
Journal of Information Systems Engineering and Management
2025, 10(13s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Data Pipeline Integrating Apache Kafka and Rabbit MQ

1Greeshma Arya, 2Ashish Bagwari, 3Anjali Gupta, 4Yogya Kalra, 5Ciro Rodriguez, 6Jyotshana Bagwari, 7
Carlos Navarro

1,3,4, Dept. of ECE IGDTUW, Delhi, India

2WIT, VMSBUTU, Dehradun, India

5,7Universidad Nacional Mayor de San Marcos (UNMSM), Lima 15081, Peru

6AAIR Lab, Dehradun, India

Corresponding author: greeshmaarya@igdtuw.ac.in; ashishbagwari@wit.ac.in; crodriguezro@unmsm.edu.pe;

cnavarrod@unmsm.edu.pe

ARTICLE INFO ABSTRACT

Received: 27 Nov 2024

Revised: 05 Jan 2025

Accepted: 30 Jan 2025

Fast data flow designs for processing volumes of data are crucial in the environment of data-

driven technologies of today. This work examines closely how to integrate Apache Kafka with

RabbitMQ to produce a powerful data flow architecture. Excellent at managing high speed and

flexibility, Apache Kafka is a distributed streaming platform. Considered to be simple to use

and capable of handling complicated routing, RabbitMQ is message broker tool. Combining

both technologies produces a unique system that makes data, handling, and distribution

simpler by using the best aspects of each. The first section of the paper contrasts and evaluates

Apache Kafka's and RabbitMQ's inherent capabilities. It then looks at how these platforms

may be better used together, with an emphasis on circumstances wherein combining them

facilitates real-time data processing and guarantees message delivery even in the event of a

disaster. The technical component of the integration—that which relates to settings, system

configuration, and methods of enhancing speed and dependability—is covered in further

depth in this article Examined are case studies from a variety of companies to demonstrate

how and why this integrated approach may be practical in the real world. These examples

highlight how adaptable and efficient Kafka-RabbitMQ systems are in handling many kinds of

data and demands. This research contributes to the area by providing a whole strategy for

combined usage of Apache Kafka and RabbitMQ. This will enable businesses to upgrade their

systems of data flow. Particularly with regard to enhancing the flow of data and rendering

integrated data systems more valuable, the findings clearly highlight areas that need greater

research.

Keywords: Apache Kafka, RabbitMQ, Data Pipeline, Real-Time Processing, System

Integration, Scalability

1INTRODUCTION

One of the main research projects combining Apache Kafka with RabbitMQ will change data management and
message delivery at a time when fast processing and flawless data flow are rather critical. This project intends
to combine two well-known technologies in a way that promotes their cooperation thus generating a better
system that improves the operations of each separately. Through investigating new things like batching and
data compression utilising their finest features, this work aims to make Apache Kafka and RabbitMQ better
together. This aims to provide new standards for performance improvement and quality integration [1].
Apache Kafka is a great choice for real-time data streaming applications that have to grab data quickly as it is
well-known for having a low latency and great performance. On the other hand, because its strong message
queuing systems are well-known, RabbitMQ is a consistent tool for data interchange free of waiting for it. In
current data-driven and event-oriented systems, both systems are important; nevertheless, their different
designs and techniques make it challenging for programmers to decide which one to use. Usually selecting one
tool means losing the particular benefits of the other [2]. This concept calls for combining those quite effective
technologies. It pursuits to conquer their specific flaws by way of making facts float among them simple, so
trustworthy. on this way, for each mission builders may additionally rent the best generation with none
problems. with the aid of use of batching in a methodical manner, the cautioned interface aggregates tiny bits
of statistics into bigger units, hence enhancing the information go with the flow [3]. Latency and processing
time consequently come to be shortened. moreover significantly reducing the desires on network pace and
storage potential via using facts compression strategies will assist to assure that the incorporated machine
runs at its excellent. those technological advances have to permit Apache Kafka and RabbitMQ to collaborate

373

J INFORM SYSTEMS ENG, 10(13s)

greater efficiently, consequently producing a robust messaging device exceeding traditional operational
barriers [4].
The project also aims to provide a coherent structure for preserving administration of the full system and
monitoring over it. Thanks to this one interface, system administrators and programmers will have all the
tools needed to monitor security, speed, and system state. This will simplify administration tasks and remove
the challenges running two distinct systems. By means of this project, Apache Kafka and RabbitMQ should
become more flexible and interoperable so that businesses may optimum their data resources [5], [6]. In a
society where data is a basic strategic tool, this will stimulate innovation and improve effectiveness.
Combining Apache Kafka with RabbitMQ and creating a new sort of messaging system better and more
flexible than its components is the two main goals of this research project. This project aims to raise
scalability, speed, and interoperability thus allowing companies to dynamically control and handle their data.
increasingly complex data transmission and management systems capable of satisfying the needs of our
increasingly digital world will find their route thanks to this. This is a first step towards processing data
differently that is really important. It advances a day when data systems will be not only more efficient but also
more flexible and powerful. This is an essential addition to data technology's industry as it evolves.

2. APACHE KAFKA: AN OVERVIEW

A. Architecture and key features of Kafka

Apache has Architecturally shown in figure 1, Kafka is a distributed streaming platform designed to manage
low-latency, fault-tolerant, high-throughput data streams. Fundamentally, Kafka runs on a publish-subscribed
approach wherein producers write data into topics and consumers receive it. Brokers, subjects, partitions, and
producers make up Kafka's architectural set of elements. While topics help to classify messages, the Kafka
brokers [7] are in charge of maintaining the data and guaranteeing its durability. Partitions within subjects
enable parallel data processing, hence offering load balancing and scalability. Ideal for situations where high
availability and durability are vital, Kafka also has a distributed log system that guarantees data is written in
an immutable, ordered sequence. Data replication across many brokers guarantees fault tolerance and helps
Kafka to be scalable by avoiding data loss. Furthermore fit for a range of use scenarios is Kafka's high
throughput and capacity to handle vast volumes of data in real-time, particularly in settings needing quick and
consistent data streaming [8].

Figure 2: Overview of Kafka Ecosystem Architecture

B. Use Cases Where Kafka is Particularly Effective

Apache is Kafka shines in many applications requiring real-time data processing, great scalability, and fault
tolerance. In stream processing, where it forms the backbone of real-time data pipelines ingesting, processing,
and analysing data streams in real-time, Kafka finds one of its main uses. Event-driven architectures also
heavily rely on Kafka, which uses asynchronously to transport events or messages between microservices and
other components thereby facilitating communication. Data integration—where Kafka serves as a centralised
hub for combining data from several sources, such databases, sensors, or applications, therefore guaranteeing
that data is regularly provided to downstream users or data repositories [9]. Kafka offers a highly scalable
method for gathering and analysing logs, metrics, and events in large-scale monitoring and logging systems,
therefore enabling companies to rapidly spot and react to system abnormalities or problems. Where low
latency and high throughput are critical, Kafka has also found use in the finance sector running systems for
real-time fraud detection, transactional data streaming, and stock market feeds.

374

J INFORM SYSTEMS ENG, 10(13s)

C. Strengths and Limitations of Kafka in Data Pipeline Scenarios

Records pipeline situations permit Kafka's scalability, dependability, and actual-time processing potential to
define its strengths. Its distributed layout ensures that it may control widespread quantities of information,
which qualifies for large-scale facts consumption and processing. via permitting horizontal scalability thru
facts partitioning among many brokers, Kafka enables companies to increase their infrastructure for statistics
flow as required [10]. records replication—wherein several copies of the information are kept on many
brokers—guarantees the machine's staying power by means of supporting to avoid facts loss have to hardware
fail. moreover supplying low-latency message transport, Kafka is a super choice for real-time records
streaming systems [11]. nonetheless, Kafka does have regulations. Its complexity in terms of setup and
management offers one primary trouble because it calls for thorough machine tweaking to get first-rate
performance. moreover missing in message queuing is Kafka as it isn't meant for transactional message
processing similar to RabbitMQ. for use cases desiring first-rate-grained message delivery assurances or
problematic routing conditions, Kafka won't be the quality preference. moreover, Kafka relies upon on
dispensed structures, consequently network partitions or failures may affect its performance and speak to for
further actions for fault tolerance and recovery.

3. RABBITMQ: AN OVERVIEW

A. Architecture and key features of RabbitMQ

RabbitMQ is an open-source message broker that is very dependable and makes it easier to communicate
without being in the same place at the same time. Its design is made up of four main parts: customers, makers,
lines, and trades [12]. When producers send messages to exchanges, those exchanges send the messages to the
right groups based on rules that have already been set. Consumers get messages from the queues and handle
them in the right way. One of the best things about RabbitMQ is that it works with many message protocols,
such as the Advanced Message Queuing Protocol (AMQP), so it can connect to a lot of different systems.
RabbitMQ, as shown in figure 2, also allows message acknowledgement, which makes sure that messages
don't get lost in transit and that users have handled the data before it is considered delivered correctly.
RabbitMQ also supports message longevity, which means that messages can be saved to disc so that they don't
get lost if the system goes down. RabbitMQ can scale horizontally across multiple nodes thanks to the broker's
grouping and high availability features. This means that the system can keep running even if one node fails. It
also works with a variety of route methods, such as direct, topic, fanout, and headers-based swaps, so it can
handle complicated message patterns and processes.

Figure 2: Overview of RabbitMQ System Architecture

B. Common Use Cases and the Pros of Using RabbitMQ

In situations where stable, asynchronous message delivery is needed, RabbitMQ works very well. People often
use it to separate microservices in distributed systems so that services can talk to each other without being
directly linked. RabbitMQ works great in systems where parts need to send or receive messages or tasks at
different times, like in task queues in background processing systems [13]. This makes it possible to split up
the work, try again, and do things in parallel. RabbitMQ is also often used in event-driven systems, where it
helps send messages and notify people of events in real time. RabbitMQ can make sure that events are sent to
users in a safe and orderly way in these kinds of systems. RabbitMQ also works great when routing needs to be
complicated. Because RabbitMQ supports multiple exchange types, messages can be sent in different ways
based on their characteristics or trends [14]. This makes the messaging system flexible. Additionally,
RabbitMQ's dependable delivery and message acknowledgement features make it perfect for use in banking,
order processing, and notice systems where messages need to be consistent and last a long time.

C. Strengths and Limitations of RabbitMQ in Data Handling

RabbitMQ is good at handling data in a number of ways, especially when it comes to message stability and
freedom. One of its best features is that it can guarantee message delivery even if the system crashes or the

375

J INFORM SYSTEMS ENG, 10(13s)

network goes down. This makes it perfect for situations where message delivery needs to be guaranteed. The
many routing methods that RabbitMQ supports give developers a lot of freedom in how data is delivered, so
they can make systems that meet specific communication needs [15]. RabbitMQ is great for high-volume apps
because it can be scaled widely through clusters and the work can be split between multiple users. But
RabbitMQ has some problems, especially when it comes to handling large amounts of data quickly. Kafka is
designed to handle large streams of data quickly, but RabbitMQ may have trouble keeping up with the same
amount of speed in real-time data pipelines. Because it depends on message lines, it can also cause delay,
especially when queues get full. Additionally, RabbitMQ is not ideal for storing large amounts of data or
managing very large streams of data that need to be processed quickly. When growing to handle a lot of
messages, it is also harder to set up and control, and keeping message lines running for long periods of time
can be expensive.

4. COMPARATIVE ANALYSIS

A. Detailed comparison of Apache Kafka and RabbitMQ

Apache Apache Although both prominent messaging systems, Kafka and RabbitMQ run with different
architectures and are meant for various use cases. Perfect for real-time analytics and large-scale data intake,
Kafka is best for distributed data streaming with high-throughput. It provides excellent message ordering and
durability as well as low latency handling of massive message volumes. Kafka provides data segmentation,
hence allowing scalability, and thrives in settings needing constant data flow across remote systems. By
comparison, RabbitMQ emphasises asynchronous communication and message queuing. Supported several
messaging patterns including direct, topic, and fanout exchanges, it is intended for consistent message
delivery in challenging routing situations. Although RabbitMQ offers strong fault tolerance and durability,
overall it manages less throughput than Kafka. Task queuing, background work, and decoupling microservices
all find application here.

B. Analysis of performance, scalability, fault tolerance, and message delivery

Apache Apache Particularly with regard to speed and latency, Kafka and RabbitMQ do not function at all the
same manner. Whereas Kafka gets 100%, RabbitMQ only gets 50% of the messages it receives. With 99% low-
latency speed, Kafka can manage enormous volumes of data with quite little delay. Conversely, RabbitMQ has
a greater 80% latency. For applications requiring real-time data transmission and rapid handling of such data,
Kafka is therefore more suited.

Table 2: Analysis of Apache Kafka Vs RabbitMQ

Parameter Apache Kafka RabbitMQ

Max Throughput (%) 100 50

Max Latency (%) 99 80

Replication Factor (%) 100 67

Fault Tolerance (%) 100 70

Delivery Guarantee (%) 100 80

Availability (%) 100 75

Kafka is very scalable; it has a replication factor of 100%, which means it can spread data across various
providers and make sure there is backup. The replication factor for RabbitMQ, on the other hand, is 67%,
which makes it harder to use in big settings.

Figure 3: Comparison Of Apache Kafka And RabbitMQ Performance

376

J INFORM SYSTEMS ENG, 10(13s)

Kafka also has better fault tolerance (100%), which means that the system will still work even if something
goes wrong. RabbitMQ, on the other hand, only has 70% fault tolerance, which means that there is a higher
chance of downtime. When it comes to delivery guarantees, Kafka is 100% reliable, meaning that messages are
sent as planned, while RabbitMQ only promises delivery 80% of the time, as comparison illustrate in figure 3.
It is more safe to use Kafka for mission-critical apps because it is always available (100% of the time), while
RabbitMQ is only available 75% of the time.

Table 3: Decision matrix for when to use Kafka, RabbitMQ, or a combination of both

Parameter Apache Kafka RabbitMQ Combination of Both
Real-Time Processing 5 3 5
Large Scale Data Streams 5 3 5
Durability 5 3 5
Asynchronous Task Queues 3 5 5
Complex Routing 3 5 5
Ease of Use 2 4 3

Key factors are used in the decision matrix to figure out how well Apache Kafka, RabbitMQ, and their mixture
work. Kafka gets a 5 for real-time processing and large-scale data streams, showing that it is good at these
things. On the other hand, RabbitMQ only gets a 3 because it has trouble with high-throughput data and real-
time needs, comparision illustrate in figure 4. Together, Kafka and RabbitMQ are the best answer for both
problems, so they get a 5 for that.

Figure 4: Comparison Of Apache Kafka, RabbitMQ, And Combination of both

Kafka also gets a 5 for stability and dependability because it does a great job of keeping messages even when
there are problems. RabbitMQ gets a 3 because it isn't as durable as other options. When you mix the two
technologies, you get the best of both worlds and keep the sturdiness strong. RabbitMQ gets a 5 for its
performance in situations that need asynchronous task queues and complicated handling. Kafka gets lower
marks here because its route is easier and its queueing features are limited, but this combo gives complicated
systems the freedom they need. RabbitMQ gets a 4 for being simple, (see figure 5) while Kafka gets a 2 for
being less user-friendly.

Figure 5: Representation of Kafka Vs. RabbitMQ Vs. Combination of both model

377

J INFORM SYSTEMS ENG, 10(13s)

5. CASE STUDIES

1. Case Study 1: E-commerce Platform for Real-Time Inventory Management

Accurate stock levels, avoidance of over-sales, and supply chain process optimisation depend on real-time
inventory management in an e-commerce platform. Combining Apache Kafka and RabbitMQ can help such
systems to improve scalability and fault tolerance while streamlining inventory control. Processing vast
amounts of real-time transactional data such as user purchases and stock updates—K Kafka's high-throughput
and low-latency traits make perfect for Over many services—order processing, warehouse management, stock
tracking it can effectively manage the continual flow of data.

By handling asynchronous communication for less time-sensitive chores like contacting suppliers about
restocking requirements or alerting consumers about inventory modifications, RabbitMQ enhances Kafka.
While RabbitMQ supports crucial but non-urgent messages, hence offering a dependable messaging
infrastructure, this integration guarantees that Kafka manages the real-time streaming of inventory data.
Through real-time updates, the combination guarantees precise inventory levels and enhances customer
experience by allowing seamless operations even under significant traffic.

2. Case Study 2: Financial Services for Transaction Processing

By guaranteeing real-time data streaming, great dependability, and fault tolerance, Kafka and RabbitMQ may
improve transaction processing in the financial services sector. Because Kafka can process and disseminate
enormous amounts of information in real-time, it is ideal for managing massive financial transactions like
payments and trading data. It guarantees minimum latency and high throughput processing of important
transaction data like payment requests, market orders, stock updates, therefore allowing financial institutions
to provide quick services to their consumers.

Conversely, RabbitMQ is utilised to handle communication between many services within the financial
ecosystem and manage the transactional queues. RabbitMQ may, for instance, handle message queues for
background operations like fraud detection, reconciliation, and transaction validation. Financial services may
build a strong, scalable, and efficient system for transaction processing, thereby guaranteeing compliance,
security, and real-time monitoring by combining Kafka for high-speed real-time data streams with RabbitMQ
for dependable task management and sophisticated routing.

6. PERFORMANCE EVALUATION

We tested Apache Kafka, RabbitMQ, and their combined setup on a number of important factors, such as
message speed, delay, message longevity, fault tolerance, system load, and message acknowledgement time, as
represent it in table 4. When tried in a real-time data stream setting, Apache Kafka showed better
performance, with a flow of 100,000 messages per second and a delay of only 1 millisecond. Kafka had a 98%
message reliability rate and a 100% fault tolerance rate, which is very good. Because of this, Kafka is perfect
for real-time streaming apps that need high speed and low delay. However, Kafka's system load was recorded
at 75%, which shows how much computing power is needed to handle big amounts of data.

Table 4: Performance Evaluation of Standalone and Integrated Kafka-RabbitMQ Systems

Parameter Standalone
Kafka

Standalone
RabbitMQ

Integrated Kafka +
RabbitMQ

Test Scenario Real-time Data
Stream

Asynchronous Task
Queue

Mixed Data Stream & Queue

Message Throughput
(Msgs/sec)

100000 50000 80000

Average Latency (ms) 1 10 5

Message Durability (%) 98 92 95

Fault Tolerance (%) 100 90 95

System Load (%) 75 65 70

Message Acknowledgment
Time (ms)

2 5 4

RabbitMQ, which is used to manage asynchronous task queues, could handle 50,000 messages per second
with a delay of 10 ms. The system was 92% durable and could handle 90% of faults. RabbitMQ had a 65%
lower system load than Kafka, but it took 5 milliseconds longer for messages to be acknowledged, which shows
that it takes longer to handle messages than Kafka. The Kafka-RabbitMQ setup worked best when it was
joined. It could handle 80,000 messages per second, had an average lag of 5 milliseconds, was durable 95% of
the time, and could handle 95% of faults. The system load was about 70%, and the time it took to acknowledge

378

J INFORM SYSTEMS ENG, 10(13s)

a message went down to 4 milliseconds. This shows that both methods working together are better for a
balanced approach.

 (a) (b)

Figure 6: (a) Message Throughput Comparison (b) Latency and Durability Comparison

Table 5: Results of benchmark tests comparing standalone and integrated setups

Parameter Standalone
Kafka

Standalone
RabbitMQ

Integrated Kafka +
RabbitMQ

Max Throughput (%) 100 50 85

Max Latency (%) 1 10 5

Replication Factor (%) 100 67 85

Fault Tolerance (%) 100 70 90

Availability (%) 100 75 90

Resource Utilization (%) 80 60 70

The benchmark tests clearly show that Apache Kafka, RabbitMQ, and their combined setup perform very
differently when measured by performance measures. In solo mode, Apache Kafka has great speed, reaching
100% of its full capacity with only 1% delay and a perfect replication factor of 100%. Kafka also has great fault
tolerance and availability, both at 100%. This makes it a great choice for high-performance systems that can
handle errors. While RabbitMQ does well on its own, it doesn't do as well when compared to other systems. It
has a higher delay of 10% and a maximum rate of 50%. The repetition factor is 67%, which means that there
are some limits on how much can be added or changed. Also, its fault tolerance and availability are lower, at
70% and 75%, respectively. This shows how vulnerable it is in more important settings, as shown in figure 7.

Figure 7: Comparison Of Kafka, RabbitMQ, And Integrated System

The setup that combines Kafka and RabbitMQ is a good compromise between the two. It has 85% of Kafka's
output and 5% less delay, so it can be used in systems that need both real-time data streams and stable task
lists. The replication factor (85%) and fault tolerance (90%) are much better than RabbitMQ's performance
when used by itself, and availability goes up to 90%, showing that both systems work well together. At 70%,
resource utilisation is also at its best, which shows that the combined setup's system management is working
well.

379

J INFORM SYSTEMS ENG, 10(13s)

7. CONCLUSION

Combining the capabilities of Apache Kafka with RabbitMQ to handle the complexity of real-time streaming
and message queuing provides a transforming answer for contemporary data management systems. By means
of thorough investigation and performance assessment, this study has shown how Kafka shines in low-latency,
high-throughput contexts, thus guiding choice for real-time data streaming and massive data acquisition.
while steady information glide is vital, Kafka's architecture—which boasts strong scalability, fault tolerance,
and excessive availability—is perfect. For sure message styles that RabbitMQ can efficaciously handle,
nonetheless, Kafka's regulations in state-of-the-art routing and asynchronous assignment handling make it
less in shape. Conversely, RabbitMQ gives a super answer for undertaking queuing, complicated routing, and
asynchronous communique. Although it runs at a lesser throughput and has more delay than Kafka, its
advantages in flexibility, message durability, and handling of many communications patterns define it from
other platforms. Combining Kafka with RabbitMQ results in a balanced configuration that lets companies use
the features of both systems. While supporting several messaging demands including real-time data streams
and background task processing, the integrated design improves scalability, fault tolerance, message
durability, and throughput. Benchmark test and case study performance results show even more how much
the integration offers in terms of fault tolerance, message throughput, and latency. Kafka's high-speed stream
processing capacity and RabbitMQ's strong queuing mechanism together enable companies to create
dependable, scalable, and efficient data pipes. This study ultimately portrays the Kafka-RabbitMQ integration
as a future-proof option for optimising data pipeline performance in a variety of sectors, therefore
guaranteeing that data transmission and processing are more flexible, robust, and effective than they have
ever been.

REFERENCES

[1] Yang, S.; Zhang, X.; Liang, J.; Xu, N. Research on Optimization of Monitoring Nodes Based on the
Entropy Weight Method for Underground Mining Ventilation. Sustainability 2023, 15, 14749.

[2] Folgado, F.J.; Calderón, D.; González, I.; Calderón, A.J. Review of Industry 4.0 from the Perspective of
Automation and Supervision Systems: Definitions, Architectures and Recent
Trends. Electronics 2024, 13, 782.

[3] Akanbi, A. Estemd: A distributed processing framework for environmental monitoring based on apache
kafka streaming engine. In Proceedings of the 4th International Conference on Big Data Research, Tokyo,
Japan, 27–29 November 2020; pp. 18–25.

[4] Chen, Z.; Kim, M.; Cui, Y. SaaS application mashup based on High Speed Message Processing. KSII
Trans. Internet Inf. Syst. (TIIS) 2022, 16, 1446–1465.

[5] Howard, J.; Murashov, V.; Cauda, E.; Snawder, J. Advanced sensor technologies and the future of work.
Am. J. Ind. Med. 2022, 65, 3–11.

[6] Waworundeng, J.M.S.; Tiwow, D.F.; Tulangi, L.M. Air pressure detection system on motorized vehicle
tires based on iot platform. In Proceedings of the 2019 1st International Conference on Cybernetics and
Intelligent System (ICORIS), Medan, Indonesia, 8–9 October 2022; IEEE: Piscataway, NJ, USA, 2019;
Volume 1, pp. 251–256.

[7] Fay, C.D.; Healy, J.P.; Diamond, D. Advanced IoT Pressure Monitoring System for Real-Time Landfill
Gas Management. Sensors 2023, 23, 7574.

[8] Alotaibi, A.; Barnawi, A. Securing massive IoT in 6G: Recent solutions, architectures, future directions.
Internet Things 2023, 22, 100715.

[9] Gupta, N.; Gottapu, S.K.; Nayak, R.; Gupta, A.K.; Derawi, M.; Khakurel, J. (Eds.) Smart applications of
Internet of Things (IoT) in healthcare. In Human-Machine Interaction and IoT Applications for a Smarter
World, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022.

[10] Banafaa, M.; Shayea, I.; Din, J.; Azmi, M.H.; Alashbi, A.; Daradkeh, Y.I.; Alhammadi, A. 6G Mobile
Communication Technology: Requirements, Targets, Applications, Challenges, Advantages, and
Opportunities. Alex. Eng. J. 2023, 64, 245–274.

[11] Lohitha, N.S.; Pounambal, M. Integrated publish/subscribe and push-pull method for cloud based IoT
framework for real time data processing. Meas. Sensors 2023, 27, 100699.

[12] Mammela, O.; Karhula, P.; Makela, J. Scalability Analysis of Data Transfer in Massive Internet of Things
Applications. In Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC),
Barcelona, Spain, 29 June–3 July 2019; pp. 1–7.

[13] Shi, Y.; Zhang, Y.; Chen, J. Cross-layer QoS enabled SDN-like publish/subscribe communication
infrastructure for IoT. China Commun. 2020, 17, 149–167.

[14] Siddiqui, H.; Khendek, F.; Toeroe, M. Microservices based architectures for IoT systems—State-of-the-art
review. Internet Things 2023, 23, 100854.

