
Journal of Information Systems Engineering and Management
2025, 10(13s)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

LLM for Automated Root Cause Analysis in Microservices

Architectures

Amruta Mhatre , Afrid Shaikh
1John College of Engineering & Management (SJCEM) Palghar, Mumbai, India

2John College of Engineering & Management (SJCEM) Palghar, Mumbai, India

amruta.mhatre@vcet.edu.in

ARTICLE INFO ABSTRACT

Received: 27 Nov 2024

Revised: 05 Jan 2025

Accepted: 30 Jan 2025

The adoption of microservices architectures has introduced significant challenges in diagnosing

and resolving system issues efficiently, as multiple services handling millions of requests

generate vast volumes of exceptions, including business errors and critical runtime failures.

Traditional manual approaches for error analysis and Root Cause Analysis (RCA) are time-

consuming, error-prone and lack scalability. Existing tools often aggregate exceptions but fail to

effectively classify or diagnose root causes, leading to prolonged system downtimes and reduced

developer productivity. This research proposes an automated solution leveraging fine-tuned

Large Language Models (LLMs), combined with an Exception Classifier powered by Natural

Language Processing (NLP) and machine learning techniques. The system adopts a layered

architecture where exceptions are aggregated through a Kafka cluster. The Exception Classifier

preprocesses error messages, extracts contextual information and categorizes exceptions into

business and runtime errors. Classified runtime errors are forwarded to the RCA service, where

fine-tuned LLMs perform detailed diagnostics by analyzing exception stack trace and tokenized

code repository. The solution targets over 90% precision for business exceptions and 89.6%

recall for runtime exceptions in Exception Classification and less than a second for RCA

diagnostics per exception and gives over 85% accuracy in human qualitative evaluation. By

automating error classification and RCA, the proposed system promises faster fault resolution,

improved RCA accuracy and enhanced developer productivity, contributing to more resilient and

efficient microservices environments.

Keywords: Classification, Exception, Fine Tuning, Microservice, Large Learning Model, Root

Cause Analysis.

INTRODUCTION

Microservices architectures have become the backbone of modern software development, enabling organizations to

address complex business challenges by decomposing applications into independently deployable and scalable

services. This modularity, while offering numerous advantages, introduces the challenge of managing a vast number

of system exceptions [1]. These exceptions range from predictable business errors to critical runtime failures that can

disrupt service operations and negatively impact user experiences [2]. Analysing and resolving such exceptions

manually is labour-intensive, error-prone and incapable of keeping up with the dynamic nature of microservices

environments. Traditional tools primarily focus on exception aggregation but lack automated, granular classification

and diagnostic capabilities, resulting in prolonged system downtimes and decreased developer productivity [3].

To address these limitations, this project proposes an automated solution that integrates Large Language Models

(LLMs) fine-tuned for Root Cause Analysis (RCA) and a machine learning-powered Exception Classifier for efficient

error categorization. Leveraging Kafka as a centralized exception aggregation hub, the system will preprocess error

messages, extract critical contextual information and classify exceptions into business and runtime categories. The

classified runtime errors will be forwarded to the RCA service, where LLMs will perform detailed diagnostics by

analysing system logs and traces.

449

J INFORM SYSTEMS ENG, 10(13s)

This innovative architecture aims to achieve key technical performance objectives, including a classification precision

and recall of over 90% and an RCA diagnostic latency of less than 10 seconds per exception. By ensuring real-time

processing, scalability and modularity, the solution will enable faster fault resolution and improved operational

efficiency.

The importance of this project extends beyond technical benefits. Developers will gain from reduced cognitive load

and increased focus on critical tasks, while organizations will experience improved system reliability, reduced

operational costs and enhanced service delivery. By automating exception classification and RCA, this project

addresses a critical gap in existing microservices solutions and offers a scalable, AI-driven approach to maintaining

resilient and efficient software systems.

PROBLEM DEFINITION

As software development increasingly adopts microservices architectures for scalable and modular applications,

diagnosing and resolving system issues has become a critical challenge [1]. The complexity of microservices

environments, with millions of requests per minute and vast amounts of operational data, including errors and

exceptions, makes efficient issue identification and resolution difficult [4]. These errors, which can be categorized

into business exceptions and runtime exceptions, are exacerbated by the distributed nature of microservices and their

interdependencies [2].

Traditional manual approaches to Root Cause Analysis (RCA) are no longer feasible due to the overwhelming volume

of logs, the diversity of error types, and the need for real-time diagnostics. Current solutions, such as rule-based

anomaly detection systems and agent-based cloud incident response tools, lack scalability and do not effectively

automate RCA or accurately classify exceptions [5]. Furthermore, these methods fail to provide actionable, real-time

insights, resulting in prolonged system downtime, decreased service reliability, and reduced developer productivity.

To overcome these challenges, there is a need for an automated and scalable RCA framework that integrates advanced

AI models, such as Large Language Models (LLMs), and an Exception Classifier powered by Natural Language

Processing (NLP) and machine learning algorithms. This framework must enable real-time processing, adaptive

diagnostics, and precise exception categorization to improve system resilience and operational efficiency.

LITERATURE SURVEY

Shilin He et al. (2024) provides a comprehensive review of Root Cause Analysis (RCA) methodologies in

microservice environments, characterized by their dynamic dependencies and complex fault propagation. It

highlights the evolution from manual operations to DevOps and AIOps, where AI techniques are employed for

automated fault diagnosis. The survey categorizes various diagnostic approaches using metrics, logs, traces, and

multi-model data to identify system failures. It emphasizes the critical role of RCA in mitigating system disruptions

and ensuring rapid recovery. The authors also explore current challenges, such as the difficulty in tracing faults across

microservices and the need for more sophisticated AI-driven techniques, while offering insights into future research

directions to enhance fault tolerance and system resilience [6].

Luan Pham et al. (2024) presented BARO, an end-to-end framework for root cause analysis in microservices that

integrates anomaly detection with advanced statistical methods. Their approach leverages Multivariate Bayesian

Online Change Point Detection to effectively model dependencies within complex multivariate time-series data,

enabling timely detection of abrupt changes that signal potential anomalies. In addition, BARO employs a novel

nonparametric hypothesis testing technique that enhances the robustness of change point identification without

assuming a fixed data distribution. Experiments on benchmark microservice systems demonstrated that BARO

outperforms current state-of-the-art methods in both anomaly detection and root cause identification, though further

work is needed to assess its performance in real-time, large-scale environments [4].

Cheng-Ming Lin et al. (2024) proposed RUN, a novel approach for root cause analysis in microservices that

utilizes neural Granger causal discovery enhanced by contrastive learning. Their method integrates contextual time-

series data with deep forecasting models to capture complex temporal patterns in service metrics. By applying a

modified PageRank algorithm—with an added personalization vector—to the forecasted data, RUN efficiently ranks

potential root causes. Extensive experiments on synthetic and real-world datasets showed that RUN achieves

450

J INFORM SYSTEMS ENG, 10(13s)

superior diagnostic performance compared to existing techniques, although additional validation across varied

operational conditions is required [7].

Ruomeng Ding et al. (2023) explored TraceDiag, an adaptive and interpretable framework for root cause analysis

in large-scale microservice systems. TraceDiag uses reinforcement learning to automatically learn a pruning policy

for service dependency graphs derived from real-time traces and logs, thereby reducing the search space and focusing

on the most critical components. This approach not only enhances diagnostic efficiency and accuracy but also

maintains high interpretability, enabling engineers to understand the underlying reasoning. Evaluations on data

from systems like Microsoft Exchange demonstrated significant improvements over traditional RCA approaches,

even as the complexity introduced by reinforcement learning suggests a need for further simplification for broader

deployment [8].

Yidan Wang et al. (2024) introduced MRCA, a metric-level root cause analysis framework that leverages multi-

modal data—including traces, logs, and performance metrics—to construct causal graphs that capture the sequential

occurrence of anomalies across services. A key innovation in MRCA is its reward mechanism, which effectively

terminates unnecessary expansion of the causal graph once sufficient evidence is gathered, thus improving both

efficiency and accuracy. Experiments on widely recognized microservice benchmarks revealed that MRCA

outperforms state-of-the-art approaches in diagnostic accuracy and processing speed, although its performance in

real-time scenarios and scalability to larger environments warrants further investigation [3].

Zhouruixing Zhu et al. (2024) presented HeMiRCA, a fine-grained root cause analysis framework specifically

designed for microservices that harnesses heterogeneous data sources to deliver detailed diagnostic insights. By

employing statistical techniques such as Spearman correlation along with anomaly-aware monotonic correlation

analysis, HeMiRCA effectively ranks suspicious metrics at both service and metric levels. This comprehensive

integration of logs, traces, and performance metrics allows for precise identification of root causes, and evaluations

on real-world datasets indicate that HeMiRCA outperforms several current state-of-the-art methods. Nonetheless,

additional research is needed to validate its robustness across diverse microservices environments and operational

conditions [9].

Toufique Ahmed (2023) investigates the application of LLMs, specifically GPT-3.x models, to assist on-call

engineers in diagnosing and resolving cloud incidents. Conducted at Microsoft, the study evaluates over 44,000

incidents across 1,759 cloud services. The authors explore various configurations, including zero-shot, fine-tuned,

and multi-task learning, to assess model performance in root cause and mitigation step recommendation. Human

validation with incident owners confirms the efficacy of the models, with fine-tuned GPT-3.x significantly

outperforming encoder-decoder models. The paper underscores the potential of AI-driven solutions for reducing

manual effort and improving cloud service reliability [5].

Xuanming Zhang (2024) addresses challenges in exception handling in software development, which often leads

to fragile and unreliable code. The authors propose SEEKER, a multi-agent framework inspired by expert developer

strategies. It utilizes five agents—Scanner, Detector, Predator, Ranker, and Handler—to detect, capture, and resolve

exceptions. By integrating LLMs with exception handling best practices, SEEKER enhances code robustness and

mitigates common pitfalls such as insensitive detection and inaccurate exception capture. The framework

demonstrates significant improvements in exception handling performance, providing valuable insights for future

advancements in reliable code generation [10].

Devjeet Roy (2024) investigates the use of LLM-based agents for RCA in cloud environments, where incident

diagnosis is increasingly complex. The authors evaluate a ReAct agent equipped with retrieval tools for handling out-

of-distribution production incidents. The agent demonstrates competitive performance compared to baseline models

while achieving higher factual accuracy. A case study with a Microsoft team shows the practical application of these

agents, highlighting their ability to interact with diagnostic services and dynamically collect new information. The

study emphasizes the potential of LLM-based agents to improve RCA by reducing the manual burden on engineers

and enhancing diagnostic accuracy [11].

451

J INFORM SYSTEMS ENG, 10(13s)

Yingying Zhang et al (2021) presented CloudRCA, a comprehensive framework for automated root cause analysis

tailored to cloud computing platforms. CloudRCA integrates multiple data sources—including logs, metrics, and

traces—to create a multi-dimensional view of system behavior and applies machine learning techniques to detect

anomalies and correlate them with potential failure causes. The framework was evaluated in cloud environments,

where it significantly reduced the time required to diagnose incidents and improved overall system reliability. While

CloudRCA demonstrates strong potential in streamlining incident resolution, the authors highlight the need for

enhanced scalability and real-time processing to better support large-scale deployments [12].

Álvaro Brandón et al (2022) explored a graph-based approach for root cause analysis in service-oriented and

microservice architectures by constructing dependency graphs that model the interactions between services. Their

method applies network analysis techniques to traverse these graphs and identify critical nodes and fault propagation

paths that contribute to system failures. Evaluations on real-world case studies indicate that the approach enhances

the accuracy and speed of root cause identification compared to traditional correlation-based methods. Despite its

promising results, the study acknowledges challenges in scaling the technique for very large and dynamic systems,

suggesting the need for further optimization [13].

Haixuan Guo et al (2021) presented LogBERT, a transformer-based framework for log anomaly detection that

leverages the BERT architecture to capture contextual and semantic patterns in system logs. Their approach involves

pre-training BERT on large-scale log data and subsequently fine-tuning it on labeled datasets for anomaly detection,

enabling robust identification and classification of anomalous events. Experimental results on benchmark log

datasets demonstrate that LogBERT achieves improved precision and recall compared to traditional log analysis

methods, highlighting its potential to enhance real-time log monitoring. However, further research is needed to

address scalability challenges and facilitate seamless integration into production environments [14].

Supriyo Ghosh (2022) investigates 152 high-severity production incidents in Microsoft Teams to understand their

causes, detection, and mitigation strategies. The authors identify software bugs, infrastructure issues, and manual

errors as primary root causes. The study reveals that over 90% of incidents are mitigated without code changes, using

strategies such as service rollbacks and configuration adjustments. The findings emphasize the importance of

automated monitoring and better detection mechanisms to reduce response time. The study offers practical insights

into optimizing incident response and highlights opportunities for automation to improve cloud service reliability

[15].

Wei Zhang (2024) introduces MABC, a novel multi-agent framework inspired by blockchain principles for RCA in

microservices architectures. The framework integrates seven specialized agents that collaborate through a

decentralized decision-making process to identify root causes of faults. By leveraging blockchain-inspired voting and

limiting steps to avoid circular dependencies, MABC enhances fault detection and resolution. Experimental results

demonstrate superior performance in RCA and effective resolution generation compared to traditional methods. The

study highlights the importance of agent collaboration and decentralized decision-making for robust RCA in complex

microservices environments [16].

Mathav Raj J (2024) provides practical guidelines for fine-tuning LLMs to meet enterprise needs, focusing on

proprietary datasets for documentation and code. The authors discuss the advantages and limitations of fine-tuning

compared to Retrieval-Augmented Generation (RAG) methods, highlighting scenarios where fine-tuning offers

superior accuracy despite higher resource costs. Techniques such as Low-Rank Adaptation (LORA) and data

preprocessing strategies are recommended to optimize training. The study offers insights into configuring LLMs for

enterprise applications, guiding beginners on dataset preparation, GPU requirements, and efficient fine-tuning

techniques [17].

Pawan Kumar Sarika (2023) focuses on automating test failure analysis in microservices environments using

Kubernetes cluster logs. As manual classification of failures becomes increasingly time-consuming, the authors

evaluate five machine learning algorithms, including Support Vector Machines, Random Forest, and Gradient

Boosting Classifier, to determine their efficiency in diagnosing failures. The results highlight Random Forest as a top

performer, achieving high accuracy with low computational resource requirements. The paper underscores the

452

J INFORM SYSTEMS ENG, 10(13s)

benefits of automation in reducing analysis time and improving the reliability of microservices, offering valuable

insights for organizations managing large-scale distributed systems [18].

Ahmed Saeed Alsayed (2024) presents MicroRec, a novel microservice recommendation framework designed to

help developers discover relevant microservices in large ecosystems. Leveraging Large Language Models (LLMs), the

system utilizes a dual-encoder architecture combining contrastive and semantic similarity learning to enhance

recommendation accuracy. The framework integrates Stack Overflow posts, Dockerfile, and README information

to better understand queries and available microservices. Empirical evaluations demonstrate significant

improvements in recommendation precision and relevance compared to existing tools like Docker Hub. MicroRec is

14 times more accurate than traditional methods, highlighting its practical value in microservice discovery,

evaluation, and compatibility [19].

Sayar Ul Hassana (2022) presents a detailed comparative analysis of various machine learning algorithms for

text classification, including Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression (LR),

Multinomial Naïve Bayes (MNB), and Random Forest (RF). The authors evaluate these algorithms on two different

datasets: IMDB for sentiment analysis and a SPAM dataset for message categorization. The study assesses

performance based on metrics like accuracy, precision, recall, and F1-score. The results indicate that Logistic

Regression and SVM excel for the IMDB dataset, while kNN outperforms others for the SPAM dataset. The paper

emphasizes the importance of selecting appropriate algorithms based on dataset characteristics and highlights the

growing role of text classification in automating data analysis for enterprise applications [20].

Iman Kohyarnejadfard (2022) addresses the challenges of anomaly detection in microservice environments,

which are prone to performance anomalies due to their complexity and distributed architecture. The authors propose

an NLP-based approach that leverages distributed tracing data to analyze event sequences and detect anomalies

without requiring prior system knowledge. The approach also identifies release-over-release regressions, providing

valuable insights for performance monitoring. Extensive experiments on real-world datasets demonstrate high

accuracy, with an F-score of 0.9759. The study showcases how visualization tools can further expedite root cause

analysis, ultimately enhancing system resilience and reducing manual diagnostic efforts [21].

Shilin He (2021) explores the significance of automated log analysis as a critical tool for ensuring system reliability

in cloud services. It emphasizes best practices in log management, such as adhering to logging standards, maintaining

appropriate verbosity levels, and ensuring proper log aggregation. A key challenge highlighted is tracing log cycles

across interdependent services, which can hinder efficient problem diagnosis. The study discusses the importance of

using event IDs and centralized log storage to facilitate effective analysis. The authors recommend safeguarding logs

due to the sensitive information they may contain and outline emerging research directions for improving automated

log analysis systems, ultimately aiming to enhance reliability through better fault detection and faster RCA [6].

Baptiste Rozière (2024) presents Code Llama, a family of large language models (LLMs) by Meta AI designed for

code generation, completion, and documentation tasks. Based on the Llama 2 architecture, it offers general, Python-

optimized, and instruction-following variants with parameter sizes up to 70B and support for 100,000-token input

contexts. Trained on up to 1 trillion tokens, the models utilize fine-tuning techniques such as infilling and instruction

tuning, achieving state-of-the-art performance on benchmarks like HumanEval and MBPP. Released under a

permissive license, Code Llama aims to enhance developer productivity and foster innovation in AI-driven software

development [22].

Muhammad Waseem (2023) investigates the issues, causes, and solutions encountered in microservices systems.

The authors collected data from 2,641 issues in 15 open-source microservices projects, conducted 15 interviews, and

surveyed 150 practitioners. They developed comprehensive taxonomies categorizing 19 types of issues, 8 categories

of causes, and 177 types of solutions. Key findings highlight technical debt, exception handling, and invalid

configurations as prevalent challenges. The study provides actionable insights for developers and researchers to

improve microservices design and maintenance by addressing recurring issues and adopting effective fixing

strategies [2].

453

J INFORM SYSTEMS ENG, 10(13s)

Xuchao Zhang (2024) explores the application of GPT-4 for automated RCA in large-scale cloud services using

in-context learning. The authors present an innovative approach that eliminates the need for fine-tuning by

leveraging historical incident examples directly during inference. Extensive evaluations across over 100,000

production incidents demonstrate a 24.8% improvement over fine-tuned GPT-3 models and a 49.7% improvement

over zero-shot models. Human evaluations validate the approach, with a 43.5% increase in correctness and an 8.7%

boost in readability. The study underscores the cost-efficiency and adaptability of in-context learning for RCA,

offering a scalable solution for incident diagnosis in complex cloud environments [23].

4.1 Comparative study table

Table 4.1.1: comparative study table

Sr.

No

Title of Paper Author(s) Year Methodology &

Technology

Used

Outcome Gap Identified

1 A Comprehensive

Survey on Root

Cause Analysis in

(Micro) Services:

Methodologies,

Challenges, and

Trends

Tingting

Wang et al

2024 Literature survey

on RCA methods;

AI/ML techniques

(anomaly

detection,

dependency

mapping, multi-

model data

analysis)

Categorized RCA

techniques and

highlighted AI-

driven methods

Limited

automated RCA

solutions for

microservices with

comprehensive

exception

handling

2 BARO: Robust Root

Cause Analysis for

Microservices via

Multivariate

Bayesian Online

Change Point

Detection

Luan Pham

et al

2024 End-to-end RCA

using Multivariate

Bayesian Online

Change Point

Detection and

nonparametric

hypothesis testing

for anomaly

detection and RCA

Regularly

surpasses

cutting-edge

techniques

across three

benchmark

microservice

systems.

Further evaluation

needed in real-

time, large-scale

microservices

environments

3 Root Cause Analysis

in Microservices

Using Neural

Granger Causal

Discovery

Cheng-Ming

Lin et al

2024 Neural Granger

causal discovery

enhanced by

contrastive

learning;

integration of

time-series

forecasting and

modified

PageRank for top-k

root cause ranking

Exceeds the

performance of

advanced RCA

methods on both

synthetic and

real-world

datasets.

Requires further

validation in

diverse

microservices

architectures and

operational

conditions

4 TraceDiag: Adaptive,

Interpretable, and

Efficient Root Cause

Analysis on Large-

Scale Microservice

Systems

Ruomeng

Ding et al

2023 An end-to-end

RCA approach that

uses reinforcement

learning to develop

a pruning policy

for service

dependency graphs

based on real-time

traces and logs.

Surpasses

leading RCA

approaches on

real data from

Microsoft

Exchange and is

integrated into

Microsoft M365

Exchange.

Reinforcement

learning adds

complexity;

further

exploration

needed for

adaptability to

other

454

J INFORM SYSTEMS ENG, 10(13s)

microservices

environments

5 MRCA: Metric-level

Root Cause Analysis

for Microservices via

Multi-Modal Data

Yidan Wang

et al

2024 Metric-level RCA

using multi-modal

data (traces, logs,

metrics) to

construct causal

graphs with a

reward mechanism

for terminating

unnecessary

expansion

Achieves higher

accuracy and

efficiency than

state-of-the-art

approaches

across two

microservice

benchmarks.

Effectiveness in

real-time analysis

and scalability in

larger systems

require further

investigation

6 HeMiRCA: Fine-

Grained Root Cause

Analysis for

Microservices with

Heterogeneous Data

Sources

Zhouruixing

Zhu et al

2024 Hierarchical RCA

using Spearman

correlation and

anomaly-aware

monotonic

correlation to rank

suspicious metrics

from

heterogeneous

data sources

Surpasses state-

of-the-art

methods in

detecting root

causes at both

the service and

metric levels.

Additional

research is

required to

evaluate

performance

across various

microservice

environments and

its integration

with current

monitoring tools.

7 Recommending

Root-Cause and

Mitigation Steps for

Cloud Incidents

using Large

Language Models

Toufique

Ahmed et al

2023 GPT-3.x models

(Curie, Davinci);

fine-tuning for

RCA and

mitigation; BLEU-

4 evaluation

metrics

Improved RCA

and mitigation

with fine-tuned

models

Absence of

microservices-

specific exception

classification and

RCA optimization

8 SEEKER: Enhancing

Exception Handling

in Code with LLM-

Based Multi-Agent

Approach

Xuanming

Zhang et al

2024 Multi-agent

framework

(Scanner, Detector,

Predator, Ranker,

Handler agents)

with Retrieval-

Augmented

Generation (Deep-

RAG) for exception

handling

Improved

exception

handling and

code robustness

Lack of scalability

and optimization

for microservices

exception

classification

9 Exploring LLM-

based Agents for

Root Cause Analysis

Devjeet Roy

et al

2024 ReAct agent

framework;

retrieval tools for

RCA; comparison

with baseline

models

Competitive

RCA

performance

with high factual

accuracy

Insufficient use of

fine-tuned LLMs

for RCA

diagnostics

involving

exception patterns

10 CloudRCA: A Root

Cause Analysis

Framework for

Cloud Computing

Platforms

Yingying

Zhang et al.

2021 Integrates multi-

dimensional data

(logs, metrics,

traces) with

machine learning

techniques to

correlate

Significantly

reduces incident

diagnosis time

and improves

system

reliability

Enhanced

scalability and

real-time

processing

capabilities are

needed for large-

scale deployments

455

J INFORM SYSTEMS ENG, 10(13s)

anomalies and

identify root

causes in cloud

computing

platforms

11 Graph-based Root

Cause Analysis for

Service-Oriented and

Microservice

Architectures

Álvaro

Brandón et

al.

2020 Constructs

dependency graphs

to model service

interactions;

applies network

analysis techniques

for fault

propagation

analysis and root

cause

identification

Enhanced

accuracy and

speed of RCA

compared to

conventional

correlation-

based methods

Challenges in

scaling to very

large, dynamic

systems require

further

optimization

12 LogBERT: Log

Anomaly Detection

via BERT

Haixuan

Guo et al.

2021 A transformer-

based approach

utilizing the BERT

architecture with

pre-training on

large-scale log data

followed by fine-

tuning for anomaly

detection.

Achieved

improved

precision and

recall on

benchmark log

datasets

compared to

traditional log

analysis

methods

Scalability

challenges and

production

integration

require further

research

13 How to Fight

Production

Incidents: An

Empirical Study on a

Large-scale Cloud

Service

Supriyo

Ghosh et al.

2022 Empirical analysis

of production

incidents;

mitigation

strategies

(rollback,

configuration

updates)

Over 90%

incidents

mitigated

without code

changes

No integration of

automated

exception

classification with

RCA workflows

14 MABC: Multi-Agent

Blockchain-inspired

Collaboration for

Root Cause Analysis

Wei Zhang

et al.

2024 A multi-agent

framework

incorporating a

blockchain-

inspired voting

mechanism for

root cause analysis

(RCA).

Improved RCA

efficiency with

reduced

hallucination

issues

Complexity in

adapting multi-

agent frameworks

for microservices

exception

handling

15 Fine-Tuning LLMs

for Enterprise:

Practical Guidelines

and

Recommendations

Mathav Raj

J et al.

2024 LORA, Retrieval-

Augmented

Generation (RAG);

fine-tuning

techniques for

proprietary

datasets

Identified best

practices for

fine-tuning and

RAG in

enterprise

applications

Limited

exploration of

fine-tuning LLMs

for exception

classification in

microservices

16 Automating

Microservices Test

Failure Analysis

Pawan

Kumar

Sarika et al

2023 ML algorithms

(Random Forest,

SVM, Gradient

Boosting); log

Automated

failure

classification

with high

Lack of NLP-

based exception

classification for

production micro-

456

J INFORM SYSTEMS ENG, 10(13s)

using Kubernetes

Cluster Logs

analysis on

Kubernetes

clusters

accuracy using

Random Forest

services

environments

17 MicroRec:

Leveraging Large

Language Models for

Microservice

Recommendation

Ahmed

Saeed

Alsayed et

al.

2024 Dual-encoder

architecture;

contrastive

learning; LLM-

based semantic

search using Stack

Overflow and

Dockerfile data

14× more

accurate

recommenda-

tions than

Docker Hub

Limited

evaluation on

microservice

compatibility with

RCA diagnostics

18 Analytics of Machine

Learning-based

Algorithms for Text

Classification

Sayar Ul

Hassan et al

2023 Comparison of ML

algorithms (SVM,

k-NN, Logistic

Regression, Naive

Bayes, Random

Forest); evaluation

using precision,

recall, F1-score

metrics

Identified

optimal

algorithms for

dataset-specific

text

classification

Absence of ML

models focused on

classifying

microservice-

related exception

logs

19 Anomaly Detection

in Microservice

Environments Using

Distributed Tracing

Data Analysis and

NLP

Iman

Kohyar

nejadfard et

al

2023 NLP techniques for

sequence analysis;

distributed tracing

data; regression

analysis for

anomaly detection

Achieved high

anomaly

detection

accuracy (F-

score of 0.9759)

Limited focus on

exception

classification and

detailed RCA for

micro-services

20 A Survey on

Automated Log

Analysis for

Reliability

Shilin He et

al

2023 Log aggregation,

pattern

recognition, and

event correlation

techniques

Identified best

practices and

challenges for

automated log

analysis

Lack of efficient

real-time log

classification and

RCA integration

for micro-services

21 Code Llama: Open

Foundation Models

for Code

Baptiste

Rozière et al

2023 Fine-tuned LLMs

(7B, 13B, 70B);

infilling training;

instruction tuning;

long-context

optimization

State-of-the-art

code generation

and completion;

superior

benchmark

performance on

HumanEval and

MBPP

Limited

exploration of

RCA diagnostics

or exception

classification in

code-focused

LLMs

22 Understanding the

Issues, Their Causes,

and Solutions in

Microservices

Systems: An

Empirical Study

Muhammad

Waseem et

al.

2023 Mixed-methods

approach;

taxonomy

development from

issue tracking,

interviews, and

surveys

Developed

taxonomies for

issues, causes,

and solutions

Need for

automated RCA

and exception

classification

solutions for

large-scale

microservices

systems

23 Automated Root

Causing of Cloud

Incidents Using In-

Context Learning

with GPT-4

Xuchao

Zhang et al

2024 In-context learning

with GPT-4;

historical incident

analysis; semantic

similarity

evaluation

43.5%

improvement in

RCA correctness

over fine-tuned

models

No solution for

real-time RCA

diagnostics for

microservices

exceptions

457

J INFORM SYSTEMS ENG, 10(13s)

4.2 Key insights from comparative study:

• Automated RCA: Limited solutions fully automate RCA for large-scale microservices exception analysis.

• Exception Classification: Lack of robust systems to distinguish business and runtime errors in

microservices.

• Real-time Diagnostics: Existing solutions face scalability and latency challenges in high-velocity

environments.

• Scalability Gaps: Multi-agent frameworks struggle with scalability in decentralized microservices

architectures.

• Centralized Aggregation: Limited focus on technologies like Kafka for real-time exception aggregation.

• Latency: Many current methods struggle with scalability and low-latency diagnostics when deployed in

large-scale systems.

METHODOLOGY USED

This project employs a phased approach to tackle the challenges of exception classification and root cause analysis

(RCA) in microservices architectures. The methodology involves the following steps:

Data Preprocessing

• Exception stack trace data is collected from various microservices.

• Data comprises of 52% of Runtime Exceptions and 48% of Business Exceptions

• Exception stack traces and code repositories are also processed using NLP.

• Data is parsed, tokenized and embedded for each stack trace [20].

• Code from repositories is embedded with CodeBERT and embeddings are stored for future use in LLM.

Exception Aggregation

• A Kafka Cluster is utilized as the central platform for real-time aggregation of exceptions generated by various

microservices.

• Services send exceptions to Kafka topics, which act as scalable and reliable queues for handling high volumes

of data.

• The system ensures fault tolerance and enables seamless integration of distributed microservices.

Exception Classification

• A dedicated Exception Classifier Service is designed to use text classifier built using NLP.

• Preprocessed data is then fed to chosen classification models such as SVM, Naïve Baye’s and XGBoost [20].

• Classification models are then compared against each other with metrices like Precision Recall and F1-Score.

Root Cause Analysis (RCA)

• RCA is performed by an LLM fine-tuned using exception traces and codebert embeddings of code repositories

of microservices.

• CodeLlama and Mistral are chosen for fine tuning using LoRA for their ability to generate text on provided

context [17], [22].

• Runtime exceptions stack traces categorized by the Exception Classifier are sent to the RCA Service via API

integration.

• The LLM-based RCA system analyses exception received from kafka to identify underlying issues and provide

actionable insights.

Performance Evaluation and Optimization

• Key performance metrics, including RCA accuracy, classification precision, recall, and latency are measured.

• Human qualitative evaluation is also done on various sample of exception traces.

ARCHITECTURE

The provided block diagram represents the architecture for the LLM-based Automated Root Cause Analysis (RCA)

System designed for microservices architectures. It illustrates the interaction between services, exception handling

mechanisms, and RCA components, as outlined below:

458

J INFORM SYSTEMS ENG, 10(13s)

Fig 6.1 Architecture Diagram

Micro-Services (Service 1, Service 2, Service 3):

These represent various microservices within the architecture that generate errors and exceptions during runtime.

These services are the primary producers of exception data, which could include business exceptions (expected errors

due to business logic) and runtime exceptions (unanticipated system failures).

Kafka Cluster:

Acting as a central hub for exception aggregation, the Kafka Cluster receives exceptions from the microservices in

real time. Kafka ensures that the system can handle high volumes of exceptions efficiently and reliably. The clustered

design allows for scalability and fault tolerance, ensuring uninterrupted flow of data.

Exception Classifier Service:

This service consumes exception data from Kafka using its API. The Exception Classifier API processes the exceptions

to classify them into two categories: Business Exceptions: Expected errors related to business logic, such as validation

failures. Runtime Exceptions: Critical system errors, such as null pointer exceptions or database connectivity failures.

This classification leverages Natural Language Processing (NLP) for extracting patterns and categorizing exceptions

effectively [20].

RCA Service:

Once exceptions are classified, Runtime Exception stack traces are sent to the RCA Service for detailed analysis. The

RCA Service uses Large Language Model (LLM) that has been LoRA fine-tuned to perform automated root cause

analysis. This involves interpreting log messages from stack traces and CodeBERT embedding saved in data

preparations step. RCA’s produced by this service would aid addressing critical underlying issues in microservices.

RESULTS AND DISCUSSIONS:

The research started off with collection of exceptions stack traces data from various microservices. Data also included

manually generated exceptions. There were roughly 52% of runtime exceptions and 48 % of business exceptions in

data set. For preprocessing of data, various NLP techniques such as TF-IDF vectorization, tokenization were

executed. Data was also embedded with CodeBERT for faster search. This search was needed while generating RCA

using LLM. These embedding were saved and secured.

For exception classification, three models were chosen which usually works best with textual data. Models selected

were SVM, Naïve Bayes and Gradient Boosting XGBoost. Mentioned models were fitted on train-test split of

exception traces. Models were compared as per their performance metrices such as recall, precision and f1 score.

Table 7.1: Exception Classification Performance metrices

Model
Runtime Exception

Recall

Runtime Exception F1 Business Exception Precision

SVM 72.40% 68.30% 88.20%

Naïve Bayes 85.10% 82.70% 91.50%

XGBoost 89.60% 87.40% 93.80%

459

J INFORM SYSTEMS ENG, 10(13s)

Runtime exceptions are critical to detect and missing any would might lead to major issues in future. Runtime

Exception recall indicates model’s ability to recognize runtime exceptions. Similarly, F1 score indicated model’s

balance of recognizing runtime and business exceptions. XGBoost achieved the highest runtime recall (89.6%) and

F1-score (87.4%) due to its ability to handle imbalanced data while modeling non-linear relationships.

RCA is done using fine-tuned LLM. CodeLlama and Mistral were first choice because of their ability for code

generation. Preprocessed data was fed to models with specific number of epochs. There were many hyperparameters

considered, following are some examples of parameter values.

Table 7.2: LLM Hyperparameters

Hyperparameter CodeLlama-7B Mistral-7B

Base Model codellama/CodeLlama-7b-hf mistralai/Mistral-7B-v0.1

LoRA Rank 64 32

LoRA Alpha 128 64

Learning Rate 3e-5 2e-5

Quantization 4-bit (GPTQ) 4-bit (NF4)

Loss Function Weighted Cross-Entropy Focal Loss

Models were fine-tuned with and without code snippets. CodeBERT embeddings were used in training to understand

impact of code context on RCA accuracies. Following are the results with and without code snippets. Models were

also evaluated with human qualitative judgement. Exceptions were caused with human intervention and expected

RCA was validated against RCA generated by models.

Table 7.3: LLM Performance Metrices

Models With Code Context Without Code Context Human Qualitative Evaluation

Mistral-7B 87.60% 68.20% 83%

CodeLlama-7B 91.50% 69.30% 91%

Here, CodeLlama has outperformed Mistral-7B because of its code-aware architecture, larger context window, and

domain-specific pretraining. Fine-tuned CodeLlama is integrated with rest API to serve in microservices architecture.

Finally, kafka is used to bind all components together. Kafka acts as an exception aggregator accepting exceptions

from multiple microservices. These exceptions are written to a topic which is then further read by exception classifier.

Stack traces of runtime exceptions are then forwarded to RCA service for generating RCA.

CONCLUSION AND FUTURE SCOPE

This research showcased how Large Language Models (LLMs) can be effectively utilized to automate Root Cause

Analysis (RCA) for microservices, with a focus on runtime exception classification and code-aware root cause

identification. By comparing performances of classification models (XGBoost, SVM, Naïve Bayes) and fine-tuned

LLMs (CodeLlama-7B, Mistral-7B) we observed that, XGBoost performed best among other classification models

selected. CodeLlama-7B has significant provided precise and accurate RCAs for given stack traces. CodeLlama-7B

has performed best when was given preprocessed code snippets while generating reports. The integration of

exception aggregation, exception classification, code repository context and optimized hyperparameters for LLM has

improved ability to find critical issues early and address them before any outage in microservices architecture.

This research can be further improved by aggregative environment logs such as resource consumption, disk/network

usage etc. LLM models can be further distilled to achieve leaner and smaller models for cost effective deployments.

In microservice architecture, services keep getting updated, new services gets added. A feedback loops can be added

to tune the model at runtime. Currently, model is capable of performing RCA upon given code context and exception

stack trace. This can be further extended to act upon the RCA and remediate the root cause and fix the issue.

ACKNOWLEDGEMENTS

We would like to express our sincere gratitude to all those who have supported and guided us throughout the

completion of our project titled " LLM for Automated Root Cause Analysis in Microservices Architectures."

460

J INFORM SYSTEMS ENG, 10(13s)

Firstly, we would like to thank our guide, Dr. Amruta Mhatre, for his invaluable guidance, encouragement, and

unwavering support. His insights and expertise were instrumental in helping us conceptualize and execute this

project successfully.

Our sincere appreciation goes to the PG Head Dr. Manish Rana and Principal Dr. Kamal Shah of St. John

College of Engineering & Management (SJCEM), Palghar, Mumbai, India, for their continuous

encouragement, vision, and leadership. Their guidance provided us with the necessary resources and motivation to

complete this project with great enthusiasm.

We would also like to acknowledge all the faculty members and staff at SJCEM for their support, and our peers for

their valuable suggestions during the course of this research.

Lastly, we would like to thank our families for their unconditional love and support, which helped us stay focused

and motivated throughout the project.

This research paper on project would not have been possible without the collective efforts of everyone mentioned

above.

REFERENCES:

[1] T. Wang and G. Qi, “A Comprehensive Survey on Root Cause Analysis in (Micro) Services: Methodologies,

Challenges, and Trends,” 2024, arXiv. doi: 10.48550/ARXIV.2408.00803.

[2] M. Waseem et al., “Understanding the Issues, Their Causes and Solutions in Microservices Systems: An

Empirical Study,” 2023, arXiv. doi: 10.48550/ARXIV.2302.01894.

[3] Y. Wang, Z. Zhu, Q. Fu, Y. Ma, and P. He, “MRCA: Metric-level Root Cause Analysis for Microservices via Multi-

Modal Data,” in Proceedings of the 39th IEEE/ACM International Conference on Automated Software

Engineering, Sacramento CA USA: ACM, Oct. 2024, pp. 1057–1068. doi: 10.1145/3691620.3695485.

[4] L. Pham, H. Ha, and H. Zhang, “BARO: Robust Root Cause Analysis for Microservices via Multivariate Bayesian

Online Change Point Detection,” Proc. ACM Softw. Eng., vol. 1, no. FSE, pp. 2214–2237, Jul. 2024, doi:

10.1145/3660805.

[5] T. Ahmed, S. Ghosh, C. Bansal, T. Zimmermann, X. Zhang, and S. Rajmohan, “Recommending Root-Cause and

Mitigation Steps for Cloud Incidents using Large Language Models,” in 2023 IEEE/ACM 45th International

Conference on Software Engineering (ICSE), Melbourne, Australia: IEEE, May 2023, pp. 1737–1749. doi:

10.1109/ICSE48619.2023.00149.

[6] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu, “A Survey on Automated Log Analysis for Reliability

Engineering,” ACM Comput. Surv., vol. 54, no. 6, pp. 1–37, Jul. 2022, doi: 10.1145/3460345.

[7] C.-M. Lin, C. Chang, W.-Y. Wang, K.-D. Wang, and W.-C. Peng, “Root Cause Analysis In Microservice Using

Neural Granger Causal Discovery,” 2024, arXiv. doi: 10.48550/ARXIV.2402.01140.

[8] R. Ding et al., “TraceDiag: Adaptive, Interpretable, and Efficient Root Cause Analysis on Large-Scale

Microservice Systems,” in Proceedings of the 31st ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, San Francisco CA USA: ACM, Nov. 2023, pp. 1762–

1773. doi: 10.1145/3611643.3613864.

[9] Z. Zhu, C. Lee, X. Tang, and P. He, “HeMiRCA: Fine-Grained Root Cause Analysis for Microservices with

Heterogeneous Data Sources,” ACM Trans. Softw. Eng. Methodol., vol. 33, no. 8, pp. 1–25, Nov. 2024, doi:

10.1145/3674726.

[10] X. Zhang, Y. Chen, Y. Yuan, and M. Huang, “Seeker: Enhancing Exception Handling in Code with LLM-based

Multi-Agent Approach,” 2024, arXiv. doi: 10.48550/ARXIV.2410.06949.

[11] D. Roy et al., “Exploring LLM-Based Agents for Root Cause Analysis,” in Companion Proceedings of the 32nd

ACM International Conference on the Foundations of Software Engineering, Porto de Galinhas Brazil: ACM,

Jul. 2024, pp. 208–219. doi: 10.1145/3663529.3663841.

[12] Y. Zhang et al., “CloudRCA: A Root Cause Analysis Framework for Cloud Computing Platforms,” in Proceedings

of the 30th ACM International Conference on Information & Knowledge Management, Virtual Event

Queensland Australia: ACM, Oct. 2021, pp. 4373–4382. doi: 10.1145/3459637.3481903.

461

J INFORM SYSTEMS ENG, 10(13s)

[13] Á. Brandón, M. Solé, A. Huélamo, D. Solans, M. S. Pérez, and V. Muntés-Mulero, “Graph-based root cause

analysis for service-oriented and microservice architectures,” J. Syst. Softw., vol. 159, p. 110432, Jan. 2020, doi:

10.1016/j.jss.2019.110432.

[14] H. Guo, S. Yuan, and X. Wu, “LogBERT: Log Anomaly Detection via BERT,” in 2021 International Joint

Conference on Neural Networks (IJCNN), Shenzhen, China: IEEE, Jul. 2021, pp. 1–8. doi:

10.1109/IJCNN52387.2021.9534113.

[15] S. Ghosh, M. Shetty, C. Bansal, and S. Nath, “How to fight production incidents?: an empirical study on a large-

scale cloud service,” in Proceedings of the 13th Symposium on Cloud Computing, San Francisco California:

ACM, Nov. 2022, pp. 126–141. doi: 10.1145/3542929.3563482.

[16] W. Zhang et al., “mABC: multi-Agent Blockchain-Inspired Collaboration for root cause analysis in micro-

services architecture,” 2024, arXiv. doi: 10.48550/ARXIV.2404.12135.

[17] M. R. J, K. VM, H. Warrier, and Y. Gupta, “Fine Tuning LLM for Enterprise: Practical Guidelines and

Recommendations,” 2024, arXiv. doi: 10.48550/ARXIV.2404.10779.

[18] P. K. Sarika, D. Badampudi, S. P. Josyula, and M. Usman, “Automating Microservices Test Failure Analysis using

Kubernetes Cluster Logs,” in Proceedings of the 27th International Conference on Evaluation and Assessment

in Software Engineering, Oulu Finland: ACM, Jun. 2023, pp. 192–195. doi: 10.1145/3593434.3593472.

[19] A. S. Alsayed, H. K. Dam, and C. Nguyen, “MicroRec: Leveraging Large Language Models for Microservice

Recommendation,” in Proceedings of the 21st International Conference on Mining Software Repositories,

Lisbon Portugal: ACM, Apr. 2024, pp. 419–430. doi: 10.1145/3643991.3644916.

[20] S. U. Hassan, J. Ahamed, and K. Ahmad, “Analytics of machine learning-based algorithms for text classification,”

Sustain. Oper. Comput., vol. 3, pp. 238–248, 2022, doi: 10.1016/j.susoc.2022.03.001.

[21] I. Kohyarnejadfard, D. Aloise, S. V. Azhari, and M. R. Dagenais, “Anomaly detection in microservice

environments using distributed tracing data analysis and NLP,” J. Cloud Comput., vol. 11, no. 1, p. 25, Aug. 2022,

doi: 10.1186/s13677-022-00296-4.

[22] B. Rozière et al., “Code Llama: Open Foundation Models for Code,” 2023, arXiv. doi:

10.48550/ARXIV.2308.12950.

[23] X. Zhang et al., “Automated Root Causing of Cloud Incidents using In-Context Learning with GPT-4,” in

Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software

Engineering, Porto de Galinhas Brazil: ACM, Jul. 2024, pp. 266–277. doi: 10.1145/3663529.3663846.

Notes on Contributors

Dr. Amruta Mhatre

Mr. Afrid Shaikh

MTech Scholar in Computer Engineering Department, St. John College of Engineering and Management

Qualification Detail: B.E (Information Technology, Palghar, Mumbai University, Maharashtra

Work Experience (Teaching / Industry): 6.6 years of industry experience

Area of specialization: Computer

ORCID

1] Dr. Amruta Mhatre

2] Mr. Afrid Shaikh https://orcid.org/0009-0004-7223-5607

