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Introduction: LoRaWAN defines the network architecture and communication protocol for 
Long-distance devices among Low-power Wide Area Network (LPWAN). Wide-ranging 
coverage and great mobility of Unmanned Aerial Vehicles (UAVs) provide up new possibilities 
for data collection. The main problem in UAV data collection is to tackle the path planning.  

Objectives: The main objective of this work is to determine the UAV trajectory path to 
minimize the UAV flying distance and data gathering time.  

Methods: An effective Cluster based UAV Path Planning (CPP) using White Shark Optimizer 
(WSO) algorithm is proposed. The proposed algorithm is based on distance among the cluster 
head (CH) and the UAV Data Collection Point (DCP), energy level of the nodes and sensor’s 
data generation rate.  

Results: By simulation results, it has been shown that CPP-WSO attains lesser data collection 
delay and packet drop rate with higher packet delivery ratio and average residual energy. 

Conclusion: The proposed CPP-WSO enhances the lifetime of both sensor nodes as well as 

UAV. 

Keywords: LoRaWAN, Unmanned Aerial Vehicle (UAV), Data collection, Clustering, Path 

planning, White Shark Optimizer (WSO). 

 

INTRODUCTION 

Long-range communication is made possible by the LoRa physical layer, whereas LoRaWAN defines the 
network architecture and communication protocol [1]. LoRaWAN involves nodes sending data to several 
gateways, which use different backhaul techniques to send it to a cloud-based network server. LoRaWAN can 
handle mobile nodes without requiring handovers between gateways, which makes it appropriate for IoT 
applications that are focused on asset tracking [2]. Wide-ranging coverage and great mobility of UAVs provide 
up new possibilities for IoT data collection. UAVs may gather data in close proximity to sensors, significantly 
lowering IoT energy consumption. IoT and UAV work together to enable efficient and timely data collection 
[3]. Due to its ability to optimise its trajectory, UAVs shorten the time needed to collect data [4]. Combining 
LoRaWAN and UAV technology provides a potent solution for autonomous operations, remote sensing, and 
data-driven decision-making in a variety of industries. [5][6]. 

UAV data gathering is the process of using drones that have sensors and cameras installed to collect data from 
the air. The effectiveness of UAV assisted data gathering will be significantly impacted by the placement and 
arrangement of sensors as well as the choice of data collection mode [7] [8]. When we examine UAVs, the 
main problem to tackle is path planning. The optimisation path's primary goal is to locate a safe combat route 
that uses the least amount of energy while still enabling the UAV to complete its mission [9][10]. 

The major goal of this study is to determine the UAV trajectory path to minimize the UAV flying distance and 
data gatheing time. For this, an effective cluster based UAV path planning algorithm for LoRaWAN is 
proposed. 

RELATED WORKS 

The authors in [11] provide three cost factors that influence energy consumption: path security, length, and 
smoothness. They have presented a heuristic evolutionary method that maximises path development by 
combining evolutionary operations. In order to collect data in presence of UAVs attacks, Wang and Gursoy 
[12] investigated robust UAV path planning. They propose a reinforcement learning framework with high 
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mission success and data collection rates for path planning under realistic limitations. In order to globally 
optimise UAV pathways while satisfying security and speed constraints, Bai et al. [13] presented a path 
planning solution based on A* and DWA. A system for gathering measured data from nodes using a drone and 
transmitting it to a base station using LoRaWAN, was proposed by Holtorf et al. [14]. Optimization strategies 
were proposed by Zhang et al. [15] to enhance UAV data gathering in LoRa networks. They introduced an 
enhanced Genetic Algorithm for trajectory planning that combines local search optimisation methods and 
Teaching-Learning-based Optimisation (TLBO) to accelerate path solution and convergence time. 

PROPOSED METHODOLOGY 

System Model 

In this paper, effective cluster based UAV path planning algorithm for LoRaWAN is proposed.  In system 
model, energy-limited IoT devices are placed in the network region. The network is divided into many clusters. 
A UAV is deployed in the initial location known as the takeoff-point. The cluster members in each cluster, 
transmit their gathered data to the CH to aggregate the data. The CHs mark the possible DCPs for the UAV. 
From the starting-point, the UAV visits each data collection point and communicate only with the CHs to 
finish the data gathering task.  

The clustering algorithm is derived from the distance between the CHs and the UAV data collection point, 
energy level of the nodes and sensor’s data rate. 

Clustering Algorithm 

The CH selection technique is based on ILEACH that considers the average distance between neighbouring 
nodes, the amount of leftover energy, and the distance among the CHs and the UAV starting-point. The 
following parameters are calculated. 

The mean distance of neighbour nodes is calculated by  

ADi = 1/k(j)    (1) 

where k(j) is the mean distance among all neighbour nodes of j inside the radius rc and j, which is given by, 

𝑘(𝑘) =
∑ 𝑘(𝑘,𝑘)𝑘−𝑘𝑘(𝑘)

𝑘𝑘(𝑘)
   (2) 

Ne(j) indicates the set of neighbor nodes of j. The average energy consumption then drops as this node 
communicates with the nearby nodes. k(j, i) denotes the distance among i and j.  

The number of nodes covered factor (Nj) is given by, 

𝑘𝑘 = 1−
1

𝑘𝑘(𝑘)
    (3) 

where Nu(j) denotes the nodes located in j within rc. The cluster controlled by this node performs better in 
terms of coverage the greater Nu(j). 

The remaining energy Ej is computed as  

Ej = eEr/ Ei    (4) 

where Er and Ei are the remaining energy and initial energy.  

The distance from the node to the starting-point Dj is computed as  

Dj = 1 / d(j)    (5) 

The following are the precise steps of the enhanced algorithm:  

Step 1: Each node computes its delay,  t(i), which is given by,  

𝑘(𝑘) = 𝑘 ×𝑘
−𝑘𝑘     (6) 

Where 𝑘𝑘 = 100× [(𝑘1.𝑘𝑘𝑘) + (𝑘2.𝑘𝑘) + (𝑘3.𝑘𝑘) + (𝑘4.𝑘𝑘)]  (7) 

Where β is the proportional coefficient used to determine delay size. δ1, δ2, δ3, and δ4 are the weights of the 
metrics and the sum of all these weights will be equal to 1. 

Step 2: A Node i declares itself to be the CH and transmits notification to its neighbours, if it does not receive 
any notification from other CHs, within time tc(i).  

Step 3: A node is considered as a member when the timer is over or if it receives the CH information. 

Step 4: A node decides to join the latest cluster if it receives multiple CH notifications. 
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WSO Optimization Model 

The goal of this section is to determine a UAV's shortest scheduled flight path. Beginning at the take-off point, 
the UAV travels through each DCP at a set height and speed before ending back at the staring-point.  

The goal of the UAV path optimization is to minimise the flying distance F, which may be stated as follows: 

𝑘 = 𝑘𝑘𝑘∑ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘≠𝑘     (8) 

𝑘.𝑘. =

{
 
 

 
 ∑ 𝑘𝑘𝑘 = 1;𝑘 = 1 𝑘𝑘 𝑘+ 1𝑘+1

𝑘=1

∑ 𝑘𝑘𝑘 = 1;𝑘 = 1 𝑘𝑘 𝑘+ 1𝑘+1
𝑘=1

∑ ∑ 𝑘𝑘𝑘 = 𝑘+ 1𝑘+1
𝑘=1 ;𝑘,𝑘 ∈ 𝑘𝑘+1

𝑘=1

𝑘𝑘𝑘 ∈ {0,1};𝑘,𝑘 ∈ 𝑘

  (9) 

where n indicates the number of the DCPs, i = 1 indicates the UAV staring-point, kij indicates the distance 
between i and j, and xij indicates the decision factor. It is assumed that i and j are the number of DCPs, such 
that i, j ∈  O, where O = {1, 2,..., n + 1}. xij = 1 when i ≠ j, and otherwise, it is 0. The constraint condition is 
represented by Eq. (9). The goal function must satisfy the conditions that stipulate that each DCP must be 
traversed once and that all DCPs must be included in any potential traversal sequence.  

White Shark Optimizer (WSO) Algorithm 

The WSO [17] is a real-time metaheuristic technique that can provide solution to various optimisation 
problems. This method mimics the behaviour of white sharks using their sense of smell and vision. The sharks 
can dynamically update their positions corresponding to the best solutions, to provide the required outputs. 
The position of a white shark is computed  using Eq. (10): 

𝑘 =

[
 
 
 
 𝑘1

1
𝑘2

1
⋯ 𝑘𝑘

1

𝑘1
2

𝑘2
2

⋯ 𝑘𝑘
2

⋮
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𝑘

⋮

𝑘2
𝑘

⋱
⋯

⋮

𝑘𝑘
𝑘
]
 
 
 
 

   (10) 

where sab denotes the position of the ath shark corresponding to the ath dimension.  

The velocity of a white shark is represented as: 

𝑘𝑘+1
𝑘

= 𝑘(𝑘𝑘
𝑘
+𝑘1 [𝑘𝑘𝑘𝑘𝑘𝑘𝑘

−𝑘𝑘
𝑘
] ×𝑘1 +𝑘2 [𝑘𝑘𝑘𝑘𝑘

𝑘𝑘
𝑘

−𝑘𝑘
𝑘
] ×𝑘2)   (11) 

where 𝑘𝑘+1
𝑘

 and 𝑘𝑘
𝑘

 indicate the updated velocities of bth shark in iterations (m + 1) and m, respectively. p1 

and p2 are the possibilities of sharks that monitor 𝑘𝑘𝑘𝑘𝑘𝑘𝑘
 and 𝑘𝑘𝑘𝑘𝑘

𝑘𝑘
𝑘

, which denote the best global 

positions at mth iteration, while 𝑘𝑘
𝑘

 indicates the position of bth  shark in iteration m. k1 and k2 are random 

constants. 𝑘𝑘𝑘𝑘𝑘

𝑘𝑘
𝑘

 denotes the bth best-defined position.  α indicates the WSO constriction factor  

The position update equation of the white shark is given by 

𝑘𝑘+1
𝑘

= {
𝑘𝑘

𝑘
 • ¬ ⊕ 𝑘𝑘  +  𝑘 •𝑘 +  𝑘 •𝑘 𝑘𝑘 𝑘𝑘𝑘𝑘 < 𝑘𝑘

𝑘𝑘
𝑘
+

𝑘𝑘
𝑘

𝑘
𝑘𝑘 𝑘𝑘𝑘𝑘 ≥ 𝑘𝑘

  (12) 

where c and d indicate binary vectors, u and l indicate the upper and lower ranges of the searching space, ¬ 
indicates the negative operator, wo and f indicate a logical vector and the wavy motion frequency of white 
shark. The direction in which one is moving in search of the best shark is: 

𝑘́𝑘+1

𝑘
= 𝑘𝑘𝑘𝑘𝑘𝑘𝑘

+𝑘1𝑘⃗⃗⃗⃗
 

𝑘 ×𝑘𝑘𝑘(𝑘2 − 0.5)    𝑘𝑘 𝑘3 < 𝑘𝑘  (13) 

where 𝑘́𝑘+1

𝑘
 is the updated position of the ith shark, and y1, y2, and y3 are random values ranging [0, 1]. (y2 − 

0.5) can alter the search direction since it gives 1 or −1. The white shark's smell intensity is indicated by Zz, 

while the distance among the prey and the shark is shown by 𝑘⃗⃗⃗⃗ 𝑘. 

EXPERIMENTAL RESULTS 

The proposed CPP-WSO algorithm is implemented in NS3. The experimental parameters are given in Table 1. 

Number of Nodes 20,40,60,80,100 

Topology size 50 m * 50 m 
MAC protocol LoRaWAN 
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Source of Traffic  CBR 

Number of data Flows 6 
Data sending Rate 50 KB/s 

Input Energy 25 Joules 

Transmitting power 0.8 Watts 

Receiving power 0.3 Watts 
Speed of UAV  20-40 m/s 

Table 1 Experimental parameters 

RESULTS  

The CPP-WSO algorithm’s performance is compared to the Improved genetic algorithm based on TLBO (TGA) 
[15], in terms of data collection delay, packet delivery ratio, packet drop and average residual energy metrics. 
The number of sensors transmitting data to the UAV is varied from 20 to 100. 

 

Figure 3 Data Collection Delay for sensors 

From figure 3, it  can be seen that the data collection delay of CPP-WSO is 41% lesser than TGA. 

 
Figure 4 Packet Delivery Ratio for sensors 

From figure 4, it  can be seen that the packet delivery ratio of CPP-WSO is 3% higher than TGA. 

 

Figure 5 Residual Energy for sensors 

From figure 5, it  can be seen that the residual energy of CPP-WSO is 4% higher than TGA. 

CONCLUSION 

In this paper,, an effective cluster based UAV path planning using WSO algorithm is proposed. The CPP-WSO 
algorithm is simulated in NS3 and its performance has been compared with the TGA algorithm. By 
experimental results, it has been shown that CPP-WSO attains lesser data collection delay and packet drop 
rate with higher packet delivery ratio and residual energy. 
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