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The global medical fraternity is challenged with evolving a perfect prediction model that 

diagnoses a liver ailment at the right time and calls for an immediate medical intervention for 

its critical need. Potential threat to life of liver disease chronically contracted stresses for 

necessity for its root cause and time-bound medical remedy. By making use of a dataset of 

Indian liver patients from the pool of data maintained at the national level, this work is entailed 

with the introduction of an architecture of innovative nature that desegregates Stacked 

Ensemble Model, feature engineering for foretelling liver ailments. The core contribution to 

this work is the harness of feature engineering utilizing SHapely Additive exPlanations (SHAP), 

encompassing the state-of-the-art techniques that are not delved into by data-driven machine 

learning approaches that are in vogue now as a vaticinator of liver ailment. The labyrinthine 

design of Stacked Ensemble Model facilitates timely prediction of liver disease, exploiting the 

maximum of learning techniques that ramp up the detection activity and augment accurate 

diagnosing. The methodology exploits the potencies of varied base learners like Logistic 

Regression, Multi-layer Perceptron, Support Vector Machine, Decision Tree, K-nearest 

neighbor and Extra trees classifier. These diverse views are homogenized as input to the meta-

learner, the Random Forest, to build a sturdy and trustworthy predictive model. The 

commissioning of Stacked Ensemble Model with feature engineering produced an accuracy of a 

cent percent short of 3. This methodology is aimed at fine tuning the prediction of liver 

ailments, ensuring smooth, effective and timely intervention, and assuring of an effective 

management. 

Keywords: Liver disease, Stacked Ensemble Model, SHapely Additive exPlanations, base 

learners, meta-learner. 

 

I. INTRODUCTION 

Liver, the vital organ is indispensable to wholesome of human being. It plays an important role for secretion of 

bile, detoxification and blood clotting by means of protein synthesis. The integrity of hepatocyte is prone to damage 

through infection of microbes like bacteria, virus or fungus and is susceptible to a slew of liver diseases. In addition 

to this, consumption of alcohol is a substantial risk factor for liver malfunctions [1,2]. 

The hardship involved in diagnosing early-stage symptoms of liver illness is aggravated by the people who are 

usually not outspoken by nature, albeit having affected liver, may satisfy they are fit as a fiddle [3]. The emergence 

of machine learning approaches is a boon to prediction and decision making in almost all fields, particularly in 

healthcare [4]. An optimum efficiency is not yielded when a single high accuracy machine learning classifier is 

employed on voluminous datasets. Thus, the classifiers are put together with the help of ensemble learning 

techniques.  

To attain a great deal of accuracy in prediction, the ensemble model can be entwined with SHapley Additive 

ExPlanations (SHAP). SHAP is designed with a holistic platform for ascertaining feature importance in model 

prediction by engaging a new class of feature, catering a unique, theoretically sound solution. Thus, the tough tasks 

of prediction are eased for better accuracy and actionable insights [5,6]. 
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The objective of this work is entailed with introduction of architecture of innovative nature that desegregates 

Stacked Ensemble Model, feature engineering for foretelling liver ailments. The core contribution to this work is the 

harness of feature engineering utilizing SHapely Additive exPlanations (SHAP), encompassing the state-of-the-art 

techniques that are not delved into by data-driven machine learning approaches that are in vogue now as a 

vaticinator of liver ailment. The labyrinthine design of Stacked Ensemble Model facilitates timely prediction of liver 

disease, exploiting maximum of learning techniques that ramp up the detection activity and augment accurate 

diagnosis. 

The sections hereafter to organize are as follows. Section II deals with the reviews of Related Work, taking 

summary of research on liver disease prediction before employing single classifiers, ensemble models, and SHAP-

based feature engineering techniques. Section III deals with the Methods, elaborating the Stacked Ensemble Model 

set up and unification of SHAP for feature fabrication. Section IV includes Results and Discussion, portraying 

significance of SHAP-based feature and the model’s paramount performance in finding root cause of liver disease. 

Section V ends up with Conclusion, stating precisely about findings and putting forward further deep search into 

model interpretability and benefits of detecting the disease at primary level. 

 II.   RELATED WORKS 

Individual Machine Learning based methods employed a single classifier [7], chosen as per dataset 

characteristics, patient feature distribution, and the classifier's potential to have control over skewed boundaries 

and meagre data. For the classification of ILPD patients [8] for diagnosing liver disease, feature selection 

techniques adopted different algorithms. Their outcomes underscore the Logistic Regression secured maximum 

accuracy of 74.36% with feature selection. The researcher [9] put into use twelve classification algorithms for liver 

disease prediction, including Logistic regression, Naive Bayes, K-nearest neighbor, Random Forest, Multilayer 

Perceptron, Decision Tree, Support Vector Machine, Gradient Boosting, Bayesian, XGBoost, AdaBoost and 

Bagging. Although a variety of algorithms were adopted, the models fell short in efficiency in respect of measuring 

the liver disease. 

The drawbacks of individual methods are overcome by ensemble techniques congregating various classifiers to 

attain an assured classification model. The ensemble methods comprise bagging, boosting, and voting schemes, 

operate within distinct domains and show multiple performances under the influence of the aggregation method, 

dataset distribution, non-linearity, and class imbalances. 

An empirical model for diagnose of diabetes mellitus [10] with employment of a stacked ensemble approach 

emphasizes the method's effectiveness in handling complex medical data, leading to significant improvements in 

prediction accuracy. The research [11] constructed a hybrid ensemble classifier model using supervised classifiers 

aiming for improved precision and reduced time entanglement. Employing a stacking ensemble of give machine 

learning algorithms and 58 variable predictors, a tailored machine learning model was evolved towards estimation 

of the enhancement of Alpha-1 Antitrypsin Deficiency-associated Liver Disease (AATD-LD). This approach attained 

[12] high AUROC scores, comprising 91.20% for liver transplants and 75.9% for deaths pertained to liver. The 

employment of permutation methods emphasized the superior performance of the ensemble model by evaluation of 

feature importance. 

The authors [13] put forward this by proposing a hybrid model that combines a stacked ensemble strategy with 

Kernel SHapley Additive exPlanations. It yielded high accuracy and F1 scores on both public and private datasets, 

with SHAP exposing that accelerations and abnormal short-term variability are pivotal to influencing fetal states. 

The approach establishes robust performance and increased interpretability for fetal monitoring. An empirical 

model for diagnosing diabetes in females [14] harnessing stacked ensemble model engaging Shapley additive 

explanation was evolved to augment the prediction accuracy of 92.91% to enable early detection and intervention.  

This write-up accentuates the hardships embedded with feature selection methods and interleaved training, 

ending up with overfitting and suboptimal performance. This work manifests all of the constraints by drawing a 

modern and powerful model, the stacked ensemble model, which is put together with feature engineering 

employing shapely additive explanations and advanced data pre-processing techniques to improve performance. 
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III.  METHODS 

This research work puts into use a stacked ensemble classifier, which binds tier-0 classifiers and feeds their 

outputs as input for a tier-1 classifier. This tier-1 classifier is trained to give final predictions, augmenting the 

classifier's overall performance. 

A. Stacked Ensemble Model Architecture 

This work sums up a Stacked Ensemble Model with two tiers: tier-0 and tier-1. At tier-0, foundational models 

are subjected to execution on the dataset, with their results performing as features in a subsequent dataset. 

Subsequently, the predictions from these models, obtained using the validation set, are fed into the meta-model at 

tier-1. The tier-1 classifier, a machine learning algorithm, puts into use the outcomes of tier-0 classifiers to attain 

the final classification outcome. This technique enhances prediction accuracy by making most of the advantages of 

many classifiers, harvesting a more resilient outcome. The Stacked Ensemble model process is outlined below: 

Tier-0 Classifiers 

• Classifiers: Represented as c₁(x), c₂(x), …, cₖ(x), with t representing the class label for the data point x. 

• Predictions: Tier-0 classifiers weighted outputs are entered into the tier-1 classifier as input. 

Teir-1 Classifier 

• Function (x) = (c₁(x), c₂(x), …, cₖ(x)) is the combination of predictions from tier-0 classifiers to give the 

ultimate prediction. 

• Functions 𝑓 and 𝑔: Aggregation and final prediction functions, respectively. 

• Weight Learning: During training, tier-0 classifier weights are optimized to attain maximum efficiency. 

Training 

• Loss Function: (𝑦, C(x)), with 𝑦 represents the true label of x. 

• Optimization Algorithm: Weights are estimated using Newton’s method during the learning process. 

Prediction 

• During prediction, the process starts with applying the tier-0 classifiers, followed by the utilization of the 

learned weights by the tier-1 classifier. 

 Tier-0 Output (Z) 

• Matrix Z = [z₁, z₂, … , zₙ], where zᵢ represent the output vector for the 𝑖th instance, representing class 

probabilities. 

 Tier-1 Input (X) 

• Matrix X = [x₁, x₂, … , xₙ], where xᵢ represent the input vector for the 𝑖th instance, composed of the output 

probabilities of the tier-0 classifiers for each class. 

Tier-1 Output (y) 

• Matrix 𝑦 = [𝑦₁, 𝑦₂, …, 𝑦ₙ], where 𝑦ᵢ represent the output vector for the 𝑖th instance, containing predicted 

probabilities for each class. 

 Objective Function 

• For each instance i, the predicted class label ŷᵢ = argmaxⱼ(𝑦ᵢ,ⱼ), where ŷᵢ represents the estimated class label 

for the 𝑖thinstance. This is achieved by choosing the class with the maximum predicted probability 𝑦ᵢ,j for the 

ith instance and the jth class. 

The Stacked Ensemble Model pseudo code, as specified in Algorithm 1, narrates the implementation. The 

model in this work follows two-tier architecture to augment Liver disease prediction accuracy. 
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Algorithm 1 Stacked Ensemble Model pseudocode 

Input: 

  - Training set (Xtrain, ytrain) 

  - Testing set (Xtest) 

  - Base models (M1, M2, ..., Mk) 

  - Meta-model (M_meta) 

  - Evaluation metric (e.g., accuracy, F1-score) 

Training Phase: 

  For each base model Mi: 

   Mi ← Train (Xtrain, ytrain) 

  For each base model Mi: 

   Pi ← Predict(Mi, Xtrain) 

M_meta ← Train(P, ytrain) 

  where P = [P1, P2, ..., Pk] 

Prediction Phase: 

  For each base model Mi: 

P_test,i ← Predict(Mi, Xtest) 

Ensemble_Predictions ← Predict(M_meta, P_test) 

Output: 

  Return Ensemble_Predictions 

B. Tier-0 and Tier-1 Model 

Algorithm 1 engages a versatile technique, which yields flexibility in grabbing classifiers subject to certain 

aggregation criteria. These criteria entail the management of nonlinear borders, the handling of imbalanced classes, 

the management of sparse data, the handling of categorical features, and the mitigation of overfitting. A robust 

ensemble that fulfils these requirements is generated by making use of six baseline classifiers that are used every 

now and then. These classifiers contain Logistic Regression, Support Vector Machine, Multi-layer Perceptron, 

Decision Tree, k-nearest neighbor, and Extra Tree classifier.  

Each baseline model satisfies a unique function: Support Vector Machine is well-versed for high-dimensional 

datasets and imbalanced classes; Logistic Regression gives room for large datasets with probabilistic outputs; 

Decision Tree adept at managing both categorical and numerical features, Multi-layer Perceptron registers complex 

patterns and nonlinearities; K-nearest neighbour (KNN) surpasses in delineating nonlinear decision boundaries; 

and Extra Tree Classifier is chosen for its resilience to overfitting, ability to navigate nonlinear decision boundaries, 

and versatility in processing both categorical and numerical features. 

At tier-1, the combination of these baseline models ensures that categorical features are managed properly, 

decreases the risk of overfitting, sets right the non-linearity of decision boundaries, and efficiently manifests classes 

of imbalance within the ensemble. Harnessing Random Forest as the meta-learner permits to grab advantage of its 

resistance to over-fitting, its capability to deal with non-linearity, its prowess with categorical data, and its 

resistance to imbalanced classes. 

As in Fig. 1, the two-tier Stacked Ensemble Model grabs the advantages of a large number of classifiers at    

tier-0, ensued by the Meta classifier at tier-1 of the model. This architecture augments the accuracy and resilience of 

predictions while decreasing the likelihood of overfitting at the same time. 
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Fig. 1  Architecture of Stacked Ensemble Model 

C. Feature Engineering using SHapley Additive exPlanations 

Feature engineering [15] is a prominent processing part of machine learning model indulged in up taking 

representative features from the data that is supplied so as to augment the ability of models for precise predictions. 

Being a pivotal part of feature engineering, feature creation is meant that the process is merging of original features 

with an idea of tracking features that are of largely predictive nature [16]. The SHapley Additive exPlanations 

(SHAP) [17] perspective was made use of in an inquisitive way for supply of information to bring about new 

features in this work. 

SHAP is employed with significant features identified as alkaline phosphatase concentration, direct bilirubin 

levels, and total bilirubin levels for diagnosis of liver ailments. The output of the model is affected by the correlation 

of these features from SHAP. The features take in the SHAP values so as to understand that the value affects the 

diagnosis of liver malady or not. Greater the SHAP value for alkaline phosphatase concentration shows a higher 

prognostic value for liver ailment. Conversely, a negative SHAP value tanks the variability in liver diagnosis in a 

great deal. 

Further, the SHAP relative scores show that the features are tasked altogether to have an effect on predictions. 

SHAP illustrates with an example that diagnosis of liver disease is ascertained with a combination of high bilirubin 

and low albumin. The apprehensions are about the interactions among the features. It augments the obviousness 

and the ability to understand the model, which makes decision-making practical in a clinical environment. 

Algorithm 2 furnished as under is the SHAP algorithm for feature estimation and generation. 

Algorithm 2 Feature estimation and generation using SHAP 

Step 1: Initialize Inputs 

• Input: Dataset X with N samples and M features. 

• Trained model: f (Random Forest). 

Step 2: Train the Model and Calculate SHAP Values 

1. Train the Model: 

• Train the predictive model f using dataset X. 

𝑓(𝑥) =  ŷ                                 

2. SHAP Value Calculation: 

• Use a SHAP explainer to compute SHAP values for each feature i in the dataset. 

• For each sample xj the SHAP value for feature i is computed as: 

𝜙i
(𝑗)

= ∑
|𝑆|! (𝑀 − |𝑆| − 1)!

𝑀!
𝑠 ⊆{1,2,..,𝑀}\{𝑖}

[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] 

Where S denotes a subset of features, and 𝜙i
(𝑗)

denotes the Shapley value for feature i for the j-th data sample. 
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Step 3: Analyze Feature Importance 

• Rank the features based on their average SHAP values across all samples j: 

𝜙𝑖 =  
1

𝑁
∑ 𝜙i

(𝑗)

𝑁

𝑗=1

 

A higher SHAP value 𝜙𝑖 indicates that feature i is more significant for the model’s prediction. 

Step 4: Create Synthetic Features 

1. Identify Feature Interactions: 

• Use SHAP interaction values to identify combinations of features that work together in predicting the 

target. 

• For two features i and j, the interaction value is: 

𝑆𝐻𝐴𝑃  𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖,𝑗  = 𝜙𝑖,𝑗 −  𝜙𝑖  −  𝜙𝑗 

2. Generate Synthetic Features: 

• Interaction Features: If the SHAP interaction between features i and j is significant, create a new synthetic 

feature: 

𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑖,𝑗  =  𝑋𝑖 × 𝑋𝑗 

• Nonlinear Transformation: For features showing nonlinearity in SHAP dependence plots, apply 

transformations: 

   𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑖 =  𝑙𝑜𝑔(𝑋𝑖 + 1)      

Apart from playing up the momentous of individual features, this approach unwinds how their interactions 

impact predictions. By producing synthetic features from prominent interactions and nonlinearities, SHAP steps up 

the model’s accuracy and exegesis. Desegregating SHAP into the Stacked Ensemble Model besides escalates the 

transparency of the classification process, ending up with more well-founded and impressive clinical decision-

making, and consolidating its role as an indispensable tool for liver diagnosis and its therapy.  

IV.  RESULTS AND DISCUSSION 

A search is made, in this section, on an elaborate analysis of the outputs through different factors comprising of 

precision, accuracy, recall, F1-score, and AUC score. In addition, SHAP (SHapley Additive exPlanations) criteria are 

utilized to prefatorily evaluate model interpretation, furnishing significant insights into the obscurant causes 

leading to liver ailment. This work underscores the potential of the model by blending the interpretability and 

performance measures to ascertain the efficiency in the decision-making process for the diagnosis of liver disease 

well in advance. 

An inclusive comparison of tier-0 classifiers pre-feature engineering is furnished in Table 1, which is 

fundamentally on essential performance indicators such as accuracy, precision, recall, F1-score, and AUC score. It 

also portrays the efficiencies and bottlenecks of the six classifiers, thereby underscoring their overall prediction 

ability. Extra tree, logistic regression, and support vector machine classifiers obtained accuracy with a value of 73%. 

K-nearest neighbour attained an accuracy score of 74%. Multilayer view and decision tree classifiers yielded 

accuracy with a value of 70%. 

Table 1 Tier-0 classifiers performance pre-feature engineering 

Classifier Accuracy (%)  Precision Recall F1-Score AUC Score 

Logistic Regression 73 0.76 0.73 0.73 0.60 

Multi-layer Perceptron 70 0.70 0.70 0.70 0.62 

Support Vector machine 73 0.67 0.73 0.63 0.51 

Decision Tree 70 0.71 0.70 0.70 0.64 

K-nearest neighbour 74 0.73 0.74 0.74 0.66 

Extra Tree classifier 73 0.71 0.73 0.71 0.62 
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A correlation among Tier-0 classifiers post-feature engineering is made centered on influencing factors of 

accuracy, precision, recall, F1-score, and AUC score to unearth their foretelling vigor as shown in Table 2. Amongst, 

multi-layer perceptron tops all classifiers in performance, securing an accuracy of 95%, while the decision tree 

classifier proved to be the lowest accuracy of 90%. The remaining classifiers of Logistic Regression, Support Vector 

Machine, Extra Tree classifier, and K-nearest neighbour exhibited accuracies less than 95% and greater than 90% 

as 94%, 94%, 93%, and 92% respectively. 

Table 2 Tier-0 classifiers performance post- feature engineering 

Classifier Accuracy(%) Precision Recall F1-Score AUC Score 

Logistic Regression 94 0.94 0.94 0.94 0.93 

Multi-layer Perceptron 95 0.95 0.95 0.95 0.94 

Support Vector machine 94 0.94 0.94 0.94 0.90 

Decision Tree 90 0.91 0.90 0.90 0.90 

K-nearest neighbour 92 0.92 0.92 0.92 0.87 

Extra Tree classifier 93 0.93 0.93 0.93 0.89 

The particulars of pre- and post-feature engineering performance of the Proposed Models are furnished in 

Table 3 and Table 4 respectively. A remarkable accuracy of 97.14% was obtained by the model of post-feature 

engineering. It established a sizeable enhancement of 14.29% off the 82.85% accuracy shown by pre-feature 

engineering together with refinements in other appraisal metrics. 

Table 3 Pre-feature Engineering performance of the Model 

Proposed Model Accuracy (%)  Precision Recall F1-Score AUC Score 

Stacked Ensemble Model 83 0.83 0.83 0.82 0.74 

Table 4 Post-feature Engineering performance of the Model 

Proposed Model Accuracy (%)  Precision Recall F1-Score AUC Score 

Stacked Ensemble Model 97 0.97 0.97 0.97 0.94 

 

A comparison in terms of accuracy is made between tier-0 classifier pre-feature engineering and tier-0 classifier 

post-feature engineering as shown in Fig. 2. An attainment of improved accuracy post-feature engineering was 

evident by each and every classifier. Logistic Regression witnessed an accuracy gain of 21% (from 73% to 94%), 

Multi-layer Perceptron obtained an improvement of 25% (from 70% to 95%), Support Vector Machine received 21% 

(from 73% to 94%), Decision Tree scaled up by 20% (from 70% to 90%), K-nearest Neighbor gained 18% (from 74% 

to 92%), and Extra Tree Classifier enhanced by 20% (from 73% to 93%). 

 

Fig. 2 Accuracy comparison of Tier-0 classifiers Pre- and Post-feature engineering 

With a view to appraise the classification models and to reflect their outcome, the AUC criterion is mandated. The 

correlation between sensitivity and specificity’s complement is denoted by the ROC curve, and the area below this 

curve is quantified by the AUC. Significance is observed that when AUC values increase, there exists an 
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enhancement of model performance. Fig. 3 elucidates the ROC curves for the Stacked Ensemble Model post-feature 

engineering. 

 

Fig. 3 Analyzing the ROC Curve of the Stacked Ensemble Model post-feature engineering 

Fig. 4 is portrayed with a bar graph featuring every feature’s average influence on the intended model. The vertices 

are the characteristics in downward influence as the x axis and the mean absolute SHAP values as the y axis 

showing the average effect that each feature holds on the diagnosis suggested by the model. The bar diagram 

interprets that the inherited feature, said to be SHAP feature, possess the most consequential effect on the 

diagnosis done by the model, suggesting the crucial role that it has in affecting the values that are produced by the 

model. Conversely, the ‘gender’ variable’s least impact shows that there is a minuscule influence on the findings 

that the model develops. Each feature’s relative importance containing the most impact on the performance of the 

model is represented by this. 

 

Fig. 4 Impact of features to the proposed model 

A comparison between the performance of the Stacked Ensemble Model and other current works is shown in Table 

5 that employs the machine learning models for forecasting liver-related malady. The output shows that the Stacked 

Ensemble Model’s accuracy is phenomenal. With an accuracy of 97.14%, the Stacked Ensemble Model has one-

upmanship to several other models evaluated in contemporary research. The results signify that the stacked 

ensemble model phenomenally augments performance by unifying the outputs of the tier-0 classifiers and feeding 

them as input value for the tier-1 classifier. Demonstration of this model proves to be efficient for forecasting 

hepatic complications at fledgling stage.  

Table 5 Stacked Ensemble Model post-feature engineering performance assessment in comparison to contemporary 

research 

Reference  Algorithm Accuracy(%) Reference  Algorithm Accuracy(%) 

[14] KNN+SV+RF 88 

[21] 

Linear regression 86.90 

[18] 

Linear Regression 72.89 Gaussian Naïve Bayes 82.60 
Decision Tree 81.32 Random Forest 92.69 
Multilayer Perceptron 60.24 ANN 79 
Random Forest 86.14 CNN 73 
ANN 75.61 [22] Logistic 55.40 
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CNN 65.52 K-NN 67.90 

[19] 

SMO 71.36 Random Forest 88.10 
Naïve Bayes 55.90 SVM 67.90 
IBk 67.41 MLP 83.53 
J48 70.67 Ensemble 82.09 
Random Forest 71.87 

Propose

d Model 

Logistic Regression 94.08 
Logistic Regression 74.36 MLP 95.18 

[20] 

Extra tree classifier 89.91 SVM 94.35 
Random Forest 85.93 Decision Tree 90.30 
Stacking  93.15 KNN 91.63 
Bagging 85.21 Extra tree classifier 93.16 
XGBoost 85.81 Stacked Ensemble 

Model 
97.14 

Gradient Boosting 80.41 
 

On comparison of the recent results with the Stacked Ensemble Model towards foreseeing hepatic illness and 

suggesting beforehand for real-world healthcare applications, the latter succeeded in accomplishing a precise 

accuracy of 97.14%. Incorporation of SHAP values escalated desirable discernment into the key factors evoking 

predictions. But there exists a restraint that this work is deficient to fathomed analysis pertinent to the 

interpretability of the model and the specific influence of each feature. Besides, the research paves the way for an 

advanced development in the field of prediction of hepatic disease, highlighting its capability for early diagnosis, 

medical intervention, and strategizing for personalized treatment. 

V.  CONCLUSION 

The change in lifestyle leads to cozy life involving sedentary works, lack of manual dexterity in daily chores, 

environmental pollutants et al., and deleterious practices like intoxication due to over-consumption of alcohol, 

narcotic contrabands like stuff, drugs, and kind, irregular food habits, becoming glutton to junk and fast foods et al. 

are the influencing factors that predispose to hepatic disease, which is perpetually proliferated globally in the hustle 

and bustle world. As a result, timely diagnosis for liver ailments is mandated to secure lives. In this work, for the 

prognostication of hepatic conditions, employment of stacked ensemble model is undertaken, manifesting a 

prominent diversion from customary moves that, in general, rely on individual classifiers or fledgling ensemble 

models short of feature engineering. The efficiency of the model is ascribed to its capability to conglomerate the 

outputs of tier-0 classifiers—Logistic Regression, Support Vector Machine, Multi-layer Perceptron, Decision Tree, 

K-nearest Neighbours, and Extra Trees—fed as an input to the tier-1 classifier—Random Forest, ending up with an 

augmented predictive performance. 

The perception of significant contribution for attainment of awesome outputs of the machine learning model by 

harnessing Shapley Additive Explanations (SHAP) is evident from this work. It is proved in the findings of this 

research that the achievement of 97% accuracy by the Stacked Ensemble Model in tandem with SHAP overtopped 

the other machine learning models. The amalgamation of SHAP into the proposed model has led to delve into deep 

discernment of the individual features and characteristics, which shows a right direction to the medical fraternity in 

a pursuit of well-in-advance detection and treatment of hepatic patients.  

In spite of having harvested overarching results, it is the need of the hour to give preference to enhancing the 

interpretability of the proposed model by means of a thorough, elaborate examination of the influence that feature 

has on predictions. The findings of such an analysis might bring about deep discernment into the metabolic 

processes and a more widespread comprehension of the decision-making processes that are the factors for driving 

hepatic ailments. 

It is to be honestly admitted that this work has its own shortcomings.  But this work has a cutting edge on pushing 

up the field of diagnosis of hepatic disease. The potential benefits earned out of harnessing the Stacked Ensemble 

Model along with SHAP feature engineering are indispensable to the medical fraternity in terms of precision in 

prediction, cost effective medication, and medical intervention for early detection. For any research scholars in the 

years to come, pursuing research on future applications as that of medical diagnostics work as this, where accuracy 

and interpretability are critical, this approach could greatly benefit them. 
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