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The adoption of microservices architectures has introduced significant challenges in diagnosing 

and resolving system issues efficiently, as multiple services handling millions of requests 

generate vast volumes of exceptions, including business errors and critical runtime failures. 

Traditional manual approaches for error analysis and Root Cause Analysis (RCA) are time-

consuming, error-prone and lack scalability. Existing tools often aggregate exceptions but fail to 

effectively classify or diagnose root causes, leading to prolonged system downtimes and reduced 

developer productivity. This research proposes an automated solution leveraging fine-tuned 

Large Language Models (LLMs), combined with an Exception Classifier powered by Natural 

Language Processing (NLP) and machine learning techniques. The system adopts a layered 

architecture where exceptions are aggregated through a Kafka cluster. The Exception Classifier 

preprocesses error messages, extracts contextual information and categorizes exceptions into 

business and runtime errors. Classified runtime errors are forwarded to the RCA service, where 

fine-tuned LLMs perform detailed diagnostics by analyzing exception stack trace and tokenized 

code repository. The solution targets over 90% precision for business exceptions and 89.6% 

recall for runtime exceptions in Exception Classification and less than a second for RCA 

diagnostics per exception and gives over 85% accuracy in human qualitative evaluation. By 

automating error classification and RCA, the proposed system promises faster fault resolution, 

improved RCA accuracy and enhanced developer productivity, contributing to more resilient and 

efficient microservices environments. 

Keywords: Classification, Exception, Fine Tuning, Microservice, Large Learning Model, Root 

Cause Analysis. 

 

INTRODUCTION 

Microservices architectures have become the backbone of modern software development, enabling organizations to 

address complex business challenges by decomposing applications into independently deployable and scalable 

services. This modularity, while offering numerous advantages, introduces the challenge of managing a vast number 

of system exceptions [1]. These exceptions range from predictable business errors to critical runtime failures that can 

disrupt service operations and negatively impact user experiences [2]. Analysing and resolving such exceptions 

manually is labour-intensive, error-prone and incapable of keeping up with the dynamic nature of microservices 

environments. Traditional tools primarily focus on exception aggregation but lack automated, granular classification 

and diagnostic capabilities, resulting in prolonged system downtimes and decreased developer productivity [3]. 

 

To address these limitations, this project proposes an automated solution that integrates Large Language Models 

(LLMs) fine-tuned for Root Cause Analysis (RCA) and a machine learning-powered Exception Classifier for efficient 

error categorization. Leveraging Kafka as a centralized exception aggregation hub, the system will preprocess error 

messages, extract critical contextual information and classify exceptions into business and runtime categories. The 

classified runtime errors will be forwarded to the RCA service, where LLMs will perform detailed diagnostics by 

analysing system logs and traces. 
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This innovative architecture aims to achieve key technical performance objectives, including a classification precision 

and recall of over 90% and an RCA diagnostic latency of less than 10 seconds per exception. By ensuring real-time 

processing, scalability and modularity, the solution will enable faster fault resolution and improved operational 

efficiency. 

 

The importance of this project extends beyond technical benefits. Developers will gain from reduced cognitive load 

and increased focus on critical tasks, while organizations will experience improved system reliability, reduced 

operational costs and enhanced service delivery. By automating exception classification and RCA, this project 

addresses a critical gap in existing microservices solutions and offers a scalable, AI-driven approach to maintaining 

resilient and efficient software systems. 

PROBLEM DEFINITION 

As software development increasingly adopts microservices architectures for scalable and modular applications, 

diagnosing and resolving system issues has become a critical challenge [1]. The complexity of microservices 

environments, with millions of requests per minute and vast amounts of operational data, including errors and 

exceptions, makes efficient issue identification and resolution difficult [4]. These errors, which can be categorized 

into business exceptions and runtime exceptions, are exacerbated by the distributed nature of microservices and their 

interdependencies [2]. 

Traditional manual approaches to Root Cause Analysis (RCA) are no longer feasible due to the overwhelming volume 

of logs, the diversity of error types, and the need for real-time diagnostics. Current solutions, such as rule-based 

anomaly detection systems and agent-based cloud incident response tools, lack scalability and do not effectively 

automate RCA or accurately classify exceptions [5]. Furthermore, these methods fail to provide actionable, real-time 

insights, resulting in prolonged system downtime, decreased service reliability, and reduced developer productivity. 

To overcome these challenges, there is a need for an automated and scalable RCA framework that integrates advanced 

AI models, such as Large Language Models (LLMs), and an Exception Classifier powered by Natural Language 

Processing (NLP) and machine learning algorithms. This framework must enable real-time processing, adaptive 

diagnostics, and precise exception categorization to improve system resilience and operational efficiency. 

LITERATURE SURVEY 

Shilin He et al. (2024) provides a comprehensive review of Root Cause Analysis (RCA) methodologies in 

microservice environments, characterized by their dynamic dependencies and complex fault propagation. It 

highlights the evolution from manual operations to DevOps and AIOps, where AI techniques are employed for 

automated fault diagnosis. The survey categorizes various diagnostic approaches using metrics, logs, traces, and 

multi-model data to identify system failures. It emphasizes the critical role of RCA in mitigating system disruptions 

and ensuring rapid recovery. The authors also explore current challenges, such as the difficulty in tracing faults across 

microservices and the need for more sophisticated AI-driven techniques, while offering insights into future research 

directions to enhance fault tolerance and system resilience [6]. 

 

Luan Pham et al. (2024) presented BARO, an end-to-end framework for root cause analysis in microservices that 

integrates anomaly detection with advanced statistical methods. Their approach leverages Multivariate Bayesian 

Online Change Point Detection to effectively model dependencies within complex multivariate time-series data, 

enabling timely detection of abrupt changes that signal potential anomalies. In addition, BARO employs a novel 

nonparametric hypothesis testing technique that enhances the robustness of change point identification without 

assuming a fixed data distribution. Experiments on benchmark microservice systems demonstrated that BARO 

outperforms current state-of-the-art methods in both anomaly detection and root cause identification, though further 

work is needed to assess its performance in real-time, large-scale environments [4]. 

 

Cheng-Ming Lin et al. (2024) proposed RUN, a novel approach for root cause analysis in microservices that 

utilizes neural Granger causal discovery enhanced by contrastive learning. Their method integrates contextual time-

series data with deep forecasting models to capture complex temporal patterns in service metrics. By applying a 

modified PageRank algorithm—with an added personalization vector—to the forecasted data, RUN efficiently ranks 

potential root causes. Extensive experiments on synthetic and real-world datasets showed that RUN achieves 
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superior diagnostic performance compared to existing techniques, although additional validation across varied 

operational conditions is required [7]. 

 

Ruomeng Ding et al. (2023) explored TraceDiag, an adaptive and interpretable framework for root cause analysis 

in large-scale microservice systems. TraceDiag uses reinforcement learning to automatically learn a pruning policy 

for service dependency graphs derived from real-time traces and logs, thereby reducing the search space and focusing 

on the most critical components. This approach not only enhances diagnostic efficiency and accuracy but also 

maintains high interpretability, enabling engineers to understand the underlying reasoning. Evaluations on data 

from systems like Microsoft Exchange demonstrated significant improvements over traditional RCA approaches, 

even as the complexity introduced by reinforcement learning suggests a need for further simplification for broader 

deployment [8]. 

 

Yidan Wang et al. (2024) introduced MRCA, a metric-level root cause analysis framework that leverages multi-

modal data—including traces, logs, and performance metrics—to construct causal graphs that capture the sequential 

occurrence of anomalies across services. A key innovation in MRCA is its reward mechanism, which effectively 

terminates unnecessary expansion of the causal graph once sufficient evidence is gathered, thus improving both 

efficiency and accuracy. Experiments on widely recognized microservice benchmarks revealed that MRCA 

outperforms state-of-the-art approaches in diagnostic accuracy and processing speed, although its performance in 

real-time scenarios and scalability to larger environments warrants further investigation [3]. 

 

Zhouruixing Zhu et al. (2024) presented HeMiRCA, a fine-grained root cause analysis framework specifically 

designed for microservices that harnesses heterogeneous data sources to deliver detailed diagnostic insights. By 

employing statistical techniques such as Spearman correlation along with anomaly-aware monotonic correlation 

analysis, HeMiRCA effectively ranks suspicious metrics at both service and metric levels. This comprehensive 

integration of logs, traces, and performance metrics allows for precise identification of root causes, and evaluations 

on real-world datasets indicate that HeMiRCA outperforms several current state-of-the-art methods. Nonetheless, 

additional research is needed to validate its robustness across diverse microservices environments and operational 

conditions [9]. 

 

Toufique Ahmed (2023) investigates the application of LLMs, specifically GPT-3.x models, to assist on-call 

engineers in diagnosing and resolving cloud incidents. Conducted at Microsoft, the study evaluates over 44,000 

incidents across 1,759 cloud services. The authors explore various configurations, including zero-shot, fine-tuned, 

and multi-task learning, to assess model performance in root cause and mitigation step recommendation. Human 

validation with incident owners confirms the efficacy of the models, with fine-tuned GPT-3.x significantly 

outperforming encoder-decoder models. The paper underscores the potential of AI-driven solutions for reducing 

manual effort and improving cloud service reliability [5]. 

 

Xuanming Zhang (2024) addresses challenges in exception handling in software development, which often leads 

to fragile and unreliable code. The authors propose SEEKER, a multi-agent framework inspired by expert developer 

strategies. It utilizes five agents—Scanner, Detector, Predator, Ranker, and Handler—to detect, capture, and resolve 

exceptions. By integrating LLMs with exception handling best practices, SEEKER enhances code robustness and 

mitigates common pitfalls such as insensitive detection and inaccurate exception capture. The framework 

demonstrates significant improvements in exception handling performance, providing valuable insights for future 

advancements in reliable code generation [10]. 

 

Devjeet Roy (2024) investigates the use of LLM-based agents for RCA in cloud environments, where incident 

diagnosis is increasingly complex. The authors evaluate a ReAct agent equipped with retrieval tools for handling out-

of-distribution production incidents. The agent demonstrates competitive performance compared to baseline models 

while achieving higher factual accuracy. A case study with a Microsoft team shows the practical application of these 

agents, highlighting their ability to interact with diagnostic services and dynamically collect new information. The 

study emphasizes the potential of LLM-based agents to improve RCA by reducing the manual burden on engineers 

and enhancing diagnostic accuracy [11]. 
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Yingying Zhang et al (2021) presented CloudRCA, a comprehensive framework for automated root cause analysis 

tailored to cloud computing platforms. CloudRCA integrates multiple data sources—including logs, metrics, and 

traces—to create a multi-dimensional view of system behavior and applies machine learning techniques to detect 

anomalies and correlate them with potential failure causes. The framework was evaluated in cloud environments, 

where it significantly reduced the time required to diagnose incidents and improved overall system reliability. While 

CloudRCA demonstrates strong potential in streamlining incident resolution, the authors highlight the need for 

enhanced scalability and real-time processing to better support large-scale deployments [12]. 

 

Álvaro Brandón et al (2022) explored a graph-based approach for root cause analysis in service-oriented and 

microservice architectures by constructing dependency graphs that model the interactions between services. Their 

method applies network analysis techniques to traverse these graphs and identify critical nodes and fault propagation 

paths that contribute to system failures. Evaluations on real-world case studies indicate that the approach enhances 

the accuracy and speed of root cause identification compared to traditional correlation-based methods. Despite its 

promising results, the study acknowledges challenges in scaling the technique for very large and dynamic systems, 

suggesting the need for further optimization  [13]. 

 

Haixuan Guo et al (2021) presented LogBERT, a transformer-based framework for log anomaly detection that 

leverages the BERT architecture to capture contextual and semantic patterns in system logs. Their approach involves 

pre-training BERT on large-scale log data and subsequently fine-tuning it on labeled datasets for anomaly detection, 

enabling robust identification and classification of anomalous events. Experimental results on benchmark log 

datasets demonstrate that LogBERT achieves improved precision and recall compared to traditional log analysis 

methods, highlighting its potential to enhance real-time log monitoring. However, further research is needed to 

address scalability challenges and facilitate seamless integration into production environments [14]. 

 

Supriyo Ghosh (2022) investigates 152 high-severity production incidents in Microsoft Teams to understand their 

causes, detection, and mitigation strategies. The authors identify software bugs, infrastructure issues, and manual 

errors as primary root causes. The study reveals that over 90% of incidents are mitigated without code changes, using 

strategies such as service rollbacks and configuration adjustments. The findings emphasize the importance of 

automated monitoring and better detection mechanisms to reduce response time. The study offers practical insights 

into optimizing incident response and highlights opportunities for automation to improve cloud service reliability 

[15]. 

 

Wei Zhang (2024) introduces MABC, a novel multi-agent framework inspired by blockchain principles for RCA in 

microservices architectures. The framework integrates seven specialized agents that collaborate through a 

decentralized decision-making process to identify root causes of faults. By leveraging blockchain-inspired voting and 

limiting steps to avoid circular dependencies, MABC enhances fault detection and resolution. Experimental results 

demonstrate superior performance in RCA and effective resolution generation compared to traditional methods. The 

study highlights the importance of agent collaboration and decentralized decision-making for robust RCA in complex 

microservices environments [16]. 

 

Mathav Raj J (2024) provides practical guidelines for fine-tuning LLMs to meet enterprise needs, focusing on 

proprietary datasets for documentation and code. The authors discuss the advantages and limitations of fine-tuning 

compared to Retrieval-Augmented Generation (RAG) methods, highlighting scenarios where fine-tuning offers 

superior accuracy despite higher resource costs. Techniques such as Low-Rank Adaptation (LORA) and data 

preprocessing strategies are recommended to optimize training. The study offers insights into configuring LLMs for 

enterprise applications, guiding beginners on dataset preparation, GPU requirements, and efficient fine-tuning 

techniques [17]. 

 

Pawan Kumar Sarika (2023) focuses on automating test failure analysis in microservices environments using 

Kubernetes cluster logs. As manual classification of failures becomes increasingly time-consuming, the authors 

evaluate five machine learning algorithms, including Support Vector Machines, Random Forest, and Gradient 

Boosting Classifier, to determine their efficiency in diagnosing failures. The results highlight Random Forest as a top 

performer, achieving high accuracy with low computational resource requirements. The paper underscores the 
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benefits of automation in reducing analysis time and improving the reliability of microservices, offering valuable 

insights for organizations managing large-scale distributed systems [18]. 

 

Ahmed Saeed Alsayed (2024) presents MicroRec, a novel microservice recommendation framework designed to 

help developers discover relevant microservices in large ecosystems. Leveraging Large Language Models (LLMs), the 

system utilizes a dual-encoder architecture combining contrastive and semantic similarity learning to enhance 

recommendation accuracy. The framework integrates Stack Overflow posts, Dockerfile, and README information 

to better understand queries and available microservices. Empirical evaluations demonstrate significant 

improvements in recommendation precision and relevance compared to existing tools like Docker Hub. MicroRec is 

14 times more accurate than traditional methods, highlighting its practical value in microservice discovery, 

evaluation, and compatibility [19]. 

 

Sayar Ul Hassana (2022) presents a detailed comparative analysis of various machine learning algorithms for 

text classification, including Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression (LR), 

Multinomial Naïve Bayes (MNB), and Random Forest (RF). The authors evaluate these algorithms on two different 

datasets: IMDB for sentiment analysis and a SPAM dataset for message categorization. The study assesses 

performance based on metrics like accuracy, precision, recall, and F1-score. The results indicate that Logistic 

Regression and SVM excel for the IMDB dataset, while kNN outperforms others for the SPAM dataset. The paper 

emphasizes the importance of selecting appropriate algorithms based on dataset characteristics and highlights the 

growing role of text classification in automating data analysis for enterprise applications [20]. 

 

Iman Kohyarnejadfard (2022) addresses the challenges of anomaly detection in microservice environments, 

which are prone to performance anomalies due to their complexity and distributed architecture. The authors propose 

an NLP-based approach that leverages distributed tracing data to analyze event sequences and detect anomalies 

without requiring prior system knowledge. The approach also identifies release-over-release regressions, providing 

valuable insights for performance monitoring. Extensive experiments on real-world datasets demonstrate high 

accuracy, with an F-score of 0.9759. The study showcases how visualization tools can further expedite root cause 

analysis, ultimately enhancing system resilience and reducing manual diagnostic efforts [21]. 

 

Shilin He (2021) explores the significance of automated log analysis as a critical tool for ensuring system reliability 

in cloud services. It emphasizes best practices in log management, such as adhering to logging standards, maintaining 

appropriate verbosity levels, and ensuring proper log aggregation. A key challenge highlighted is tracing log cycles 

across interdependent services, which can hinder efficient problem diagnosis. The study discusses the importance of 

using event IDs and centralized log storage to facilitate effective analysis. The authors recommend safeguarding logs 

due to the sensitive information they may contain and outline emerging research directions for improving automated 

log analysis systems, ultimately aiming to enhance reliability through better fault detection and faster RCA [6]. 

 

Baptiste Rozière (2024) presents Code Llama, a family of large language models (LLMs) by Meta AI designed for 

code generation, completion, and documentation tasks. Based on the Llama 2 architecture, it offers general, Python-

optimized, and instruction-following variants with parameter sizes up to 70B and support for 100,000-token input 

contexts. Trained on up to 1 trillion tokens, the models utilize fine-tuning techniques such as infilling and instruction 

tuning, achieving state-of-the-art performance on benchmarks like HumanEval and MBPP. Released under a 

permissive license, Code Llama aims to enhance developer productivity and foster innovation in AI-driven software 

development [22]. 

 

Muhammad Waseem (2023) investigates the issues, causes, and solutions encountered in microservices systems. 

The authors collected data from 2,641 issues in 15 open-source microservices projects, conducted 15 interviews, and 

surveyed 150 practitioners. They developed comprehensive taxonomies categorizing 19 types of issues, 8 categories 

of causes, and 177 types of solutions. Key findings highlight technical debt, exception handling, and invalid 

configurations as prevalent challenges. The study provides actionable insights for developers and researchers to 

improve microservices design and maintenance by addressing recurring issues and adopting effective fixing 

strategies [2]. 
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Xuchao Zhang (2024) explores the application of GPT-4 for automated RCA in large-scale cloud services using 

in-context learning. The authors present an innovative approach that eliminates the need for fine-tuning by 

leveraging historical incident examples directly during inference. Extensive evaluations across over 100,000 

production incidents demonstrate a 24.8% improvement over fine-tuned GPT-3 models and a 49.7% improvement 

over zero-shot models. Human evaluations validate the approach, with a 43.5% increase in correctness and an 8.7% 

boost in readability. The study underscores the cost-efficiency and adaptability of in-context learning for RCA, 

offering a scalable solution for incident diagnosis in complex cloud environments [23]. 

 

4.1 Comparative study table 

 

Table 4.1.1: comparative study table 

Sr. 

No 

Title of Paper Author(s) Year Methodology & 

Technology 

Used 

Outcome Gap Identified 

1 A Comprehensive 

Survey on Root 

Cause Analysis in 

(Micro) Services: 

Methodologies, 

Challenges, and 

Trends 

Tingting 

Wang et al 

2024 Literature survey 

on RCA methods; 

AI/ML techniques 

(anomaly 

detection, 

dependency 

mapping, multi-

model data 

analysis) 

Categorized RCA 

techniques and 

highlighted AI-

driven methods 

Limited 

automated RCA 

solutions for 

microservices with 

comprehensive 

exception 

handling 

2 BARO: Robust Root 

Cause Analysis for 

Microservices via 

Multivariate 

Bayesian Online 

Change Point 

Detection 

Luan Pham 

et al 

2024 End-to-end RCA 

using Multivariate 

Bayesian Online 

Change Point 

Detection and 

nonparametric 

hypothesis testing 

for anomaly 

detection and RCA 

Regularly 

surpasses 

cutting-edge 

techniques 

across three 

benchmark 

microservice 

systems. 

Further evaluation 

needed in real-

time, large-scale 

microservices 

environments 

3 Root Cause Analysis 

in Microservices 

Using Neural 

Granger Causal 

Discovery 

Cheng-Ming 

Lin et al 

2024 Neural Granger 

causal discovery 

enhanced by 

contrastive 

learning; 

integration of 

time-series 

forecasting and 

modified 

PageRank for top-k 

root cause ranking 

Exceeds the 

performance of 

advanced RCA 

methods on both 

synthetic and 

real-world 

datasets. 

Requires further 

validation in 

diverse 

microservices 

architectures and 

operational 

conditions 

4 TraceDiag: Adaptive, 

Interpretable, and 

Efficient Root Cause 

Analysis on Large-

Scale Microservice 

Systems 

Ruomeng 

Ding et al 

2023 An end-to-end 

RCA approach that 

uses reinforcement 

learning to develop 

a pruning policy 

for service 

dependency graphs 

based on real-time 

traces and logs. 

Surpasses 

leading RCA 

approaches on 

real data from 

Microsoft 

Exchange and is 

integrated into 

Microsoft M365 

Exchange. 

Reinforcement 

learning adds 

complexity; 

further 

exploration 

needed for 

adaptability to 

other 
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microservices 

environments 

5 MRCA: Metric-level 

Root Cause Analysis 

for Microservices via 

Multi-Modal Data 

Yidan Wang 

et al 

2024 Metric-level RCA 

using multi-modal 

data (traces, logs, 

metrics) to 

construct causal 

graphs with a 

reward mechanism 

for terminating 

unnecessary 

expansion 

Achieves higher 

accuracy and 

efficiency than 

state-of-the-art 

approaches 

across two 

microservice 

benchmarks. 

Effectiveness in 

real-time analysis 

and scalability in 

larger systems 

require further 

investigation 

6 HeMiRCA: Fine-

Grained Root Cause 

Analysis for 

Microservices with 

Heterogeneous Data 

Sources 

Zhouruixing 

Zhu et al 

2024 Hierarchical RCA 

using Spearman 

correlation and 

anomaly-aware 

monotonic 

correlation to rank 

suspicious metrics 

from 

heterogeneous 

data sources 

Surpasses state-

of-the-art 

methods in 

detecting root 

causes at both 

the service and 

metric levels. 

Additional 

research is 

required to 

evaluate 

performance 

across various 

microservice 

environments and 

its integration 

with current 

monitoring tools. 

7 Recommending 

Root-Cause and 

Mitigation Steps for 

Cloud Incidents 

using Large 

Language Models 

Toufique 

Ahmed et al 

2023 GPT-3.x models 

(Curie, Davinci); 

fine-tuning for 

RCA and 

mitigation; BLEU-

4 evaluation 

metrics 

Improved RCA 

and mitigation 

with fine-tuned 

models 

Absence of 

microservices-

specific exception 

classification and 

RCA optimization 

8 SEEKER: Enhancing 

Exception Handling 

in Code with LLM-

Based Multi-Agent 

Approach 

Xuanming 

Zhang et al 

2024 Multi-agent 

framework 

(Scanner, Detector, 

Predator, Ranker, 

Handler agents) 

with Retrieval-

Augmented 

Generation (Deep-

RAG) for exception 

handling 

Improved 

exception 

handling and 

code robustness 

Lack of scalability 

and optimization 

for microservices 

exception 

classification 

9 Exploring LLM-

based Agents for 

Root Cause Analysis 

Devjeet Roy 

et al 

2024 ReAct agent 

framework; 

retrieval tools for 

RCA; comparison 

with baseline 

models 

Competitive 

RCA 

performance 

with high factual 

accuracy 

Insufficient use of 

fine-tuned LLMs 

for RCA 

diagnostics 

involving 

exception patterns 

10 CloudRCA: A Root 

Cause Analysis 

Framework for 

Cloud Computing 

Platforms 

Yingying 

Zhang et al. 

2021 Integrates multi-

dimensional data 

(logs, metrics, 

traces) with 

machine learning 

techniques to 

correlate 

Significantly 

reduces incident 

diagnosis time 

and improves 

system 

reliability 

Enhanced 

scalability and 

real-time 

processing 

capabilities are 

needed for large-

scale deployments 
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anomalies and 

identify root 

causes in cloud 

computing 

platforms 

11 Graph-based Root 

Cause Analysis for 

Service-Oriented and 

Microservice 

Architectures 

Álvaro 

Brandón et 

al. 

2020 Constructs 

dependency graphs 

to model service 

interactions; 

applies network 

analysis techniques 

for fault 

propagation 

analysis and root 

cause 

identification 

Enhanced 

accuracy and 

speed of RCA 

compared to 

conventional 

correlation-

based methods 

Challenges in 

scaling to very 

large, dynamic 

systems require 

further 

optimization 

12 LogBERT: Log 

Anomaly Detection 

via BERT 

Haixuan 

Guo et al. 

2021 A transformer-

based approach 

utilizing the BERT 

architecture with 

pre-training on 

large-scale log data 

followed by fine-

tuning for anomaly 

detection. 

 

Achieved 

improved 

precision and 

recall on 

benchmark log 

datasets 

compared to 

traditional log 

analysis 

methods 

Scalability 

challenges and 

production 

integration 

require further 

research 

13 How to Fight 

Production 

Incidents: An 

Empirical Study on a 

Large-scale Cloud 

Service 

Supriyo 

Ghosh et al. 

2022 Empirical analysis 

of production 

incidents; 

mitigation 

strategies 

(rollback, 

configuration 

updates) 

Over 90% 

incidents 

mitigated 

without code 

changes 

No integration of 

automated 

exception 

classification with 

RCA workflows 

14 MABC: Multi-Agent 

Blockchain-inspired 

Collaboration for 

Root Cause Analysis 

Wei Zhang 

et al. 

2024 A multi-agent 

framework 

incorporating a 

blockchain-

inspired voting 

mechanism for 

root cause analysis 

(RCA). 

Improved RCA 

efficiency with 

reduced 

hallucination 

issues 

Complexity in 

adapting multi-

agent frameworks 

for microservices 

exception 

handling 

15 Fine-Tuning LLMs 

for Enterprise: 

Practical Guidelines 

and 

Recommendations 

Mathav Raj 

J et al. 

2024 LORA, Retrieval-

Augmented 

Generation (RAG); 

fine-tuning 

techniques for 

proprietary 

datasets 

Identified best 

practices for 

fine-tuning and 

RAG in 

enterprise 

applications 

Limited 

exploration of 

fine-tuning LLMs 

for exception 

classification in 

microservices 

16 Automating 

Microservices Test 

Failure Analysis 

Pawan 

Kumar 

Sarika et al 

2023 ML algorithms 

(Random Forest, 

SVM, Gradient 

Boosting); log 

Automated 

failure 

classification 

with high 

Lack of NLP-

based exception 

classification for 

production micro-
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using Kubernetes 

Cluster Logs 

analysis on 

Kubernetes 

clusters 

accuracy using 

Random Forest 

services 

environments 

17 MicroRec: 

Leveraging Large 

Language Models for 

Microservice 

Recommendation 

Ahmed 

Saeed 

Alsayed et 

al. 

2024 Dual-encoder 

architecture; 

contrastive 

learning; LLM-

based semantic 

search using Stack 

Overflow and 

Dockerfile data 

14× more 

accurate 

recommenda-

tions than 

Docker Hub 

Limited 

evaluation on 

microservice 

compatibility with 

RCA diagnostics 

18 Analytics of Machine 

Learning-based 

Algorithms for Text 

Classification 

Sayar Ul 

Hassan et al 

2023 Comparison of ML 

algorithms (SVM, 

k-NN, Logistic 

Regression, Naive 

Bayes, Random 

Forest); evaluation 

using precision, 

recall, F1-score 

metrics 

Identified 

optimal 

algorithms for 

dataset-specific 

text 

classification 

Absence of ML 

models focused on 

classifying 

microservice-

related exception 

logs 

19 Anomaly Detection 

in Microservice 

Environments Using 

Distributed Tracing 

Data Analysis and 

NLP 

Iman 

Kohyar 

nejadfard et 

al 

2023 NLP techniques for 

sequence analysis; 

distributed tracing 

data; regression 

analysis for 

anomaly detection 

Achieved high 

anomaly 

detection 

accuracy (F-

score of 0.9759) 

Limited focus on 

exception 

classification and 

detailed RCA for 

micro-services 

20 A Survey on 

Automated Log 

Analysis for 

Reliability 

Shilin He et 

al 

2023 Log aggregation, 

pattern 

recognition, and 

event correlation 

techniques 

Identified best 

practices and 

challenges for 

automated log 

analysis 

Lack of efficient 

real-time log 

classification and 

RCA integration 

for micro-services 

21 Code Llama: Open 

Foundation Models 

for Code 

Baptiste 

Rozière et al 

2023 Fine-tuned LLMs 

(7B, 13B, 70B); 

infilling training; 

instruction tuning; 

long-context 

optimization 

State-of-the-art 

code generation 

and completion; 

superior 

benchmark 

performance on 

HumanEval and 

MBPP 

Limited 

exploration of 

RCA diagnostics 

or exception 

classification in 

code-focused 

LLMs 

22 Understanding the 

Issues, Their Causes, 

and Solutions in 

Microservices 

Systems: An 

Empirical Study 

Muhammad 

Waseem et 

al. 

2023 Mixed-methods 

approach; 

taxonomy 

development from 

issue tracking, 

interviews, and 

surveys 

Developed 

taxonomies for 

issues, causes, 

and solutions 

Need for 

automated RCA 

and exception 

classification 

solutions for 

large-scale 

microservices 

systems 

23 Automated Root 

Causing of Cloud 

Incidents Using In-

Context Learning 

with GPT-4 

Xuchao 

Zhang et al 

2024 In-context learning 

with GPT-4; 

historical incident 

analysis; semantic 

similarity 

evaluation 

43.5% 

improvement in 

RCA correctness 

over fine-tuned 

models 

No solution for 

real-time RCA 

diagnostics for 

microservices 

exceptions 
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4.2 Key insights from comparative study: 

• Automated RCA: Limited solutions fully automate RCA for large-scale microservices exception analysis. 

• Exception Classification: Lack of robust systems to distinguish business and runtime errors in 

microservices. 

• Real-time Diagnostics: Existing solutions face scalability and latency challenges in high-velocity 

environments. 

• Scalability Gaps: Multi-agent frameworks struggle with scalability in decentralized microservices 

architectures. 

• Centralized Aggregation: Limited focus on technologies like Kafka for real-time exception aggregation. 

• Latency: Many current methods struggle with scalability and low-latency diagnostics when deployed in 

large-scale systems. 

METHODOLOGY USED  

This project employs a phased approach to tackle the challenges of exception classification and root cause analysis 

(RCA) in microservices architectures. The methodology involves the following steps: 

Data Preprocessing 

• Exception stack trace data is collected from various microservices. 

• Data comprises of 52% of Runtime Exceptions and 48% of Business Exceptions  

• Exception stack traces and code repositories are also processed using NLP. 

• Data is parsed, tokenized and embedded for each stack trace [20]. 

• Code from repositories is embedded with CodeBERT and embeddings are stored for future use in LLM. 

 

Exception Aggregation  

• A Kafka Cluster is utilized as the central platform for real-time aggregation of exceptions generated by various 

microservices. 

• Services send exceptions to Kafka topics, which act as scalable and reliable queues for handling high volumes 

of data. 

• The system ensures fault tolerance and enables seamless integration of distributed microservices. 

Exception Classification  

• A dedicated Exception Classifier Service is designed to use text classifier built using NLP. 

• Preprocessed data is then fed to chosen classification models such as SVM, Naïve Baye’s and XGBoost [20]. 

• Classification models are then compared against each other with metrices like Precision Recall and F1-Score. 

Root Cause Analysis (RCA) 

• RCA is performed by an LLM fine-tuned using exception traces and codebert embeddings of code repositories 

of microservices. 

• CodeLlama and Mistral are chosen for fine tuning using LoRA for their ability to generate text on provided 

context [17], [22].  

• Runtime exceptions stack traces categorized by the Exception Classifier are sent to the RCA Service via API 

integration.  

• The LLM-based RCA system analyses exception received from kafka to identify underlying issues and provide 

actionable insights. 

Performance Evaluation and Optimization 

• Key performance metrics, including RCA accuracy, classification precision, recall, and latency are measured. 

• Human qualitative evaluation is also done on various sample of exception traces. 

ARCHITECTURE 

The provided block diagram represents the architecture for the LLM-based Automated Root Cause Analysis (RCA) 

System designed for microservices architectures. It illustrates the interaction between services, exception handling 

mechanisms, and RCA components, as outlined below: 
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Fig 6.1 Architecture Diagram 

Micro-Services (Service 1, Service 2, Service 3):  

These represent various microservices within the architecture that generate errors and exceptions during runtime. 

These services are the primary producers of exception data, which could include business exceptions (expected errors 

due to business logic) and runtime exceptions (unanticipated system failures). 

Kafka Cluster:  

Acting as a central hub for exception aggregation, the Kafka Cluster receives exceptions from the microservices in 

real time. Kafka ensures that the system can handle high volumes of exceptions efficiently and reliably. The clustered 

design allows for scalability and fault tolerance, ensuring uninterrupted flow of data. 

 

 

Exception Classifier Service:  

This service consumes exception data from Kafka using its API. The Exception Classifier API processes the exceptions 

to classify them into two categories: Business Exceptions: Expected errors related to business logic, such as validation 

failures. Runtime Exceptions: Critical system errors, such as null pointer exceptions or database connectivity failures. 

This classification leverages Natural Language Processing (NLP) for extracting patterns and categorizing exceptions 

effectively [20]. 

RCA Service:  

Once exceptions are classified, Runtime Exception stack traces are sent to the RCA Service for detailed analysis. The 

RCA Service uses Large Language Model (LLM) that has been LoRA fine-tuned to perform automated root cause 

analysis. This involves interpreting log messages from stack traces and CodeBERT embedding saved in data 

preparations step. RCA’s produced by this service would aid addressing critical underlying issues in microservices. 

RESULTS AND DISCUSSIONS: 

The research started off with collection of exceptions stack traces data from various microservices. Data also included 

manually generated exceptions. There were roughly 52% of runtime exceptions and 48 % of business exceptions in 

data set. For preprocessing of data, various NLP techniques such as TF-IDF vectorization, tokenization were 

executed. Data was also embedded with CodeBERT for faster search. This search was needed while generating RCA 

using LLM. These embedding were saved and secured. 

 

For exception classification, three models were chosen which usually works best with textual data. Models selected 

were SVM, Naïve Bayes and Gradient Boosting XGBoost. Mentioned models were fitted on train-test split of 

exception traces. Models were compared as per their performance metrices such as recall, precision and f1 score.  

Table 7.1: Exception Classification Performance metrices 

Model 
Runtime Exception 

Recall 

Runtime Exception F1 Business Exception Precision 

SVM 72.40% 68.30% 88.20% 

Naïve Bayes 85.10% 82.70% 91.50% 

XGBoost 89.60% 87.40% 93.80% 
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Runtime exceptions are critical to detect and missing any would might lead to major issues in future. Runtime 

Exception recall indicates model’s ability to recognize runtime exceptions. Similarly, F1 score indicated model’s 

balance of recognizing runtime and business exceptions. XGBoost achieved the highest runtime recall (89.6%) and 

F1-score (87.4%) due to its ability to handle imbalanced data while modeling non-linear relationships. 

RCA is done using fine-tuned LLM. CodeLlama and Mistral were first choice because of their ability for code 

generation. Preprocessed data was fed to models with specific number of epochs. There were many hyperparameters 

considered, following are some examples of parameter values. 

Table 7.2: LLM Hyperparameters 

Hyperparameter CodeLlama-7B Mistral-7B 

Base Model codellama/CodeLlama-7b-hf mistralai/Mistral-7B-v0.1 

LoRA Rank 64 32 

LoRA Alpha 128 64 

Learning Rate 3e-5 2e-5 

Quantization 4-bit (GPTQ) 4-bit (NF4) 

Loss Function Weighted Cross-Entropy Focal Loss 

 

Models were fine-tuned with and without code snippets. CodeBERT embeddings were used in training to understand 

impact of code context on RCA accuracies. Following are the results with and without code snippets. Models were 

also evaluated with human qualitative judgement. Exceptions were caused with human intervention and expected 

RCA was validated against RCA generated by models. 

Table 7.3: LLM Performance Metrices 

Models With Code Context Without Code Context Human Qualitative Evaluation 

Mistral-7B 87.60% 68.20% 83% 

CodeLlama-7B 91.50% 69.30% 91% 

 

Here, CodeLlama has outperformed Mistral-7B because of its code-aware architecture, larger context window, and 

domain-specific pretraining. Fine-tuned CodeLlama is integrated with rest API to serve in microservices architecture. 

Finally, kafka is used to bind all components together. Kafka acts as an exception aggregator accepting exceptions 

from multiple microservices. These exceptions are written to a topic which is then further read by exception classifier. 

Stack traces of runtime exceptions are then forwarded to RCA service for generating RCA. 

 

CONCLUSION AND FUTURE SCOPE 

This research showcased how Large Language Models (LLMs) can be effectively utilized to automate Root Cause 

Analysis (RCA) for microservices, with a focus on runtime exception classification and code-aware root cause 

identification. By comparing performances of classification models (XGBoost, SVM, Naïve Bayes) and fine-tuned 

LLMs (CodeLlama-7B, Mistral-7B) we observed that, XGBoost performed best among other classification models 

selected. CodeLlama-7B has significant provided precise and accurate RCAs for given stack traces. CodeLlama-7B 

has performed best when was given preprocessed code snippets while generating reports. The integration of 

exception aggregation, exception classification, code repository context and optimized hyperparameters for LLM has 

improved ability to find critical issues early and address them before any outage in microservices architecture. 

This research can be further improved by aggregative environment logs such as resource consumption, disk/network 

usage etc. LLM models can be further distilled to achieve leaner and smaller models for cost effective deployments. 

In microservice architecture, services keep getting updated, new services gets added. A feedback loops can be added 

to tune the model at runtime. Currently, model is capable of performing RCA upon given code context and exception 

stack trace. This can be further extended to act upon the RCA and remediate the root cause and fix the issue. 
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