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The VEREMI dataset is used in this study to look into how well mixed deep learning models 

and data balancing methods work for binary and multiclass classification. The study uses 

many preprocessing steps, such as label encoding, data scaling, and handling missing values. 

It also uses the SMOTE method to fix data mismatch. Three models Autoencoder, Long Short-

Term Memory (LSTM), and VEREMI_LA, a new hybrid model that combines Autoencoder 

and LSTM were learned and tested on datasets that were both balanced and skewed. In binary 

classification, the results show that the mixed VEREMI_LA model does better than individual 

models. It achieves an amazing 99.9% accuracy in both balanced and skewed situations. The 

F1-score also shows that the VEREMI_LA model has better performance; it consistently hits 

99.9%, showing that it can handle different types of data. With an accuracy of only 50% and 

an F1-score of 34%, the Autoencoder model, on the other hand, did much worse, especially 

on the balanced dataset. In the multiclass classification task, the VEREMI_LA model once 

again proved to be the best, getting 86% of the correct answers on the uneven dataset and 

97% of the correct answers on the balanced dataset. With only 52% accuracy, the 

Autoencoder, on the other hand, did the worst on the balanced sample. These results show 

that the mixed method works to make classification more accurate and reliable. The study 

stresses how important data balance methods and combining mixed models are for improving 

the performance of machine learning for difficult classification tasks. This study gives useful 

information to people who want to make classification models work better in the real world. 

It suggests that mixed methods like VEREMI_LA can greatly improve the accuracy of 

predictions in a wide range of datasets. 

Keywords: Hybrid Machine Learning Models, Data Balancing Techniques, Binary 

Classification, Multiclass Classification, VEREMI Dataset, Model Performance Evaluation. 

 

INTRODUCTION 

The development of machine learning (ML) has changed the field of data analytics by making it possible to get 

useful information from large, complicated datasets. ML can be used in many different areas, but two main ones 

are binary and multiclass classification jobs. These have big effects in areas like banking, healthcare, hacking, 

and more. Assigning data samples to different groups is what these classification tasks are all about, and how 

well they are done is very important for making decisions in the real world. But one of the biggest problems in 

classification is working with datasets that aren't fair. When some groups are neglected compared to others, it 

makes estimates that aren't accurate and slows down the model [1]. The goal of this study is to find out how the 

VEREMI dataset, mixed machine learning models, and data balance methods affect the success of classification. 

The VEREMI dataset is a complete case study that can be used to learn more about the difficulties of both binary 

and multiclass classification tasks. Unbalanced datasets [2], like VEREMI, often make it harder for machine 

learning models to learn, as they tend to favour majority groups over minority ones. This mismatch can cause 

evaluation measures that aren't accurate, which in turn can hurt the dependability and strength of classification 

results. So, getting a balanced picture of classes is important for making sure that estimates are correct and fair, 

especially in situations where wrong classification can have big effects. 
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Many practitioners utilize data preparation and balancing techniques like the Synthetic Minority Over-sampling 

Technique (SMOTE) to address issues caused by imbalanced datasets. SMOTE [3] generates synthetic samples 

for minority groups, resulting in a more balanced dataset and improved model performance. However, such 

techniques should be tested across various classification models to fully understand their impact. This study 

explores the use of SMOTE during the training phase to assess how data balancing affects model success, 

particularly when advanced machine learning methods are employed. Autoencoders, an unsupervised learning 

technique, are highly effective at dimensionality reduction and feature extraction, making them ideal for 

classification tasks. Additionally, Long Short-Term Memory (LSTM) networks, a type of recurrent neural 

network (RNN), excel at retaining temporal information and capturing relationships between sequential events. 

While these models are powerful for structured or sequential data, their performance heavily depends on data 

composition, balance, and the complexity of the classification task. 

This study introduces a hybrid model named VEREMI_LA, designed to leverage the strengths of both 

Autoencoders and LSTM networks. The VEREMI_LA model combines the feature extraction capabilities of 

Autoencoders with the sequential learning abilities of LSTM networks. This integrated approach aims to 

enhance classification performance by capturing complex data patterns more effectively than either model 

individually. The primary objective is to determine whether this hybrid technique, paired with data balancing 

methods, can significantly improve accuracy in both binary and multiclass classification tasks. In healthcare, 

for instance, accurately classifying patient data into binary categories (healthy vs. sick) or multiple categories 

(various diseases) can facilitate quicker medical interventions and improved patient outcomes. Similarly, in 

finance, distinguishing between genuine and fraudulent transactions is crucial for maintaining system integrity. 

Thus, applying hybrid models and data balancing techniques can lead to significant advancements in these 

fields. This research employs a comprehensive approach to evaluate the performance of Autoencoder, LSTM, 

and the combined VEREMI_LA model on both balanced and imbalanced versions of the VEREMI dataset. The 

aim is to identify each model's strengths and limitations and assess how data-balancing techniques like SMOTE 

enhance classification outcomes. The study makes three key contributions. First, it carefully tests machine 

learning models on both balanced and skewed datasets, giving us useful information about how their 

performance changes. Second, it presents and evaluates a new hybrid model called VEREMI_LA, showing that 

it can handle difficult classification jobs well. Third, it stresses how important methods for balancing data are 

for making models more accurate, especially when data imbalance is a big problem. 

II. RELATED WORK 

In the past few years, there have been a lot of big steps forward in the field of machine learning. A lot of the work 

has been focused on making classification tasks better for both binary and multiclass tasks. Real-world data is 

often very complicated, and problems like class mismatch can happen. This can make machine learning models 

less accurate and reliable. So, [5] researchers have looked into a number of different ways to deal with these 

problems. For example, they have created mixed machine learning models and used data-balancing methods 

such as the Synthetic Minority Over-sampling Technique (SMOTE). It is well known that class mismatch can 

hurt the performance of machine learning models, especially when one class is greatly lacking compared to 

others. A lot of people use SMOTE because it works well for dealing with numbers that aren't fair. The way it 

works is by making fake samples for the minority class. This makes it more common and helps the model learn 

the underlying trends better. This method [6] has been shown to improve classification results in a number of 

areas, including finding scams and making medical diagnoses. A lot of research has been done on how data 

balance methods affect model success in both binary and multiclass classification. Class mismatch can cause 

predictions to be skewed and models to be less sensitive to minority classes, according to research. This shows 

how important it is to use data balancing methods like SMOTE to improve model performance, especially when 

the minority class is very important. 

Hybrid machine learning models [7] have become a potential way to improve classification performance that 

goes beyond just balancing data. When you mix the best parts of several algorithms, you get a hybrid model that 

can handle complicated data patterns better. Combining Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs), for example, has shown better results than using just one model. This shows that 

mixed methods could be useful for solving classification problems. Autoencoders are a type of autonomous 

neural network that has gotten a lot of attention for their ability to pull out useful features from large amounts 

of data. These models have been shown to reduce the number of dimensions in data while keeping important 
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traits, which makes them good for classification jobs. When autoencoders are used with other models, like Long 

Short-Term Memory (LSTM) networks, they can improve model success by using their feature extraction skills 

[8]. LSTM networks are great for jobs that need to deal with either temporal or sequential data because they can 

pick up on sequential relationships. A number of studies have looked into how mixing Autoencoders and LSTM 

networks can help with classification. This method showed that mixed models could do better than individual 

models, getting better accuracy and reliability, especially when it came to jobs like finding outliers in time-series 

data. Autoencoders' [9] ability to retrieve features and LSTM networks' ability to learn in a sequential way have 

been combined to improve classification performance. While mixed models and data balance methods have 

shown promise in improving classification accuracy, not much study has looked at how they work together on 

both binary and multiclass classification tasks. Most of the studies that have been done so far have only looked 

at either binary or multiclass problems on their own. This means that we don't fully understand how mixed 

methods can be used to solve different classification issues. In addition, most of the study that has been done so 

far has focused on model success without looking at how data balance methods work with mixed models [10]. 

Recently, people have become more interested in using machine learning models on datasets that aren't fair. 

This is especially true in areas like healthcare, banking, and defence. When used for tasks like finding credit card 

scams, hybrid models that use SMOTE to fix imbalanced data have shown higher accuracy and memory rates 

than standard models. This shows the possible benefits of combining these approaches for real-world use. In 

the same way, hybrid models have been used in healthcare to improve the detection of diseases with datasets 

that aren't balanced. They work better, especially when used with methods for balancing datasets like SMOTE. 

Since mixed models and data balancing methods have been shown to work well in other areas, the goal of this 

study is to see how they work together on binary and multiclass classification tasks using the VEREMI dataset. 

This study aims to fix the problems with previous research by using a hybrid approach that combines 

Autoencoders and LSTM networks. It also looks at how data balancing techniques can improve the performance 

of hybrid models in a wide range of classification situations. 

Table 1: Related work Summary 

Approach Dataset Data 

Balancing 

Technique 

Model 

Performance 

Key Findings 

Hybrid of Decision 

Tree and Random 

Forest [11] 

Financial Fraud 

Dataset 

SMOTE Accuracy: 94%, 

F1-Score: 92% 

The hybrid model 

outperformed individual 

models, improving fraud 

detection accuracy. 

Combination of SVM 

and k-NN [12] 

Medical 

Diagnosis 

Dataset 

ADASYN Accuracy: 91%, 

Precision: 89% 

Demonstrated enhanced 

performance in medical 

data classification 

compared to standalone 

models. 

Ensemble Learning 

with Gradient 

Boosting and LSTM 

[13] 

Customer Churn 

Prediction 

Dataset 

None Accuracy: 88%, 

Recall: 86% 

The ensemble approach 

improved classification 

without requiring 

additional data balancing. 

Integration of 

Neural Network and 

Naive Bayes 

Sentiment 

Analysis Dataset 

Random 

Under-

Sampling 

(RUS) 

Accuracy: 87%, 

F1-Score: 84% 

The hybrid model showed 

improved accuracy in 

sentiment analysis, 

especially with imbalanced 

data. 

CNN combined with 

Support Vector 

Machine (SVM) [14] 

Image 

Recognition 

Dataset 

SMOTE Accuracy: 92%, 

Precision: 90% 

Achieved higher image 

classification accuracy by 

integrating CNN features 

with SVM classification. 

LSTM-RNN Hybrid 

Model [15] 

Time-Series 

Stock Prediction 

None Accuracy: 85%, 

MSE: 0.15 

LSTM-RNN hybrid 

provided better time-series 



583  
 

J INFORM SYSTEMS ENG, 10(13s) 

predictions, highlighting its 

strength in sequential data. 

Hybrid k-Means and 

Neural Network 

Model [16] 

Text 

Classification 

Dataset 

None Accuracy: 89%, 

Precision: 88% 

Enhanced text classification 

performance, combining 

clustering with neural 

network capabilities. 

Stacked 

Autoencoder and 

Decision Tree 

Hybrid [17] 

Network 

Intrusion 

Detection 

Dataset 

SMOTE Accuracy: 95%, 

F1-Score: 93% 

The hybrid model was 

effective in identifying 

network intrusions with a 

balanced dataset. 

Convolutional 

Neural Network 

(CNN) and LSTM 

[18] 

Video 

Classification 

Dataset 

Random Over-

Sampling 

(ROS) 

Accuracy: 90%, 

F1-Score: 89% 

Improved classification 

accuracy for video data, 

leveraging the sequential 

learning of LSTM with 

CNN. 

Ensemble of k-NN, 

Decision Tree, and 

Naive Bayes [19] 

Weather 

Forecasting 

Dataset 

None Accuracy: 88%, 

Precision: 87% 

The ensemble model 

enhanced prediction 

accuracy, but data 

balancing could further 

improve results. 

Integration of Fuzzy 

Logic and Neural 

Network [20] 

Healthcare 

Monitoring 

Dataset 

SMOTE Accuracy: 90%, 

Recall: 88% 

Demonstrated improved 

model adaptability for 

healthcare data, especially 

for minority class detection. 

Hybrid Logistic 

Regression and SVM 

Model [21] 

E-commerce 

Customer 

Behavior 

None Accuracy: 86%, 

F1-Score: 85% 

Provided effective binary 

classification for predicting 

customer behavior, without 

data balancing. 

 

III. DATASET USED 

A. Binary Classification Dataset 

The datasets used in this study include both binary and multiclass classification tasks. This lets us see how well 

machine learning models work with a wide range of classification problems. These data points can be easily 

identified and put into two groups thanks to their many traits. This makes the dataset a great choice for testing 

how well machine learning models can handle uneven data. This kind of mismatch in information happens all 

the time in real life, and it causes estimates that favor the majority class to be wrong. As a result, this binary 

dataset gives us a practical setting to test how data balancing methods such as SMOTE can improve the accuracy 

and stability of classification [22]. 

B. Multiclass Classification Dataset 

The multiclass classification collection, on the other hand, is harder because you have to put data points into 

more than one class. This dataset is especially useful for testing how well models can tell the difference between 

several classes at once, which is important in tasks like medical analysis, picture recognition, and text 

classification. The multiclass dataset lets us test how well models like Autoencoder, LSTM, and the mixed 

VEREMI_LA model can react to different data structures and patterns. This shows how strong and flexible these 

models are for a variety of classification tasks. This method uses two datasets so that model performance can be 

fully tested in both binary and multiclass classification situations [22]. 
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Figure 1: Representation of portion of the dataset used for multiclass classification 

Figure 1 shows a dataset that looks like it was organized for a multiclass classification job. It has many different 

features that give us specific information about patterns of movement or tracking. The columns have attributes 

like sender and sendTime that probably show where the data came from and when it was recorded. These 

characteristics may show trends in the information that are based on time or source. The features posx and posy 

show positional coordinates, which can show where an item or thing is in space in a certain setting. spdx and 

spdy are the speed components in the x and y directions, respectively. They show how fast the object is moving 

or how its motion is changing. Moreover, aclx and acly show acceleration numbers in the x and y directions, 

respectively. They show how the object's speed changes over time. The last column, class, is the goal term. It 

sorts the data points into groups, like 2, 14, and 15, as you can see in the figure. This means that the dataset has 

a lot of different patterns or actions that the classification model needs to be able to tell the difference between. 

The location, speed, and acceleration data together could be useful in areas like self-driving cars, object 

recognition, and motion tracking. Overall, this dataset is perfect for testing how well machine learning models 

can handle multiclass classification problems because it has a lot of different and complicated traits. 

IV. METHODOLOGY 

The suggested study method uses the VEREMI dataset in a thorough way to see how mixed machine learning 

models and data balance techniques affect the performance of both binary and multiclass classification. The 

process starts with getting datasets. The VEREMI dataset, which can be accessed through the given Kaggle link, 

is used to get both binary and multiclass classification datasets. These datasets will be the basis for the whole 

study. They contain a wide range of traits and goal groups that will help train and test the models effectively. 

Next, we do data preparation, which is an important step to make sure the quality of the data and the readiness 

of the model. Taking care of lost numbers is part of this step. This helps keep the data correct by filling in any 

holes in the information. Then, label encoding is used to turn category data into number data that can be used 

by machine learning methods. After that, a scaler is used to standardize the feature values and scale the data. 

This makes sure that no feature is more important than others because of scale differences. After being adjusted, 

the data is turned back into a data frame so that it can be used in more operations. 

The Synthetic Minority Over-sampling Technique (SMOTE) is used to deal with the problem of class imbalance. 

By making fake samples for the minority classes, SMOTE makes sure that all the classes are fairly represented. 

This method is used for both binary and multiclass classification datasets to make the models work better and 

stop them from favoring the most common class. After that, an 80-20 split is used to make the information into 

training and testing sets. This separation makes sure that a big chunk of the data can be used to train the model 

while still leaving enough for review. In the next step, the classification models are built and trained. 

Autoencoder and Long Short-Term Memory (LSTM) are two examples of individual models. The LSTM finds 

sequential trends in the data, while the Autoencoder pulls out features and reduces the number of dimensions. 

Finally, VEREMI_LA, a combination model that blends the best features of Autoencoder and LSTM, is 

presented to make the most of both feature extraction and sequential learning. The goal of this method is to see 

how well each model works on both balanced and skewed datasets. This will show how well mixed approaches 

and data balancing techniques work at improving classification accuracy. The suggested method provides a 

thorough testing system that deals with real-life issues in both binary and multiclass classification tasks. This 

makes it very useful for settings with a lot of different kinds of data. 

A. Data Preparation and Preprocessing: 

Data preparation is an important part of getting datasets ready for machine learning because it makes sure that 

the data is correct and consistent, which improves the performance of classification models in the end. In this 

study, the planning part includes four main steps: dealing with missing values, label encoding, scaling data with 

a scaler, and turning scaled data back into a data frame. 
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1. Handling Missing Values: Taking care of missing values is the first and one of the most important steps in 

preparing data. There are many reasons why numbers might be missing, including mistakes made when 

entering the data, broken sensors, or faulty data collection methods. These gaps can cause skewed or wrong 

model results if they are not fixed. In this step, the right methods are used, such as filling in empty values with 

the feature's mean, median, or mode, or using more advanced methods like interpolation or k-nearest 

neighbours imputation. This makes sure that the information stays whole, uniform, and ready to be processed 

further. 

2. Label Encoding: The next step is label encoding, which turns category factors into numbers so that machine 

learning programs can use them. Label encoding turns text-based categories into numbers, which is useful for 

many machine learning models that need numerical inputs. For example, if a feature has categories like "High," 

"Medium," and "Low," label encoding will turn them into numbers like 2, 1, and 0. This change is necessary so 

that algorithms can understand and process classification data. It makes sure that each group is shown in a way 

that can be used for training. 

3. Data Scaling: The next step in the cleaning workflow is to use a Scaler to scale the data. There are often 

different sizes for different features in a dataset. Some features have big ranges of values, while others are only 

slightly larger. Without scale, machine learning models might focus too much on traits with higher values, which 

could lead to predictions that aren't accurate. Standardization (where features are centered around the mean 

and scaled by the standard deviation) or normalization (where values are scaled between 0 and 1) makes sure 

that all features add similarly to the learning process of the model. This step is especially important for models 

that work by distance, like k-nearest neighbors (KNN) or neural networks, where different feature sizes can 

affect how well the model works. 

4. Changing Scaled Data to a Data Frame: This is done to keep the dataset's structure and consistency after it 

has been scaled. The scaled data is usually returned as a NumPy array or a similar data structure. It is changed 

back into a data frame format so that it can be easily changed, viewed, and combined with data from earlier 

steps in the processing. This translation makes sure that the dataset keeps its original column names and 

numbering, which makes it easier to understand and use during the training and testing stages of the model. 

B. Data Balancing Technique (SMOTE) 

1. Binary Classification 

Using SMOTE (Synthetic Minority Over-sampling Technique) for binary classification is a good way to fix 

datasets with class mismatch problems. In binary classification, one class usually has a lot of members, which 

makes the model make predictions that favor the ruling class. To solve this issue, SMOTE creates fake examples 

for the minority group, which equalizes the dataset. It adds new data points by extrapolating from minority 

groups that are already there. This helps the computer learn better. When SMOTE is used, the model learns 

more about minority class trends, which leads to better accuracy, memory, and general success in tasks that 

require binary classification. 

Step 1: Identify Minority and Majority Classes 

Let C_min and C_max represent the sample counts of the minority and majority classes, respectively. 

Step 2: Select a Minority Sample and Its Nearest Neighbors 

For a chosen sample x in the minority class C_min, calculate the Euclidean distance to its k-nearest neighbors: 

𝑑(𝑥, 𝑥𝑗) =  𝑠𝑞𝑟𝑡 (𝑠𝑢𝑚{𝑘=1}
{𝑚}

(𝑥𝑘 − 𝑥{𝑗𝑘})
2
) 

where m is the number of features, and x_i and x_{ji} represent the i-th feature of x and x_j, respectively. 

Step 3: Generate Synthetic Samples 

Select one of the k-nearest neighbors x_nn and generate a synthetic sample x_new using: 

𝑥𝑛𝑒𝑤 =  𝑥 +  𝜆 ×  (𝑥𝑛𝑛 −  𝑥) 

where λ is a random number in the range [0, 1]. 

Step 4: Repeat Until Balancing is Achieved 

Repeat the process until the minority class C_min reaches the same count as the majority class C_max. 
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Figure 2: Representation of Class Distribution Before and After SMOTE Balancing 

The image shows in figure 2 class distributions before and after applying data balancing techniques. Initially, 

the dataset had a significant class imbalance, with a large number of "Normal" samples (164,714) compared to 

"Anomaly" samples (8,669) in the training data. After balancing, both classes have equal representation (164,714 

each), achieved using a technique like SMOTE. This balance ensures that the model learns equally from both 

classes, improving its ability to detect anomalies, especially in highly imbalanced datasets. 

2. Multiclass Classification 

SMOTE (Synthetic Minority Over-sampling Technique) is a popular data balancing method used to address 

class imbalance in multiclass classification problems. In multiclass classification, handling imbalanced datasets 

is challenging, as different classes may have varying levels of representation. Utilizing SMOTE (Synthetic 

Minority Over-sampling Technique) helps address this issue by generating synthetic samples for each minority 

class, ensuring a more balanced distribution across all classes. SMOTE works by interpolating between existing 

samples of minority classes, creating new synthetic data points that enhance the diversity and representation of 

these classes. This technique ensures the model doesn’t become biased toward majority classes and effectively 

learns patterns from all classes. By applying SMOTE in multiclass classification, models achieve better 

generalization, improved accuracy, and enhanced performance, especially in tasks where distinguishing 

between multiple categories is crucial.. 

Step wise process: 

1. Identify Minority Classes: 

For a given dataset with multiple classes 𝐶1, 𝐶2, . . . , 𝐶𝑚, identify minority classes,  

i.e., classes with fewer samples compared to the majority class. 

2. Nearest Neighbours: 

For each sample xi belonging to a minority class Ck, identify k nearest neighbours 𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑘 within the 

same class Ck. These neighbors are found using a distance metric, typically Euclidean distance. 

3. Synthetic Sample Generation: 

For each minority sample xi, randomly select one of its k nearest neighbors xinn.  

A synthetic sample xsyn is generated using the formula: 

𝑥𝑠𝑦𝑛 = 𝑥𝑖 + 𝜆 ⋅ (𝑥𝑖𝑛𝑛
− 𝑥𝑖) 

where 𝜆 is a random variable such that 𝜆 ~ 𝑈(0, 1), meaning it is uniformly  

distributed between 0 and 1. 

4. Repeat for Each Minority Class: 

● Repeat the above steps for every sample in each minority class until the desired level of balancing is 

achieved for all classes. This ensures the creation of additional synthetic samples for each minority class, 

improving class balance. 

● The resulting dataset D' will be more balanced, with synthetic samples distributed across all minority 

classes, making it suitable for multiclass classification tasks. 

C. Classification Model 

1. Autoencoder 
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The Autoencoder model is a type of neural network topology that is meant to learn how to describe data 

efficiently without being told what to do. The Autoencoder is a very important tool for extracting features for 

the study project on binary and multiclass classification using the VEREMI dataset. It has two main parts: an 

encoder that shrinks raw data into a hidden space with fewer dimensions, and a decoder that uses this 

representation to put together the original data. By teaching the model to make rebuilding errors as small as 

possible, the Autoencoder picks out the most important features while lowering noise and complexity. The 

quality of the information is improved by this process, which makes it better for classification jobs. The 

Autoencoder makes it easier for the model to find complex patterns in both balanced and skewed datasets when 

used with data balancing methods like SMOTE. 

 

Figure 3: Overview of design of a Autoencoder network model 

Figure 3 shows a picture of a description of the design of a neural network model. The model has an Input Layer 

with 10 input features and then two thick layers that are fully linked to each other. There are 154 trainable factors 

in the first thick layer, which is equal to 10 times 14 plus 14 times 10 times 14 plus 14 (including biases). The 

second thick layer has 10 neurons and 150 trainable parameters, which are found by adding up 14 x 10 and 10 

times 14 x 10 plus 10. There are no non-trainable parameters in the model, which means that all of its 304 

trainable parameters are changed during training. The basic layout of this neural network is probably used for 

a simple classification or regression job, successfully recording the connections between the data that are fed in. 

 

Figure 4: Overview of Autoencoder architecture 

The image illustrates in figure 4 an Autoencoder architecture with three main components: the encoder 

compresses the input features (x1,x2,x3) into a latent representation, while the decoder reconstructs the input 

into output features (x1′,x2′,x3′′), achieving dimensionality reduction and reconstruction. 

Step wise Process: 

Step 1: Input Representation 

The input data is represented as a vector x in R^n, where x = [x_1, x_2, ..., x_n]. This input is fed into the 

Autoencoder. 

Step 2: Encoding Process 
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The encoder maps the input x to a latent representation h using a weight matrix W and a bias b. The activation 

function f (e.g., ReLU, sigmoid) is applied: 

ℎ =  𝑓(𝑊𝑥 +  𝑏) 

Here, h is the encoded representation in the latent space of lower dimension m, where m < n. 

Step 3: Bottleneck Layer (Latent Space) 

The encoded vector h is now in the compressed form, representing the essential features of the input data: 

ℎ ∈  𝑅^𝑚 

Step 4: Decoding Process 

The decoder reconstructs the input data from the latent representation h using another weight matrix W' and 

bias b', followed by an activation function g: 

𝑥̂ =  𝑔(𝑊′ℎ +  𝑏′) 

Here, x̂ represents the reconstructed output, ideally approximating the original input x. 

Step 5: Loss Function 

The loss function measures the reconstruction error between the original input x and the reconstructed output 

x̂. For example, using Mean Squared Error (MSE): 

𝐿(𝑥, 𝑥̂) =  (
1

𝑛
) 𝛴 (𝑥𝑖 −  𝑥̂𝑖)2 

The Autoencoder minimizes this loss during training, ensuring x̂ closely approximates x. 

2. LSTM 

The Long Short-Term Memory (LSTM) model is a type of recurrent neural network (RNN) that is very good at 

finding linear patterns and relationships in data. This makes it a great choice for the study topic that involves 

categorizing data into two or more groups using the VEREMI dataset. The gated design of LSTM, which includes 

input, output, and forget gates, lets it keep long-term connections. This lets it learn how the data shows 

relationships between times. The LSTM model is used in this study to find and evaluate trends in time or 

sequential features within the dataset. This makes it better at handling difficult classification jobs. LSTM works 

much better for classification when paired with methods that balance data like SMOTE. This is especially true 

for datasets where understanding time patterns is key to making accurate predictions. 

3.VEREMI_LA (HYBRID of Autoencoder and LSTM MODEL) 

The VEREMI_LA model, which is a mix of Autoencoder and LSTM, uses the best parts of both to make 

classification work better for this study topic. The Autoencoder starts by taking out unnecessary dimensions, 

screening out noise, and keeping important data trends. Then, these traits are put into the LSTM, which is very 

good at detecting trends and correlations between times. This combo makes it easier for VEREMI_LA to work 

with complicated data structures, which improves the accuracy of both binary and multiclass jobs. VEREMI_LA 

is a strong model that can handle uneven datasets and find complex patterns in the VEREMI dataset by 

combining the Autoencoder's feature extraction with LSTM's temporal learning. 
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Figure 5: Representation of analysis for HYBRID of Autoencoder and LSTM MODEL 

A sequential neural network with an LSTM-based design is shown in figure 5 of the presented model overview. 

The entry layer can take data with the shape (1, 8), which means a list of 8 traits. The next layer is Time 

Distributed, which has 512 units and 4,608 trainable parameters that let the model handle input patterns. The 

first LSTM layer has 512 units and 2,099,200 factors that show how one thing depends on another in a certain 

order. The LSTM result is copied by a RepeatVector layer, which keeps the series length for further processing. 

After this comes another LSTM layer with 512 units and 2,099,200 values. Lastly, the second TimeDistributed 

layer changes the output back to the original feature size (1, 8), and it has 4,104 parameters that can be trained. 

The model has 4,207,112 trainable features, which shows how hard it is to use for sequence-based tasks. 

Algorithm: 

 

Step 1: Input Representation 

The input data X is represented as a sequence of vectors in R^{n x m}, where n is the sequence length and m 

is the number of features. The input is denoted as: 

𝑋 =  [𝑥_1, 𝑥_2, . . . , 𝑥_𝑛] 

 

Step 2: Encoding Process (Autoencoder) 

The encoder maps each input x_t to a lower-dimensional latent representation h_t using a weight matrix 

W_e and bias b_e. Applying an activation function f, we have: 

ℎ𝑡 =  𝑓(𝑊𝑒𝑥𝑡 + 𝑏𝑒) 

This results in a latent sequence 𝐻 =  [ℎ_1, ℎ_2, . . . , ℎ_𝑛]. 

 

Step 3: Sequential Learning (LSTM) 

The latent representations H are passed to the LSTM layer, which captures temporal dependencies. The 

LSTM cell equations at each time step t are: 

𝑖𝑡 =  𝜎(𝑊𝑖ℎ𝑡 +  𝑈𝑖ℎ{𝑡−1} + 𝑏𝑖) 

𝑓𝑡 =  𝜎(𝑊𝑓ℎ𝑡 + 𝑈𝑓ℎ{𝑡−1} + 𝑏𝑓) 

𝑜𝑡 =  𝜎(𝑊𝑜ℎ𝑡 + 𝑈𝑜ℎ{𝑡−1} + 𝑏𝑜) 

𝑐̃𝑡 =𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑊𝑐ℎ𝑡 +  𝑈𝑐ℎ{𝑡−1} + 𝑏𝑐)  

𝑐𝑡 =  𝑓𝑡 ⊙  𝑐{𝑡−1} + 𝑖𝑡 ⊙  𝑐̃𝑡  

ℎ𝑡 =  𝑜𝑡 ⊙𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑐𝑡)  

Where i_t, f_t, o_t, c_t, and h_t represent the input, forget, output gates, cell state, and hidden state 

respectively, and σ and tanh are the sigmoid and hyperbolic tangent activation functions. 

 

Step 4: Decoding Process (Autoencoder Reconstruction) 
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The decoder reconstructs the original input data from the encoded representation h_t using a weight matrix 

W_d and bias b_d: 

𝑥̂_𝑡 =  𝑔(𝑊_𝑑 ℎ_𝑡 +  𝑏_𝑑) 

where g is an activation function like tanh or linear, resulting in the reconstructed output sequence 𝑋̂ =

 [𝑥̂_1, 𝑥̂_2, . . . , 𝑥̂_𝑛]. 

 

Step 5: Loss Function and Optimization 

The loss function measures the reconstruction error between the original input X and the reconstructed 

output X̂. Using Mean Squared Error (MSE): 

𝐿(𝑋, 𝑋̂) =  (
1

𝑛
) 𝛴 (𝑥𝑡 − 𝑥̂𝑡)2 

The model is trained to minimize this loss, allowing the VEREMI_LA to capture both feature extraction and 

temporal dependencies effectively. 

 

V. RESULT AND DISCUSSION 

A. Binary Classification  

1. Imbalance Dataset 

In the table 2, the success measures of three models Autoencoder, LSTM, and VEREMI_LA—are shown on both 

uneven and even samples for binary classification tasks. Four main measures are used to judge the performance: 

Accuracy, Precision, Recall, and F1-Score. These give a full picture of how well each model works with different 

types of data. The VEREMI_LA model does better than both the Autoencoder and LSTM models in every way, 

starting with the uneven dataset. The VEREMI_LA model is very good at classifying data points, even when the 

dataset is very skewed, as shown by its impressive 99.9% accuracy. Also, VEREMI_LA has precision and 

memory scores of 99.9%, which shows that it can find true positives without getting confused by fake positives 

or negatives. This great recall ability is especially important for datasets that aren't fair, since minority class 

cases are often missed. 

Table 2: Comparative analysis of Models for Binary classification 

 Accuracy Precision Recall F1-Score 

AUTOENCODER_IMBALANCE 95 97 54 57 

LSTM_IMBALANCE 99 99 97 98 

VEREMI_LA_IMBALANCE 99.9 99.9 99.9 99.9 

AUTOENCODER_BALANCE 50 74 50 34 

LSTM_BALANCE 99 99 99 99 

VEREMI_LA_BALANCE 99.9 99.9 99.9 99.9 

 

The model is generally strong because the F1-Score, which measures accuracy and memory, also goes up to 

99.9%. With an accuracy of 95%, a precision of 97%, a recall of 54%, and an F1-Score of 57%, the Autoencoder 

model does not do well on the unbalanced dataset. It's likely that the Autoencoder had trouble finding samples 

from the minority class because of the much lower recall. This is a common problem with datasets that aren't 

fair. Even though it was pretty accurate, the model's general performance was hurt by the fact that it couldn't 

handle the mismatch well. On the uneven dataset, the LSTM model does much better than the Autoencoder, 

getting 99% accuracy, precision, recall, and F1-Score. Because of this, LSTM is a better choice than Autoencoder 

in situations where the data isn't fair and sequential trends need to be captured. However, it is still not as good 

as the VEREMI_LA model, which is better because it combines the best parts of Autoencoder and LSTM. Once 

more, the VEREMI_LA model does a great job with the balanced dataset, getting perfect scores (99.9%) on all 

measures. This constant high level of performance shows how well the mixed method works. The Autoencoder 

pulls out important features, and the LSTM catches how things depend on each other in a balanced environment. 

This lets VEREMI_LA make correct classifications. With the balanced sample, however, the Autoencoder's 

performance drops by a huge amount. Its accuracy drops to 50% and its F1-Score drops to 34%, which shows 

that the model had a hard time even though the data was fair. This shows that the Autoencoder can handle some 
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feature extraction tasks, but not sophisticated enough to handle more difficult classification tasks by itself. With 

a balanced sample, the LSTM model still does very well, getting 99% across accuracy, precision, recall, and F1-

Score. This proves that LSTM works well with data that is spread out in a more regular way, since it can find 

trends without the extra complexity that comes with data that isn't balanced. However, it still isn't as good as 

the VEREMI_LA model, as comparison shown in figure 14, which does better thanks to the hybrid approach's 

extra feature extraction and sequence learning features. 

 

Figure 6: Autoencoder Accuracy and Loss Curve 

Figure 6 shows training and validation metrics for an autoencoder over 10 epochs. The left plot of figure 6 depicts 

a sharp decline in both training and validation loss initially, followed by stabilization, indicating effective 

convergence. The right plot of figure 6 shows a steady increase in training and validation accuracy, with slight 

fluctuations but a generally upward trend, suggesting the model learns effectively and generalizes well. The close 

alignment between training and validation metrics indicates minimal overfitting and good model performance 

overall. 

 

Figure 7: LSTM Accuracy and Loss Curve 

Figure 7 presents the training and validation loss and accuracy curves for the LSTM model over 10 epochs. The 

loss curve (left) demonstrates a steady decline in both training and validation loss, indicating effective learning. 

The accuracy curve (right) shows that training and validation accuracy quickly approach nearly 100%, 

suggesting that the LSTM model successfully captures patterns and achieves excellent performance without 

signs of overfitting.  
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Figure 8: VEREMI_LA Accuracy and Loss Curve 

 

Figure 9: Confusion Matrix 

The figure 8 shows the Hybrid (VEREMI_LA) model's training and validation loss and accuracy curves, 

achieving near-perfect accuracy and minimal loss, indicating excellent learning and generalization. The figure 

9, a confusion matrix, reveals accurate predictions with 55,543 true negatives and 93,472 true positives, and 

only 12 false negatives, demonstrating the model’s exceptional performance in binary classification with 

negligible misclassifications. 

2. Balance Dataset 

Figure 10 displays the Autoencoder's loss and accuracy curves. The validation loss fluctuates, indicating 

instability in the learning process. Both training and validation accuracy decrease over epochs, suggesting that 

the model struggles with the multiclass data, resulting in inconsistent performance and potential overfitting. 

 

Figure 10: Autoencoder Accuracy and Loss Curve 
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Figure 11: LSTM Accuracy and Loss Curve 

Figure 11 illustrates the learning progress of the LSTM model, where both training and validation loss steadily 

decrease, indicating effective learning. The accuracy reaches nearly 100%, showcasing the LSTM's strong ability 

to handle complex data patterns, with efficient training and minimal overfitting. Figure 12 highlights the 

performance of the VEREMI_LA (Hybrid) model, demonstrating rapid loss reduction and almost perfect 

accuracy for both training and validation. This indicates exceptional learning efficiency and generalization, 

proving the hybrid model's superior capability in capturing data patterns for accurate multiclass classification.  

 

Figure 12: VEREMI_LA Accuracy and Loss Curve 

The confusion matric framework, appeared in figure 13, for the Crossover (VEREMI_LA) demonstrate 

illustrates uncommon execution, with 93,589 genuine negatives and 93,203 genuine positives, demonstrating 

exceedingly precise forecasts. There are as it were 6 wrong negatives and no untrue positives, reflecting the 

model's prevalent capacity to accurately recognize both classes in a twofold classification assignment, 

guaranteeing negligible misclassification. 

 

Figure 13: Confusion matrix for balanced dataset 



594  
 

J INFORM SYSTEMS ENG, 10(13s) 

Figure 14 presents the performance comparison between balanced and imbalanced datasets for binary 

classification using the VEREMI dataset. The Hybrid (VEREMI_LA) model maintains high accuracy and F1-

Score (99.9%) across both datasets, demonstrating its robustness. In contrast, the Autoencoder's performance 

significantly declines on the balanced dataset, while the LSTM remains consistently reliable. This indicates that 

data balancing enhances overall model accuracy and reliability. 

 

Figure 14: Performance Comparison of Balance and Imbalance Dataset on Binary Classification (VEREMI 

Dataset) 

B. Multiclass Classification 

Table 3 shows how well three models Autoencoder, LSTM, and VEREMI_LA performed in multiclass 

classification tasks using Accuracy, Precision, Recall, and F1-Score. The models were tested on both unbalanced 

and balanced datasets. Beginning with the uneven dataset, the VEREMI_LA model performs the best across all 

measures, getting an 86% success rate. The combined VEREMI_LA model does better than the Autoencoder 

(83%) and LSTM (85%) models, which means it can handle more complex multiclass situations where some 

classes are underserved better. This is backed even more by the fact that VEREMI_LA is better at correctly 

finding instances across different classes (46% of the time) and isn't significantly biased toward the majority 

class. The F1-Score of 42% shows that it does a good job of balancing accuracy and memory. With an accuracy 

of only 32% and a recall of 24%, the Autoencoder does much worse on the unbalanced dataset, getting a low F1-

Score of 25%. This shows that the Autoencoder has trouble correctly identifying cases of the minority class, 

which leads to wrong classification. The LSTM model is more accurate (44% better) and more reliable (31% 

better) than the Autoencoder, but it's still not as good as the VEREMI_LA model. The results make it clear that 

VEREMI_LA's mixed method is the best way to deal with uneven data in multiclass classification. 

Table 3: Comparative analysis for Multiclass classification Models 

 Accuracy Precision Recall F1-Score 

AUTOENCODER_IMBALANCE 83 32 24 25 

LSTM_IMBALANCE 85 44 31 32 

VEREMI_LA_IMBALANCE 86 46 36 42 

AUTOENCODER_BALANCE 52 49 50 48 

LSTM_BALANCE 57 54 56 54 

VEREMI_LA_BALANCE 97 95 96 96 

Once more, the VEREMI_LA model does the best on the balanced dataset, getting an impressive 97% accuracy 

rate along with 95% precision, 96% recall, and 96% F1-Score. This great performance shows that VEREMI_LA 

not only gains from data balancing but also catches complex patterns across multiple classes very well, showing 

how flexible and strong it is in a balanced setting. It shows how well the model can keep making predictions 

even when all classes are evenly represented, which is very important for jobs that need to sort things into more 

than one group. With an F1-Score of 48% and an accuracy of 52%, the Autoencoder's score on the balanced 

dataset is still pretty bad. This means that the Autoencoder can handle data when all classes are equal, but it is 

still too simple to properly record differences between classes. The LSTM model, on the other hand, does better 

on the balanced dataset, getting an F1-Score of 54% and an accuracy of 57%. There is evidence that LSTM can 

handle balanced datasets better than lopsided ones, but it still can't match VEREMI_LA's accuracy and recall. 

The comparison test shows that the VEREMI_LA model regularly does better than the Autoencoder and LSTM 
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models in both jobs with an unbalanced and a balanced number of classes. This better performance shows the 

benefits of a mixed method that blends Autoencoder's feature extraction skills with LSTM's sequence learning 

strengths. These results show how important it is to use complicated models like VEREMI_LA, especially when 

there are more than two classes to classify. For best performance, both the complexity of the features and how 

the classes are represented need to be taken into account 

1. Imbalance Dataset 

 

Figure 15. Autoencoder Accuracy and Loss Curve 

Figure 15 shows that both the training and evaluation accuracy curves are steadily going up until they hit about 

85%. This means that learning is going well. It can be seen that both the training and confirmation losses get 

smaller over time because the loss curves keep going down. This means that the model is learning well without 

becoming too perfect, which means that it is still good at generalization. 

 

Figure 16. LSTM Accuracy and Loss Curve 

Figure 16 shows that the model's accuracy is going up for both training and validation, getting closer to 85%. It 

looks like the model is learning well because both the training and validation loss curves are going down 

constantly. The fact that training and validation are lined up says that learning is going well, since the model's 

performance stays the same over time. 
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Figure 17. VEREMI_LA Accuracy and Loss Curve 

The graph shows in figure 17, the model's accuracy and loss over 10 epochs. Training and validation accuracy 

curves converge around 87%, indicating effective learning. The loss curves decline steadily, suggesting improved 

model performance. The close alignment between training and validation suggests good generalization without 

significant overfitting throughout the training process. 

 

Figure 18: Heatmap graph for class analysis for imbalanced dataset 

The confusion matrix as shown in figure 18, reveals the model's performance across multiple classes. The 

diagonal entries represent correctly predicted instances for each class, indicating strong accuracy for certain 

classes (e.g., class_0 with 34,227 correct predictions). However, some classes show misclassifications, 

suggesting difficulty in distinguishing between certain categories, highlighting areas where the model needs 

improvement. 

2. Balance Dataset 

The Autoencoder did well on the balanced sample, as shown in Figure 19. The accuracy curve keeps going up 

until it reaches about 55%, but the confirmation accuracy curve is a little behind. The loss curve keeps going 

down, which means the Autoencoder is learning, but it seems to be having trouble getting very accurate results, 

which shows that it can't handle the complexity of multiclass classification even in a balanced dataset. 

 

Figure 19. Autoencoder Accuracy and Loss Curve 
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Figure 20. LSTM Accuracy and Loss Curve 

The LSTM's precision and loss trends can be seen in Figure 20. The accuracy of training and validation steadily 

gets better until it peaks at about 42%. This shows that LSTM can learn better than the Autoencoder. The steady 

decrease in the loss curves shows that the model is learning well, but the low accuracy shows that the LSTM 

model is only somewhat good at dealing with multiclass data in balanced datasets. 

 

Figure 21. VEREMI_LA Accuracy and Loss Curve (Balance Dataset) 

The VEREMI_LA model did very well on the balanced dataset, as shown in Figure 21. Accuracy quickly rises to 

almost 100% during training and evaluation, showing that learning and adapting work very well. The loss rates 

go down a lot and then stay the same, which means there aren't many mistakes. This proves that the 

VEREMI_LA model is the best at handling balanced, multiclass classification jobs with a high level of accuracy 

and dependability. 

The confusion matrix for the balanced sample can be seen in Figure 22. It has a strong vertical appearance, 

which means that it is correctly classified across groups. But some items that aren't on the vertical show that 

there are sometimes wrong classifications, especially in classes like class_1 and class_3. This shows that things 

need to be fixed. Overall, the model does a good job of correctly identifying most of the cases in the balanced 

dataset. 

 

Figure 22: Confusion matrix for balanced dataset 
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.  

Figure 23: Performance Comparison of Balance and Imbalance Dataset on Multiclass Classification (VEREMI 

Dataset) 

The graph shows how well Autoencoder, LSTM, and VEREMI_LA models work on both uneven and even 

samples, showing their accuracy and F1-Score. VEREMI_LA has the best precision and F1-Score for uneven 

data, doing better than both Autoencoder and LSTM, which shows that it can handle uneven data better. With 

almost perfect precision and an F1-Score, VEREMI_LA again does great in balanced datasets, showing that it is 

reliable and effective. Autoencoder doesn't do well on balanced data because it can't handle complexity well, but 

LSTM does a little better. It's clear from the picture that data balancing methods work well and the VEREMI_LA 

mixed model does better at both binary and multiclass classification tasks. 

VI. CONCLUSION  

Using the VEREMI dataset, we looked at how mixed deep learning models, especially the VEREMI_LA model, 

and data balancing methods affected tasks that required separating things into two or more classes. The results 

show that mixed models, which combine the best features of Autoencoder and LSTM, do much better than single 

models at dealing with both uneven and balanced datasets. The VEREMI_LA model had better accuracy, 

precision, recall, and F1-Score in both binary and multiclass classification, getting almost perfect results, 

especially when methods like SMOTE were used to balance the data. This shows how important it is to fix class 

mismatch, which often leads to wrong expectations and models that don't work as well. The comparison test 

shows that standalone models like Autoencoder had trouble detecting complex patterns in both uneven and 

even data, but the LSTM model did pretty well. But neither of them was as good as the combined VEREMI_LA 

model all the time. The VEREMI_LA model was able to learn complex data patterns and make very accurate 

predictions because it combined the feature extraction abilities of Autoencoder with the sequence learning 

strengths of LSTM. The results show how important it is to balance the data to make models work better, 

especially in real-life situations where data is often imbalanced. Combining advanced modeling methods with 

data balancing, the VEREMI_LA model offers a complete answer to classification problems in a wide range of 

datasets. This study focuses on how hybrid machine learning models and data balancing techniques can help 

improve classification accuracy and reliability. This has big implications for fields like finance, healthcare, and 

autonomous systems that need to accurately classify data. The VEREMI_LA model works well and could be 

used in the future for machine learning classification jobs because it is reliable. 
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