𝑘11 1100 3 
C1 𝑘12 10 3 
C3 𝑘13 500 3 

C3 𝑘14 10 1 

C4 𝑘15 10 3 

C1 𝑘16 10 2 
C2 𝑘17 20 1 

C2 𝑘18 200 1 
C1 𝑘19 1000 3 

C4 𝑘20 120 2 
C2 𝑘21 300 2 
C3 𝑘22 50 1 
C2 𝑘23 10 2 

C2 𝑘24 30 3 

C2 𝑘25 110 2 

C1 𝑘26 230 2 
C1 𝑘27 40 1 

C3 𝑘28 180 2 
C4 𝑘29 20 2 

C4 𝑘30 150 2 

C2 𝑘31 60 3 
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C3 𝑘32 100 1 

C1 𝑘33 400 3 

C2 𝑘34 80 1 

C1 𝑘35 40 1 

Evaluation Measures  

The efficacy of the proposed method's solutions was by utilizing three indicators to analyze the quality of 
multi-objective optimization problem solutions. This enables the identification of the effectiveness of the 
outcomes obtained by the MO-ACO-DE algorithm. The quality of the proposed solution was validated using 
the following metrics. The hyper-volume (HV) metric was employed to quantify the convergence and variety of 
the Pareto front [31]. The spread metric was employed to assess the variety of the solutions in the Pareto front 
and the number of non-dominated solutions (NDS) identified by the algorithm. 

i. Hypervolume (HV): is used to calculate the total volume required by the fuzzy members in the 
objective space for a next release requirement queue (Q). A hypercube 𝑘𝑘𝑘 is generated for every 
requirement queue 𝑘 ∈ 𝑘, and the union of all the hypercubes forms HV. The mathematical formula for HV 
is as follows 

𝑘𝑘 = 𝑘(⋃𝑘𝑘𝑘

|𝑘|

𝑘=1

) 

ii. Spread (Δ): is used to measure the spread extent of a set, and it is computed as follows 

∆=
𝑘𝑘 +𝑘𝑘 + ∑ |𝑘𝑘 − 𝑘̅̅̅|𝑘−1

𝑘=1

𝑘𝑘 + 𝑘𝑘 + (𝑘− 1)𝑘̅̅̅
 

Euclidean distance between consecutive solution queues is represented by 𝑘𝑘,  and their mean is represented 

by 𝑘̅̅̅. The extreme Euclidean distances of the optimal PFS are measured by 𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘. 

iii. Non-Dominated Solutions (NDS): "Non-dominated" refers to better solutions than all other 
options in every objective. The proposed method was used to calculate the number of NDS. It is recommended 

that Pareto fronts be used, which contain a higher number of NDS. 

EXPERIMENTAL RESULTS 

Tables 4 and 5 present the outcome of the proposed model, MO-ACO-DE, for the HV indicator on two 
datasets. The results are compared with those produced by existing techniques and reflect the mean and 
standard deviation of the HV matrix for both datasets across four budget limits. The HV indicator 
demonstrates that as the value increases, the output quality also improves. Thus, the MO-ACO-DE method 
consistently achieves better results for every NRP instance in all scenarios. 

Table 4: The mean and standard deviation of the HV measure for the four occurrences of the Greer & Ruhe 
dataset are being requested. 

   Algorithm Cost 
boundary 

GRASP NSGA-II ACO MOABC MO-ACO-DE 

Mean ± Std. 
dev 

30% 7.708%±0. 37 9.015%±1.12 10.28%±6.57e-
2 

41.88%±1.15e 5 47.35%±1.24e-
3 

50% 19.11%±0.350 20.65%±1.60 23.91%±6.75e-2 54.72%±2.64 58.84%±1.62e-
3 

70% 32.24%±0.496 32.16%±2.30 38.46%±7.08e-
2 

60.86% ± 
9.49e-4 

62.57 ± 1.83e-3 

100% - - - 62.67% ± 0.22 68.42 ± 1.97e-3 
 

Table 5: The mean and standard deviation of the HV measure for the four occurrences of the Motorola dataset 
are being requested. 

   Algorithm 
Cost boundary 

GRASP NSGA-II ACO MOABC MO-ACO-DE 

Mean ± 
Std. dev 

30% 4.088%±8.55e-
3 

7.920%±2.49e-1 8.517%±6.21e-
2 

41.23% ± 
1.14e-2 

44.29%±0.026 

50% 15.454% 
±6.88e-2 

18.006%±5.20e-
1 

19.159% ± 
9.94e-2 

51.12%±1.17e-2 59.16%±0.014 

70% 27.943% 
±7.50e-2 

31.710%±8.92e-
1 

32.777% 
±1.14e-1 

58.25%±7.00e-
3 

63.53%±6.42e-
3 
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100% - - - 61.70%±4.94e 
3 

65.13 ± 1.77e-4 

 

 

Figure 1:HV and iteration forGreer & Ruhe dataset 

This indicates that the suggested method successfully balances exploring new possibilities, using known 
solutions, and converging toward optimal solutions within the search space. This is achieved by synergistically 
integrating the capabilities of the ACO and DE algorithms, facilitating the production of a more extensive 
array of non-dominated solutions (NDS) on the Pareto front, which are considered optimal for the NRP. 
Moreover, the outcomes from the suggested model exhibit minimal fluctuations across various budget 
constraints, suggesting that the overall enhancement attained by the model about this multi-objective measure 
is quite noteworthy. In contrast, the GRASP algorithm produces less accurate results due to its constrained 
and self-centered exploration. Unlike previous algorithms, this method does not consider a population, which 
restricts its ability to explore the search space efficiently. Figure 1 and Figure 2 depict the relationship between 
the average hyper-volume and the iteration number of the MO-ACO-DE technique on the Greer & Ruhe and 
Motorola datasets, respectively. The study is performed on both datasets using four alternative cost 
constraints (30%, 50%, 70%, and 100%). 

 

Figure 2:HV and iteration for Motorola dataset 

Tables 7 and 8 display the mean and variability acquired using the D-Spread indicator. The findings of the 
MO-ACO-DE method are compared to those produced by existing algorithms using the two datasets. Smaller 
values of the Δ-spreadindicator correspond to superior outcomes. The Tables illustrate that the MO-ACO-DE 
algorithm yields the most optimal outcomes, demonstrating that this method is the preferred option for 
computing Pareto fronts with the most favorable solutions distribution throughout the dataset. The MO-ACO-
DE algorithm explores all solutions through local and global searches and stores them in the archive. 
Consequently, all of the high-quality solutions generated by this procedure are retained. By transforming these 
optimum or non-dominated solutions into Pareto fronts, the algorithm becomes more diverse than 
the techniques that have been previously described. The numerical findings of the HV and D-Spread 
metrics indicate that our approach has superior outcomes. Figure 3 and Figure 4 illustrate the correlation 
between the Δ-spread and the iteration number of the MO-ACO-DE method on the Greer & Ruhe and 
Motorola datasets, respectively. 

Table 5: The mean and standard deviation of the Δ-spread measure for the four occurrences of the Greer & 
Ruhe dataset. 

Algorithm Cost 
boundary 

GRASP NSGA-II ACO MOABC MO-ACO-DE 

Mean ± 
Std. dev 

30% 0.64±0.09 0.76±0.09 0.52±0.03 0.52±0.01 0.49 ± 0.002 
50% 0.73±0.07 0.79±0.07 0.52±0.01 0.48±0.01 0.43 ± 0.011 
70% 0.69±0.06 0.80±0.07 0.48±0.02 0.43±0.01 0.42 ± 0.01 

100% - - - 0.39±0.05 0.36 ± 0.015 

 

Figure 3: Δ-spread and iteration for Greer & Ruhe dataset 
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Table 6: The mean and standard deviation of the Δ-spread measure for the four occurrences of the Motorola 
dataset. 

Algorithm 
Cost boundary 

GRASP NSGA-II ACO MOABC MO-ACO-DE 

Mean ± Std. dev 30% 0.60±0.04 0.80±0.07 0.68±0.06 0.45±0.02 0.38 ± 0.029 
50% 0.74±0.04 0.81±0.06 0.66±0.06 0.42±0.02 0.36 ± 0.011 
70% 0.70±0.03 0.77±0.05 0.61±0.06 0.38±0.02 0.34 ± 0.017 

100% - - - 0.35±0.03 0.33 ± 0.013 
 

 

Figure 4: Δ-spread and iteration for Motorola dataset 

The main aim of multi-objective optimization is to determine the Pareto front that contains the maximum 
number of solutions. As the number of options rises, the decision-maker's work of choosing the best one 
becomes easier. The optimum solutions for the NRP are non-dominated solutions rather than perfect 
solutions. Tables 7 and 8 present the mean and variability of non-dominated solutions produced by the MO-
ACO-DE algorithm and other approaches discussed in prior studies for the two datasets. The results suggest 
that the MO-ACO-DE algorithm produces improved outcomes with more non-dominated solutions (NDS). 
The MO-ACO-DE technique allows for a thorough search space exploration, making it possible to identify all 
non-dominated solutions (NDS). Therefore, this approach can reveal more non-dominated solutions in the 
Pareto front. The Motorola dataset's NDS (Network Data Sets) have bigger dimensions due to their intricate 
nature and substantial magnitude. Hence, it is clear that the differences between MO-ACO-DE and the other 
published techniques are more noticeable for the two datasets. The Pareto front produced by the MO-ACO-DE 
algorithm for both datasets is illustrated in Figure 5 and Figure 6 correspondingly. Generally, this strategy is 
expected to be more efficient in exploring this issue's solution space than other strategies. Furthermore, an 
even distribution of non-dominated solutions (NDS) on the Pareto front, along with a higher quantity of NDS 
and superior hypervolume (HV) metrics, indicates that this approach surpasses others in performance. 

Table 7: The mean and standard deviation of the NDS measure for the four occurrences of the Greer & Ruhe 
dataset. 

Algorithm 
Cost boundary 

GRASP NSGA-II ACO MOABC MO-ACO-DE 

Mean ± Std. dev 30% 11.37±1.47 9.69±2.09 13.66±13.66 15.00±0.00 24.3±0.0130 
50% 17.65±2.22 11.30±1.82 17.75±0.61 23.66±0.48 31.4±0.3221 
70% 20.26±2.18 11.70±1.90 20.57±20.57 32.35±0.99 38.56±0.018 

100% - - - 40.55±1.25 46.1±0.7504 
 

 
 

Figure 5: Pareto fronts generated on the Greer & Ruhe dataset 

The Pareto front comparison for the Greer & Ruhe dataset in represented in Figure 5. The MO-ACO-DE 
algorithm consistently achieves higher values across all cost boundaries, highlighting its superior 
performance. The plot shows the performance of different algorithms under varying cost constraints, with 
MO-ACO-DE outperforming the others. 
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Table 8: The mean and standard deviation of the NDS measure for the four occurrences of the Motorola 
dataset. 

Algorithm 
Cost boundary 

GRASP NSGA-II ACO MOABC MO-ACO-DE 

Mean ± Std. dev 30% 57.99±3.66 54.34±8.51 47.12±5.44 125.37±7.57 140.18±3.89 
50% 75.81±5.81 65.54±11.86 57.68±5.69 135.93±9.60 146.31±4.16 
70% 120.14±7.27 83.32±10.52 57.68±5.69 139.31±9.93 161.14±4.59 

100% - - - 147.51±9.90 165.53±4.25 
 

 

Figure 6: Pareto fronts generated on Motorola dataset 

The MO-ACO-DE algorithm consistently obtains greater values across all cost limits, highlighting the Pareto 
front. Figure 6 illustrates the comparative performance of several algorithms under different cost limitations, 
with MO-ACO-DE demonstrating superior performance compared to the others. 

CONCLUSION AND FUTURE WORK 

This work introduces a novel method, Multi-Objective Ant Colony Optimisation with Differential Evolution 
(MO-ACO-DE), applied to two datasets. This technique was employed to address the constrained multi-
objective version of the NRP. Integrating differential evolution (DE) algorithm operators into the MO-ACO 
algorithm boosts the performance of the MO-ACO-DE process, leading to enhanced solution accuracy and 
faster convergence time. Furthermore, the technique surpasses current multi-objective evolutionary 
algorithms regarding efficiency and effectiveness.  The suggested method performs better than previously 
examined algorithms, including GRASP, NSGA-II, AOC, and MOABC. This advantage is evidenced by its 
greater convergence, variety, spread, and quantity of non-dominated solutions on two datasets about the 
problem. The findings demonstrate that the suggested algorithm generates a superior set of non-dominated 
solutions (NDS) located in the Pareto front compared to current approaches. These solutions display a 
narrower distribution and a greater hyper-volume. The MO-ACO-DE approach efficiently produces sets of 
requirements or Pareto fronts. These information sets assist software developers in making decisions and 
determining the optimal balance between requirements for the upcoming product release.  

Future work will focus on extending the MO-ACO-DE approach to other complex multi-objective optimization 
problems beyond the NRP. Additionally, integrating other evolutionary algorithms with MO-ACO-DE will be 
explored to further enhance solution quality and convergence speed. The method's scalability will be tested on 
larger datasets and more diverse problem domains. Finally, adaptive mechanisms to dynamically adjust 
parameters within the algorithm will be developed to improve its robustness and applicability in real-world 
scenarios, aiding decision-making in software engineering and other fields. 
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