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This work addresses the challenge of predicting student performance by investigating the 

sparsity of student action data and the imbalance between performance and completion rates. 

Initially, various machine learning (ML) and deep learning (DL) methods were compared 

using the Unitelma dataset, highlighting the superior performance of DL algorithms such as 

CNN and LSTM. Subsequently, an attention-based model combining convolutional and 

recursive layers (with LSTM units) was implemented and trained, although insufficient 

training data limited accurate model assessment. Lastly, the study focused on LSTM, TCN, 

and Kalman Filter models using the XuetangX dataset, leveraging oversampling (ADASYN) 

and data densification (PCA) techniques to address class imbalance and data sparsity issues. 

The Kalman Filter model demonstrated superior performance in terms of AUCPR, while 

LSTM and TCN models outperformed it in binary classification. TCN, in particular, showed 

increased efficiency over LSTM, especially for longer time sequences. Future work will involve 

applying these techniques to academic datasets, potentially retraining models with ADASYN 

and PCA algorithms to further improve performance. Additionally, emphasis will be placed on 

exploring the efficacy of TCN models in solving student performance prediction tasks. 

Keywords: Student performance, Attention-based model, Kalman Filter, Convolutional and 

recursive layers. 

 

INTRODUCTION 

Student performance prediction is a pressing issue in education, with implications for intervention strategies 
and student success. Traditional statistical methods and newer ML and DL techniques offer promising 
avenues for addressing this challenge. However, the predictive accuracy of these models is influenced by 
factors such as the sparsity of student action data. 

Various machine learning  (ML) and deep learning (DL) methods, including CNN and LSTM networks, have 
been applied to predict student performance. These models leverage sequential student action data to make 
predictions about future performance behavior. However, challenges related to the sparsity of student action 
data, where students may have limited engagement with course materials, and imbalances across 
demographic, academic, and socioeconomic factors can bias predictive models assessing student performance. 
Varied representation in age, gender, ethnicity, and socioeconomic status, along with disparities in academic 
metrics, extracurricular activities, and course characteristics, can skew model perceptions. 

Existing research has shown that DL algorithms, particularly CNN and LSTM, demonstrate superior 
performance in student performance prediction tasks compared to traditional statistical methods. However, 
these models may struggle with the sparsity of student action data and the imbalances across demographic, 
academic, and socioeconomic factors can bias predictive models assessing student performance. Varied 
representation in age, gender, ethnicity, and socioeconomic status, along with disparities in academic metrics, 
extracurricular activities, and course characteristics, can skew model perceptions, which can limit their 
predictive accuracy. 

The objective of this work is to investigate the effectiveness of ML and DL methods in predicting student 
performance, considering the challenges posed by data sparsity and class imbalance. By comparing the 
performance of various methods using the Unitelma dataset and implementing an attention-based model, the 
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study aims to provide insights into the most effective modeling approaches for addressing data sparsity and 
class imbalance in educational datasets. Furthermore, by evaluating the performance of LSTM, TCN, and the 
Kalman Filter model using the XuetangX dataset, the study aims to assess the efficacy of TCN models in 
addressing the challenges of student performance prediction, particularly in the context of longer time 
sequences and sparse data. 

LITERATURE REVIEW 

They were superior in that they could deal with high-dimensional data and were computationally cheap, 
relatively. Support vector machines (SVMs), however, concentrated on selecting the best hyperplane that 
maximally distinguished various classes of students. [25] [26] [27] It gave excellent generalization 
performance, even with the use of high-dimensional data. Lastly, non-parametric KNN classified the students 
according to their closeness to other students in the feature space. [25] Though these classical ML algorithms 
provided great insights and sufficient accuracy, they were usually unsatisfactory with larger and more 
complicated datasets in terms of tackling the complex relationship within them. [28] [29] The shortcomings of 
these less complicated models became all the more pronounced as the complexity and amount of educational 
data expanded. 

Deep learning (DL) models, with their inbuilt ability to learn complex features automatically from raw data, 
have proven to be powerful tools for predicting student performance. [30] Recurrent neural networks (RNNs), 
specifically Long Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs), are particularly 
well-suited to model sequential data, as they can capture the temporal dynamics of the student learning 
process. Convolutional neural networks (CNNs) have also been used successfully to learn spatial features from 
representations of learning interactions. The advent of CNNs was a major change in the strategy for predicting 
student performance, away from the need for manually designed features toward the automatic learning of 
rich representations directly from raw data. This method had the advantage of greater precision and less 
dependence on domain knowledge in feature creation. 

RNNs, particularly LSTMs and GRUs, have been found quite effective in capturing the inherently sequential 
nature of learner interactions with educational platforms.[32] [33] LSTMs are particularly prominent with 
their capacity for addressing the vanishing gradient issue, a generic problem with simple RNNs that prevented 
long-range dependencies from being learned. This enables LSTMs to capture the long-range patterns and 
trends in the learning behaviors of students more effectively, offering a better picture of the learning process. 
Modeling the long-range dependencies is important to predict future performance accurately because it 
reflects the total impact of learning experiences in the past. [34] GRUs, an optimized version of LSTMs, 
provide similar performance with enhanced computational efficiency. [35] They are thus ideal for use with big 
data or real-time prediction. LSTMs and GRUs can naturally combine heterogeneous sources of data, such as 
assignment submissions, quiz grades, and online usage logs, to produce more precise and subtle predictions of 
future student performance. The application of RNNs is a major leap in the technology that enables dynamic 
and intricate learning processes to be modeled. 

Current research is actively investigating hybrid deep learning models that combine the best of RNNs and 
CNNs to model both temporal and spatial dimensions of student learning. [34] [35] Hybrid models use the 
temporal modeling strength of RNNs to model the development of student knowledge over time and the 
spatial feature extraction strength of CNNs to model patterns in student interactions. [36] The synergistic use 
of these approaches offers a better and more subtle representation of student learning, thus making for more 
precise predictions of performance. RNNs and CNNs used together provide for a more enhanced and holistic 
description of student learning processes beyond what can be gained from using one or the other alone. This is 
an improvement in the science, as it offers a stronger and more versatile tool for student performance 
prediction. 

3. DATA COLLECTION  

Data collection for educational data mining (EDM) projects involves gathering various types of data from 
sources such as student records, course materials, online learning platforms, and questionnaires. This data 
can include numerical, categorical, and text data, reflecting factors (Table 1).  

Table 1. Data Parameters 

Data Parameter 

1. Age 2. Subject Area 

3. Gender                             4. Level of Difficulty 

5. Ethnicity 6. Delivery Format 

7. Socioeconomic Status               8. Online Provider 
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9. Grades from Previous 
Semesters                                                                                                                       

10. Enrollment                                                                                                                                 

11. Standardized Test 
Scores           

12. Relevant Start and End 
Dates                                                                                                                                                

13. GPA 
14. Extracurricular 
Activities                                                                                                                                           

15. Attendance Records                 16. Co-curricular Activities                                                                                                                                                          

17. Tardiness 18. Level of Involvement                                                                                                                                         

19. Early Dismissals 
20. Seminar and 
Assignment  

21. Course Subject 
22. NPTEL Course 
Participation         

23. Course Level 
24. Rural/Urban 
Classification         

25. Teacher 26. Family Income 

27. Type of Online Course                                                                                                                                  28. Caste 

29. Grades  

 

3. EXPERIMENTS 

In the initial experiment of the work project, the goal was to establish baselines for predicting student 
performance using ML models [25]. The process began with data preprocessing from the Moodle database 
(D2.1 and D2.2), which records all student actions (e.g., login, logout, view, comments, exercises) along with 
the timestamps. 

First, student actions were mapped into a dictionary `d`, where each key is a student ID and the 
corresponding value is a chronologically ordered list of actions. Then, a join operation was performed between 
the Moodle dataset (D2.0) and the ESSE3 dataset (D1.0) to link each student in `d` with their ESSE3 
registration ID. This mapping was stored in a dictionary, using ESSE3 IDs as keys and Moodle IDs as values, 
allowing the combination of personal data from ESSE3 with academic data from Moodle. 

Next, to determine whether students in `d` had higher grade or lower grade, datasets D1.1 is utilized. D1.1 was 
checked first to identify students who had either higher grade or lower grade on their studies.  

The experiment involved two approaches. The first approach created vector sequences representing student 
actions during their first year, aggregated by day. The second approach quantified each type of action 
performed by the student each day, within the first academic year. The dataset contained 101 different types of 
actions. 

For the first approach, the data were processed to generate a matrix M. Each instance in M was a vector 
representing the actions of a student over the first year, with each vector having a length of 360, 
corresponding to the number of actions performed each day. 

This matrix M was then used to train the designated ML algorithms, which are detailed in the following 
equations 1-2. 

M =  [s1 , s2 , s3 , s4 , . . . , sk] with k = number of students in the dictionary d   (1) 

si  =  [t1, t, t3 , t4, . . . , tN ] is the the vector of the activities carried out by the student   (2) 

i, with N = 360 (days of the year), and ti = sum of the actions carried out by the student on day i. 

In the second approach, the training data is structured as a tensor T with dimensions k times N times W, 
where k is the number of students in the dictionary d, N is the time interval of 360 days, and W is the number 
of action types in the Unitelma dataset. 

Specifically, the tensor T = [s1, s2 , s3 , s4 , . . . , sk] represents the actions of (k) students. Each student (si
t) has a 

matrix of actions over time: si
t = [a1 , a, a3 , a4 , . . . , aW] is the vector of actions for student i on day t (for ( t =

 1, 2, . . . , N )). Each element (aj  ) within (si
t) denotes the number of times action j was performed by the student 

on that day. 
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The vector y contains the ground truth values used to evaluate model performance. It represents the career 
status of each student with binary values: 0 indicates a student who has higher grade, while 1 indicates a 
student who has lower garde. 

Formally, y = [c1, c2 , c3 , c4 , . . . , ck], where k  is the number of students in dictionary d: 

ci = {
0 if the student has higher grade.               

1 if the student has lower grade.                 
        (3) 

This y vector is used for both approaches. 

3.1 Algorithms used 

Using the M matrix and  y vector, the data is split into 70% for training and 30% for testing (Fig 1). The 
training data is then used to train various ML and DL algorithms, including Linear Regression (LiR), Logistic 
Regression (LoR), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), Naive Bayes 
(NB), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM).  

 

Figure 1. Train Set/Test Set Splitting 

4.1.1.1 Linear Regression 

LiR is a supervised learning method that models the relationship between variables by fitting a linear equation to 
observed data. It estimates the expected value using ( k ) independent variables (x1, x2 , x3 , x4 , . . . , xk)) to predict 

the dependent variable  y. 

The model learns ϑ parameters, which are estimated based on instances of the training set, to formulate the 
hypothesis hθ(x) as close as possible to the dependent variable y in the learning examples of the training 
set, with hθ(x) = ϑ0 + ϑ1x1 + ϑ2x2 + ⋯ . +ϑkxk.  

4.1.1.2 Logistic Regression 

LoR, despite its name, is a classification model used for binary classification tasks. It is effective for linear 
classification, where the decision boundary can perfectly separate the classes. Unlike LiR, LoR predicts a value 

between 0 and 1 using the hypothesis hθ(x) (3), which applies a sigmoid (logistic) function σ(z) =
1

1+e−z to a 

linear combination of the input variables. 

hθ(x) = σ(θ0 + θ1x1 + θ2x2 + + ⋯ θkxk) = σ(θ
T
x) =

1

1+e−θTx
 with 0 ≤ hθ(x) ≤ 1  (4) 

3.1.1 Decision Tree 

The DT is easy to interpret, handles both numeric and categorical data, and can learn non-linear relationships. The 
algorithm builds a tree by starting at the root and splitting the data based on the feature that maximizes 
information gain, calculated as the difference between the parent node's impurity and the sum of the child nodes' 
impurities. In this experiment, entropy was used as the splitting criterion due to its higher efficiency compared to 
the Gini index. 

3.1.2 Random Forest 

RF is an ensemble classifier that uses bagging with DTs to minimize overfitting. The algorithm generates 
multiple trees from the same training set, but each tree uses a random subset of features for splitting, ensuring 
diversity among the trees. RFs provide good classification performance, scalability, and ease of use by 
combining multiple weak learners to create a robust model with better generalization and less susceptibility to 
overfitting. For this experiment, the algorithm was trained with 100 trees to balance performance and 
computation cost. 

3.1.3 Support Vector Machine 

SVM is a supervised learning model used for classification and regression. The optimization goal of SVM is to 
maximize the margin, defined as the distance between the decision boundary (hyperplane) and the nearest 
training samples, known as support vectors (Fig 2). 
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Figure 2. Representation of SVM margin 

Large margins in decision boundaries are preferred because they typically result in lower generalization error, 
while smaller margins can lead to overfitting. In this experiment, the RBF (Radial Basis Function) kernel was 
employed as it was found to be more effective compared to linear, polynomial, and Gaussian kernels. 

3.1.4 Naive Bayes 

NB is a classification algorithm based on Bayes' theorem, applying a probabilistic approach to solve 
classification problems. It assumes independence between features given the class variable �. Formally, 
Bayes' theorem states the relationship between the class variable � and the dependent feature vector x1  
through xn  as follows: 

P(y|X) =
P(X|y)P(y)

P(X)
=

P(x1 ,x2 ,x3 ,x4 ,...,xn)P(y)

P(x1 ,x2 ,x3 ,x4 ,...,xn)
=

P(y) ∏ P(xi|y)n
i=1

P(x1 ,x2 ,x3 ,x4 ,...,xn)
       (5) 

As P(x1, x2 , x3, x4, . . . , xn) is constant for the input, the model calculates predictions using the following 
formula: 

ŷ = arg max
y

P(y) ∏ P(xi|y)n
i=1            (6) 

Compared to Multinomial Naive Nayes, the use of a Gaussian NB was found to be more effective, because the 
latter fits better to continuous valued features as conforming to the Gaussian distribution as the data processed 
for the prediction of the performance. 

3.1.5 Convolutional Neural Network 

CNNs are widely used in computer vision and spatial data analysis. They transform complex inputs into 
simpler features through a series of steps, efficiently capturing spatial and temporal dependencies in images. 
CNN architectures excel with image data due to reduced parameters and reusable weights. They employ 
shared-weight neural networks and convolution operations to segment input into 2D feature maps. This 
experiment's CNN includes convolutional or Separable Convolutional layers (CLs), pooling layers (PLs), and 
fully connected layers (FCLs). The convolution operation convolves input domains with filter masks to 
generate output feature maps. 

The output from the CL can be expressed with the following expression: 

o(x, y) = ∑ ∑ i(x + i, y + j) ∗ w(i +
W+1

2
, j +

(W−1)

2

j=
−(W−1)

2

(H−1)

2

j=
−(H−1)

2

H+1

2
       (7) 

Where: o(x, y) is the output from the CL (output obtained from running a kernel selection and convolution 

operation; i(x + i, y + j) is a generic input (x + i, y + j) of the CL; 
W+1

2
,

H+1

2
  is a specific weight of the filter matrix 

defined in a horizontal range [1, W] and a vertical range [1, H]; 

• W and H are the width and height of both the 2D map and the filter mask. 

Separable convolution focuses on the spatial dimensions of an image and kernel (width and height), dividing a 
kernel into two smaller ones. This approach speeds up network execution by reducing parameters and 
computational complexity compared to classic convolution. An example of separable convolution application 
is shown below. 

The PL reduces data size by selecting small, usually non-overlapping, pooling masks within the image. It 
performs either max-pooling, selecting the maximum value in the mask, or average-pooling, averaging the 
values in the mask. 

FCLs have neurons with connections to all activations in the previous layer, computed through matrix 
multiplication and a bias offset. This is distinct from sparsely connected layers, as shown in the image below 
(Fig 3). 

The neural network chosen for this experiment follows the LeNet-5 architecture. This architecture is 
straightforward and well-suited for handwritten and machine-printed character recognition tasks. The LeNet-
5 architecture is depicted in the following image. 
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Figure 3. Architecture of LeNet-5 

The LeNet-5 architecture comprises two sets of convolutional and average PLs, followed by two FCLs and a 
binary classifier (BC). The first two CLs and FCLs use the Rectified Linear Unit (ReLU) activation function for 
faster training, testing times, and improved predictive performance. ReLU is defined as ReLU(x) = max (0, x).  
The final layer, serving as the classification layer, employs the softmax function to generate the output vector. 

Softmax(xi) =
exi

∑ e
xj

j
    (6) 

The loss function used to train LeNet-5 is softmax cross entropy. It calculates the sum of cross entropies for 
each instance in the batch by comparing predicted and actual classes. This sum is then divided by the batch 
size and negated. In mathematical terms, if �x represents each instance in the batch, p(x)is the ground-truth 
distribution, and q(x) is the estimated distribution by the model, the loss function is defined as:: 

H(p. q) = −
1

|batch|
∑ p(x)log (q(x))x∈batch         (8) 

3.1.6 Long-Short Term Memory 

Recurrent networks, unlike other types, process inputs sequentially, considering their order and retaining 
memory of previous elements. They can propagate data forwards and backwards, effectively extracting and 
understanding elements within context. In this experiment, a recurrent network based on LSTM cells was 
implemented, known for their ability to remember and retain information from past inputs for extended 
periods (Fig 4). 

 

Figure 4. Detailed representation of an LSTM unit 

The architecture selected incorporates LSTM cells, a Flatten layer (FL), and a BC. LSTM cells, comprising 100 
units, analyze input vectors derived from student instances. Post-LSTM processing, the FL compresses output 
dimensions into a 1-dimensional vector. Subsequently, a BC employs softmax activation to generate 
normalized output values. This architecture adeptly handles sequential data, facilitating the production of 
sequenced output (Fig 5). 
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Figure 5. Architecture of the LSTM neural network 

The chosen architecture for the recurrent network includes LSTM cells (100 cells) processing input vectors of 
student instances, followed by a FL to reduce output dimensions to a 1D vector. A BC uses the softmax 
activation function to return normalized output values. Similar to the CNN, the loss function for updating 
LSTM network weights during training is softmax cross entropy. 

3.1.7 Choice of metrics 

The metrics used to assess the performance of the models include precision, recall, F1 score, AUCPR, and 
Cohen’s Kappa Score.  

3.2.  Achieved results  

3.2.1 First approach 

This section shows the training results of the algorithms mentioned in the previous paragraphs. The following 
performance are achieved by testing the trained models on the test set (table 2). 

Table 2. Performance comparison of the ML and DL algorithms in terms of precision, recall, F1, AUCPR and 
Cohen’s Kappa score 

Algorithms Precision Recall F1 AUCPR Cohen’s Kappa 

LiR 0.637 0.621 0.573 0.559 0.248 

LoR 0.636 0.626 0.631 0.565 0.257 

DT 0.592 0.592 0.592 0.538 0.184 

RF 0.654 0.648 0.651 0.666 0.292 

SVM 0.649 0.567 0.605 0.606 0.114 

NB 0.639 0.596 0.616 0.560 0.203 

CNN 0.640 0.637 0.638 0.573 0.275 

CNN with Separable 
Convolution 

0.625 0.623 0.624 0.565 0.243 

LSTM 0.663 0.660 0.661 0.591 0.322 

 

The Precision-Recall graphs illustrate the tradeoff between precision and recall for various thresholds. Summary plots 
showcase the performance results achieved by the DL algorithms at the end of each training epoch (Fig 6-8). 
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Figure 6. CNNresults 

 

Figure 7. CNNwith Separable Convolution results 

 

Figure 8. LSTM results 

The LSTM model emerged as the most effective for this task, demonstrating higher reliability in Precision, 
Recall, F1 score, and Cohen’s Kappa Score. 

3.2.2 Second approach 

This paragraph presents the results, Precision-Recall graphs, and learning outcomes of DL algorithms, 
obtained by executing the previously trained models on the test set (table 3 and Fig 9-23). 

Table 3. Performance Comparison: ML vs. DL Algorithms 

 Precision Recall F1 AUCPR Cohen’s Kappa 

LiR 0.513 0.512 0.512 0.460 0.025 

LoR 0.615 0.612 0.614 0.555 0.226 

DT 0.641 0.641 0.641 0.579 0.280 

RF 0.694 0.688 0.691 0.731 0.372 

SVM 0.674 0.674 0.674 0.745 0.347 

NB 0.642 0.625 0.634 0.565 0.257 

CNN 0.691 0.690 0.691 0.622 0.378 

CNNwith Separable 
Convolution 

0.700 0.671 0.685 0.617 0.334 

LSTM 0.597 0.598 0.597 0.544 0.193 
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Figure 9. CNNresults 

 

Figure 10. CNNwith Separable Convolution 
results 

 

Figure 11. LSTM results 

From what we have seen in the results, the most effective model for this task is CNN as more reliable in the 
Recall, F1 and Cohen’s Kappa Score metrics. 

3.3. Second experiment 

The experiment focuses on studying student performance by analyzing the temporal sequence of actions 
performed by students in a specific degree course. Its objective is to evaluate performance phenomenon using 
timeseries data from a selected sample of students, focusing on the most challenging degree course each 
academic year. Degree course difficulty is determined by calculating the arithmetic mean of individual exam 
difficulties, representing the sum of exam difficulties divided by the total number of exams for that course in a 
given academic year. 

Given that: 

 Dt = {D1
t , D2

t , D3
t , … , Dm

t }   is a set of decimal values inherent to the difficulty of the single degree courses 
contained in the Unitelma dataset in the t-th academic year; 

 ni  is the number of exams in the degree course i; 

 δij
t   is the difficulty of the j-th exam belonging to the degree course i in the academic year t. 

Then the degree course difficulty i is calculated as follows: 

Di
t =

1

ni

∑ δij
tn

j=1              (9) 

Where: 

δij
t

=
No.of students who passed the j exam in year t

No.of students who attempted the j exam in year t
∗

v̅jt

31
      (10) 
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And v̅jt is the average grade of the exam j in the academic year t. 

Therefore the most difficult degree course is established in the following way: 

Dmin
t = min {D1

t , D2
t , D3

t , … , Dm
t }           (11) 

The Unitelma dataset merges ESSE3 and Moodle data, categorized by academic year and degree course. Each 
academic year, data from the most challenging degree course is selected using a predefined formula. An 
attention-based neural model, CNN-LSTM, is trained on this data to analyze student timeseries and context 
features. These features encompass: p

1
 = Number of attempts for all courses in the degree course in year t; p

2
 

= Student grade average up to year t; p
3
 = Number of exams taken by the student in year t; p

4
 = Student age; 

p
5
 = Binary indicator (0 or 1) denoting if the student attempted the most challenging exam of their degree 

course in previous years; p
6
 = The most difficult exam of the degree course in year t in which the student is 

enrolled. 

P6 = δmin
t              (12) 

And δmin
t = mi{δi1

t , δi2
t , δi3

t , … . , δini

t }       (13) 

The experiment encountered challenges due to the sparsity of matrices representing student timeseries data. 
To address this, dimensionality reduction techniques were employed to reduce data dimensionality and 
alleviate the "curse of dimensionality" problem. Autoencoders, specifically feedforward networks trained with 
gradient descent and back-propagation, were implemented for this purpose. The autoencoder learns to 
compress input data while retaining relevant information, serving as an information compressor and effective 
representation identifier. After training the autoencoder, the embeddings generated from the input data were 
utilized to train the CNN-LSTM model, improving model performance. 

3.3.1The CNN-LSTM model 

The CNN-LSTM neural model architecture was designed by combining elements from the most effective 
algorithms in the previous experiment. It includes CLs with 3x3 filters, PLs with 2x2 average pooling, FCLs 
with 100 units, LSTM layer with 20 units, concatenation layer for context parameters, and an output layer 
with 1 unit. This architecture is visually represented in the following image. 

ReLU activation function yielded the best results in terms of convergence speed and final accuracy for the two 
CLs and the subsequent FCL. The output layer utilizes the sigmoid activation function to limit output to a 
range between 0 and 1, beneficial for probability prediction. 

Sigmoid(x) =  
1

1+e−x           (14) 

For what regards the loss function, sigmoid cross entropy was used to train the CNN-LSTM model. This 
function calculates the sum (for each instance in the batch) of the binary cross entropies comparing the 
predicted classes with the effective classes; then the final result will be divided by the batch size and changed 
sign. 

Supposing that each instance of the batch is x, p(x) is the ground-truth distribution and q(x) is the estimated 
distribution by the model, the loss function is defined as following: 

H(p. q) =  
1

|batch|
∑ p(x) log(q(x)) + (1 − p(x))log (1 − q(x))x∈batch     (15) 

The CNN-LSTM model was trained using the sigmoid cross-entropy loss function, which compares predicted 
classes with actual classes and calculates binary cross-entropies. The Adam optimizer, an extension of 
Stochastic Gradient Descent, was utilized for network estimation. A batch size of 10 was found to optimize 
estimation times. 

3.3.2 Choice of metrics 

The performance of the CNN-LSTM model is evaluated using the following metrics: Mean Squared Error 
(MSE), Mean Absolute Error (MAE), and R-Squared (R2).  

Each degree course was split into 70% training data and 30% testing data. The CNN-LSTM model's (Fig 12) 
performance was evaluated on the test set, and the results are depicted in the following image. 
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Figure 12. CNN-LSTM results 

The graph above indicates a low margin of error (MSE and MAE) for performance prediction in each academic 
year. However, a significant issue observed in this experiment is class imbalance, where the number of 
withdrawn students far exceeds the number of graduates. This imbalance, coupled with a small number of 
instances, results in very low R-squared values (R2), particularly in the academic years 2012, 2014, 2015, and 
2017. The limited number of instances hampers the accurate assessment of the CNN-LSTM model's 
performance. 

3.4. Third experiment 

The third experiment aims to identify optimal time windows for predicting student performance. It employs 
ML models to predict student performance within specific time periods. Two approaches are used: one based 
on pure data processing and the other incorporating oversampling and dimensionality reduction techniques 
for improved model performance. The dataset used is XuetangX, a MOOC platform, due to its larger data 
volume compared to Unitelma. Features extracted from student activities form instances represented as 
chronological action sequences. Models include the Kalman filter, LSTM-based recursive neural network, and 
TCN. TCN, being newer and more performant in sequence modeling tasks, may outperform traditional models 
like the Kalman filter. Detailed descriptions and architectures of both models are provided below. 

3.4.1 Kalman filter 

The Kalman filter is widely used for dynamic estimation problems involving stochastic noise affecting state 
and measurements. It minimizes the variance of the error between estimated and real states. It operates 
sequentially, predicting the current state and updating variables based on prediction errors to optimize future 
predictions. Notably, it evolves the error covariance matrix associated with forecast states over time. The filter 
comprises mathematical equations implementing a predictor-corrector estimator. It predicts the state of a 
discrete-time controlled process using the following equations: 

xk = Axk−1 + Buk + wk−1          (16) 

y
k

= Hxk + vk            (17) 

Where: y ∈  Rn is the measurement value; wk and vk represent the process noise (p(w) _ N(0,Q)) and 
measurement noise (p(v) _ N(0,R)) respectively; A: n x n matrix relates previous state to current state; The B: 

n ×  l  matrix relates the control input u ∈  Rl to the state x; • The H: m ×  n matrix relates state to the 
measurement y

k
. 

3.4.2 Temporal Convolutional Network  

TCNs are a specialized version of CNNs designed to excel at learning sequential patterns. They leverage dilated 
causal convolutions to capture dependencies between elements of a sequence and their preceding elements 
within a predefined time period. Unlike traditional convolutions, dilated convolutions connect neurons across 
layers at exponentially spaced intervals, enabling them to define larger receptive fields compared to recurrent 
neural networks without a significant increase in parameters. The structure of dilated convolutions is defined 
as follows: 

F(i) ∗l K = ∑ F(i + n. l) ∗ K(n)k
n=−k          (25) 

In TCNs, layers of neurons are stacked with increasing dilation factors, typically following powers of 2. This 
arrangement allows each neuron to have a wider receptive field, capturing information from multiple past 
time steps. In this experiment, a TCN with a kernel size of 2 and 4 layers of neurons was used, resulting in 
dilation factors of [1, 2, 4, 8]. This configuration enables each element in the sequence to consider information 
from the preceding 16 elements. Causal convolutions ensure that each output depends only on past inputs, 
making TCNs well-suited for sequence modeling tasks (Fig 13). 
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Figure 13. Stack of Causal Dilated Convolutions with l = [1, 2, 4, 8] 

The TCN was equipped with performance, a technique that randomly removes a subset of neurons in the 
subsequent layer along with their connections from the current layer. This helps prevent overfitting by 
encouraging the network to generalize patterns instead of memorizing specific data during training. 

Residual connections are another key element of the TCN architecture. They address the issue of vanishing 
and exploding gradients, commonly encountered in deep networks. These connections involve comparing the 
output of a transformation, such as dilated convolutions, with the input to that transformation.  

TCNs demonstrate superior efficiency compared to traditional recurrent networks like LSTMs, especially for 
long input sequences. LSTMs consume more memory to store partial results, while TCNs require less memory 
since they don't store intermediate results. TCNs also offer more control over the range of sequence elements 
through adjustments in kernel size or dilation factors. Additionally, TCNs allow parallel computation of 
convolutions, enabling faster processing of data during both training and testing phases. These advantages 
justify the preference for TCNs in addressing performance prediction. Moreover, ongoing advancements in 
TCN technology may further enhance their performance compared to LSTMs in the future. 

3.4.3 Achieved results (first approach) 

Imbalances across demographic, academic, and socioeconomic factors can bias predictive models assessing 
student performance. Varied representation in age, gender, ethnicity, and socioeconomic status, along with 
disparities in academic metrics, extracurricular activities, and course characteristics, can skew model 
perceptions is particularly pronounced in the test set. Below is a table 5 displaying the distribution of student 
classes in both the train set and the test set. 

Table 5. Distribution of students in the train set and test set of XuetangX 

  

 

Results from the models applied to classify performance in the XuetangX dataset are depicted in the following 
images (Fig 14-17). Performance metrics such as AUCPR, precision, recall, and F1 are used for evaluation. 
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Figure 14. AUCPR plot 

 

Figure 15. Precision plot 

 

Figure 16. Recall plot  

Figure 17. F1 plot 

The Kalman Filter model exhibits increasing performance as the time window expands, yet it requires a longer 
time window to effectively differentiate between lower grade and higher grade. Conversely, LSTM 
demonstrates the most reliable performance across precision, recall, and F1 metrics, particularly with a 7-day 
time window. TCN performs adequately with a 7-day time window but exhibits fluctuating performance with 
longer time windows, falling short of LSTM's effectiveness. 

3.4.4 Second approach 

To address class imbalance and data sparsity issues, PCA was employed for data compression. PCA extracts 
the most relevant information describing data variability, enabling dimensionality reduction. This helps 
mitigate the effects of class imbalance and sparse data, enhancing model performance. Specifically, PCA was 
utilized to reduce the dataset's dimensionality by representing it in a space half its original size, thus 
improving model learning. 

 In detail, PCA performs a decomposition of independent variables into eigenvectors of the covariance matrix 
of X of dimension I ×  V , where I are the samples (observations), the latter defined by V independent 

variables. The covariance matrix is defined as follows: 

𝑐𝑐𝑐(𝑐) =
𝑐

𝑐
𝑐

𝑐−1
            (26) 

The method divides a matrix X of rank R into a sum of R matrices Mr of rank 1, with r = 1, ...,R: 

X = M1 + M2 + M3 + ⋯ + MR         (27) 
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The generic Mr matrix can be represented with the outer product of two vectors tr and pr, score and loading. 
The X matrix can be rewritten as: 

X = t1p1
T + t2p

2
T + t3p

3
T + ⋯ . tRp

R
T          (28) 

PCA performs the algebraic approximation operation: 

X =  ∑ tap
a
T + E = TPT + Ek

a=1           (29) 

where k is the number of principal components, E is the residual matrix, T the score matrix (with shape I x k), 
with T = {t1, t2, t3, ..., tR} and P is the loading matrix (with shape k x V ), with P = {p1, p2, p3, ..., pR}. The 
latter contains the main components sorted by row. The basic idea of the construction of P is to assign to each 
row pi an eigenvector of cov(X). 

The results of the various analyzes carried out by the authors showed that ADASYN algorithm achieves 
competitive results (Fig 33-36), provides greater accuracy for both the minority class and the majority class, 
and not sacrifices one class to prefer another [13]. 

 

Figure 33. AUCPR plot 

 

Figure 34. Precision plot 

 

Figure 35. Recall plot 

 

Figure 36. F1 plot 

In the second experiment, Kalman Filter emerged as the most effective model based on AUCPR, with all 
models showing improved performance as the time window increased. TCN excelled in predictive abilities, 
especially in precision, recall, and F1 scores compared to LSTM. The application of oversampling and data 
densification strategies significantly enhanced TCN's performance, surpassing previous results. 

4. CONCLUSIONS AND FUTURE WORK 

This work delves into the challenging task of predicting student performance, addressing issues like data 
sparsity and class imbalance. Initially, ML and DL methods were compared using Unitelma dataset, with DL 
algorithms showing superior performance. The next experiment introduced an attention-based model 
combining CNN and LSTM, yielding promising results despite data limitations. Finally, the study explored 
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LSTM, TCN, and Kalman Filter models on XuetangX dataset, highlighting the effectiveness of oversampling 
and data densification techniques in improving model performance. Kalman Filter excelled in AUCPR, while 
LSTM and TCN showed superiority in binary classification, with TCN proving more efficient for longer 
sequences. Future work will focus on applying these techniques to the academic dataset, leveraging ADASYN 
and PCA algorithms, and further exploring TCN's potential as the best model for student performance 
prediction. 
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