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Diabetic retinopathy (DR) is a significant reason for visual impairment all over the planet. 

Recognizing symptoms in the fundus picture is commonly utilized in illnesses connected with the 

eyes like diabetic retinopathy. It requires early detection through high-quality retinal imaging. 

However, noise and poor contrast degrade image clarity, affecting diagnosis. To overcome these 

limitations, pre-processing stage plays a vital role in clinical picture handling to build the nature of 

fundus images. Preprocessing technique is principally used to eliminate undesirable noises and 

improve some image features. Image processing makes use of a variety of pre-processing methods.  

This study presents an exhaustive preprocessing CAD model for diabetic retinal images. By 

harnessing both advanced deep learning methods and conventional image processing methods, 

this mechanized conclusion model (computer aided design) looks to work with better analysis and 

the executives of diabetic retinopathy - one of the main sources of vision misfortune all around the 

world. We propose a novel preprocessing pipeline integrating Wiener filtering, modified CLAHE, 

and a deep learning-based Retinal_Denoiser to enhance DR image quality. The proposed 

Retinal_Denoiser is utilized during the preprocessing phase of the computer-aided design model 

to eliminate noise and improve quality in retinal images, utilizing deep learning-based denoising 

autoencoder and protecting the fundamental features of DR pictures. Preprocessing steps were 

utilized to increase signal-to-noise ratio, our proposed model sets another best-in-class result with 

a peak signal-to noise ratio (PSNR) value of 62. The high PSNR achieved by our proposed method 

indicates that it is more effective in preserving the image details while effectively suppressing noise. 

The fundamental goal of this research is to improve the image by reducing noise, improving 

contrast, and preserving important structures such as blood vessels and the optical disc. Our 

method achieves a PSNR of 62.12, surpassing conventional CNN-based, RNN-based, DnCNN-

based, and other well-known denoisers. 

Keywords: CAD, Diabetic Retinopathy, CNN, DnCNN, Pre-processing, Deep Learning, Artificial 

intelligence, CLAHE, Denoiser, PSNR. 

 

I. Introduction 

Diabetic Retinopathy (DR) is classified as a retinal disease related to the eye that affects the retina and can lead to 

vision loss or, in severe cases, blindness. The primary cause of DR is elevated blood HbA1c levels over a number of 

years, which damages the retinal vessels. Microaneurysms and exudates may occur from fluid leakage or bleeding 

caused by vascular damage. There are various stages that DR can go through. Every stage denotes a distinct degree 

of severity and calls for a certain method of treatment. Manual inspection and assessment of DR severity is time-

consuming and error-prone. Expertise in ophthalmology is required for accurate assessment of the impact of DR [1]. 

Due to the challenging clinical evaluation procedure and the lack of appropriate, useful options, early identifying 

evidence of DR is a challenging task [2]. The human eye's insight is seen in Figure 1. New blood vessels above the 

main area (vitreous) are the initial reaction to DR. These vessels need to be clean in order for light to pass through 

the cornea, pupil, and lens and reach the retina, which is the most sensitive component of the eyes. This is the main 

element that affects DR. The retina plays a crucial role in vision by converting light into electrical signals. These 
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signals are transmitted via the optic nerve to the brain, where they are processed to enable us to perceive and interpret 

visual information. 

 
Figure 1: Human Eye Anatomy and DR Impact [28] 

Ophthalmologists diagnose and assess the severity of diabetic retinopathy by examining fundus images, in which 

retinal damage can be seen at high resolution. The scientific community has responded to this by developing 

computer-aided diagnostic methods that will reduce the time, cost, and effort required of human medical 

practitioners to diagnose DR [4].Deep learning is a key component of the various methods used to detect DR in its 

early phases [1][28]. Our goal was to create a deep learning algorithm that uses a refined CAD model to accurately 

forecast DR photos. The DRIVE, STARE, and MESSIDOR datasets are made publicly available for the model's 

training, validation, and testing. Wiener Filter, CLAHE, and the suggested Denoiser technique are used to pre-

processing the DR pictures. Despite advancements in deep learning-based denoisers, traditional CNN and RNN 

models struggle with structural loss and over-smoothing of retinal images. Existing methods such as DnCNN fail to 

generalize across datasets with varying noise distributions. Our work introduces Retinal_Denoiser, an adaptive 

denoising model optimized for retinal image characteristics, achieving state-of-the-art noise suppression while 

preserving vessel integrity. 

II. Preprocessing of Retinal Images 

One of the most crucial steps in guaranteeing the quality of processed images and accurate and trustworthy results is 

preprocessing retinal images for the classification of diabetic retinopathy. Numerous preprocessing methods have 

been created and are used to problems such low contrast, uneven contrast, or generated noise in DR images [6]. In 

order to eliminate noise and increase the accuracy of the following processing steps, the preprocessing stage is used 

for normalizing the images, adjusting the non-uniform brightness, and enhancing contrast [2]. Some of the popular 

preprocessing techniques used in retinal image analysis for diabetic retinopathy are covered in the following sections. 

1. Image Enhancement: Retinal pictures are typically captured with low resolution and inconsistent contrast, 

making it difficult to spot small lesions and other pathological abnormalities. Image enhancement aims to 

increase the visibility of these details by changing the image's contrast and brightness. CLAHE is a common 

image enhancing technology. CLAHE improves an image's contrast by equalizing the histograms of localized 

regions while limiting noise amplification. This approach is especially useful for increasing the visibility of blood 

vessels and lesions in retinal pictures. 

2. Noise Reduction: Various forms of noise, such as Gaussian noise, salt-and-pepper noise, and speckle noise, 

can deteriorate retinal images. This can make it more challenging to detect the signs of diabetic retinopathy. The 

goal of noise reduction techniques is to eliminate or lessen the effect of noise while maintaining the image's key 

elements. Typical noise reduction techniques include Gaussian, non-local means, and median filters. By 

substituting a weighted average of the neighboring pixels for the value of each pixel, these methods smooth the 

image and reduce the effects of noise.  
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3. Blood Vessel Segmentation: Diabetic retinopathy lesions may occasionally be obscured by blood vessels, 

which are a noticeable feature in retinal pictures. Segmenting blood vessels facilitates improved retinal image 

processing and viewing. Several techniques, including as matched filtering, morphological processing, and 

supervised learning algorithms, have been developed for the segmentation of blood arteries. By separating the 

blood vessels from the surrounding image, these methods aim to provide a more thorough analysis of the retinal 

traits associated with diabetic retinopathy.  

4. Optic Disc Detection: In retinal imaging, the optic disc is a bright, round structure that may be confused with 

other diseased characteristics or bright lesions. The possibility of false positives in the classification of diabetic 

retinopathy can be decreased by identifying the position of the optic disc and ruling it out of additional 

examination. Machine learning techniques, morphological processing, and intensity-based algorithms are some 

of the methods used for optic disc detection. To locate the optic disc and separate it from the rest of the image, 

these techniques usually include thresholding, edge detection, and shape analysis. 

5. Image Registration: Image registration can be a crucial preprocessing step in longitudinal investigations or 

situations where several retinal pictures of the same patient are available. Aligning two or more photos so that 

their associated features are spatially aligned is known as image registration. This procedure makes it possible to 

compare and examine how retinal characteristics have changed over time, which might be useful in tracking the 

development of diabetic retinopathy. Elastic registration, feature-based methods, and intensity-based methods 

are common image registration techniques. 

III. Methods of Image Preprocessing 

When using digital images to diagnose and analyze retinal problems, preprocessing is an essential step. Pre-

processing is primarily used to improve the quality of the images by eliminating noise and artifacts and highlighting 

crucial components such as the optic disc, retinal layers, and blood vessels. This is accomplished using a range of 

methods and techniques, such as contrast-limited adaptive histogram equality (CLAHE), denoisers, and filters [7]. 

We go into great detail about these techniques below: 

1 Filtering Methods 

Retinal pictures can have certain aspects emphasized or suppressed by using filters. Numerous filters are available 

to improve the quality of images; a few of these are covered below: 

1.1 Gaussian filter  

This filter improves the display of the underlying structures by smoothing the image by lowering high-frequency 

noise. It uses a Gaussian kernel with a bell-shaped curve to convolve the image.is filter smooths the image by reducing 

high-frequency noise, thus allowing better visualization of the underlying structures. It works by convolving the 

image with a Gaussian kernel, which has a bell-shaped curve. 

1.2 Median filter 

This non-linear filtering technique substitutes the neighborhood median for each pixel value. Because it effectively 

eliminates salt-and-pepper noise while preserving edges, the median filter is suitable for retinal pictures [8]. 

1.3 Morphological filters 

The foundation of these filters is mathematical morphology, which uses set theory to manipulate visual structures 

[9]. Common morphological processes like erosion and dilatation can be exploited to highlight or hide particular 

retinal imaging features, such blood vessels and lesions. 
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a)  b)  c)  

Figure 2: Noise removal on retinal image DRIVE dataset a) input image b) Gaussian 

c) Median filter 

2 Denoisers Methods 

The goal of denoising techniques is to eliminate noise from retinal pictures without compromising the important 

structures. Among the well-known denoisers are [10–15]: 

2.1 Anisotropic diffusion 

This method maintains the edges of an image while smoothing it down. The local picture gradient directs the diffusion 

process, enabling selective smoothing according to the characteristics of the image. 

2.2 Non-local means denoising 

By averaging the same patches found in the image, this technique denoises photos. The intensity levels of the patches 

determine how similar they are. This technique can successfully eliminate noise while maintaining the structural 

elements of the image. 

2.3 Wavelet-based denoising 

An image is broken down into various frequency bands using the wavelet transform. By selectively thresholding the 

wavelet coefficients, noise can be removed while preserving the essential details. 

3 CLAHE 

A method for improving quality of images that boosts local contrast is called CLAHE. It's particularly useful when 

dealing with retinal images which have uneven illumination. Because CLAHE operates on small, non-overlapping 

zones, it differs from global histogram equalization. To prevent over-amplification, a limit is set on the contrast 

enhancement and the histograms of each tile are equalized separately. A seamless output is then obtained by 

combining the adjusted tiles with bilinear interpolation [16–20]. 

   
a)  b)  c)  

   
d)  e)  f)  

Figure 3: CLAHE   a) original image b) After Equalization c) HE d) AHE e) Contrast 

stretching f) Deblurring 
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Table I: Comparison of various preprocessing techniques [17-22] 

Technique Working Advantages Disadvantages 

Color Space 

Conversion and 

Normalization 

Convert the color space of 

the image (e.g., from RGB 

to grayscale, LAB, or 

YCbCr) and normalize the 

intensity values. 

Simplifies the image 

for further processing 

and may emphasize 

essential structures. 

Some color information 

may be lost during 

conversion. 

Shade Correction Estimate and remove 

uneven illumination by 

modeling the shading 

pattern (e.g., using 

polynomial fitting or low-

pass filtering). 

Improves the visibility 

of retinal structures by 

reducing intensity 

variations. 

May not work well for 

images with complex 

shading patterns or 

high noise levels. 

Adaptive Contrast 

Enhancement (e.g., 

CLAHE) 

Enhance local contrast by 

dividing the image into tiles 

and applying histogram 

equalization to each tile 

with a contrast limit. 

Enhances the visibility 

of structures in images 

with uneven 

illumination. 

May over-enhance 

noise in some regions. 

Background Exclusion Identify and remove the 

background, focusing on the 

region of interest (e.g., the 

retina). 

Reduces 

computational 

complexity and 

improves the focus on 

relevant structures. 

May inadvertently 

remove important 

structures if not 

performed carefully. 

Filtering (e.g., 

Gaussian, Median) 

Apply linear or non-linear 

filters to the image to 

suppress noise or enhance 

specific features. 

Can effectively remove 

noise or enhance 

structures depending 

on the filter used. 

May blur important 

structures or introduce 

artifacts if not chosen 

appropriately. 

Morphological 

Processing (e.g., 

Erosion, Dilation) 

Apply mathematical 

morphology operations to 

the image, manipulating 

structures using set theory. 

Can effectively 

enhance or suppress 

specific structures in 

the image. 

May cause loss of 

structural details if not 

applied judiciously. 

Mask Generation Generate a binary mask 

highlighting the region of 

interest (e.g., blood vessels 

or optic disc). 

Facilitates the analysis 

of specific structures 

by isolating them from 

the background. 

May introduce errors if 

the mask generation is 

not accurate. 

 

Table I presents a comparison of various retinal image preprocessing techniques based on their working principles, 

advantages, and disadvantages. Each technique serves a specific purpose and is suitable for different aspects of retinal 

image analysis.  

IV Proposed Method for Preprocessing 

This section describes how to preprocess retinal images using the mostly used publicly available DRIVE, STARE and 

MESSIDOR datasets. The proposed method consists of three steps: (1) applying a Wiener filter; (2) using a modified 

CLAHE, and (3) denoising images using proposed Retinal_Denoiser. These steps are designed to improve the image 

by reducing noise, improving contrast and preserving important structures such as blood vessels and the optical disc. 
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1 Wiener Filter 

The initial preprocessing step is to apply the Wiener filter to the retinal pictures. This linear filter is intended to 

reduce the MSE percentage between the estimated and needed outputs. It is an adaptive filter that reduces noise 

while preserving main features of the retinal image. In this study, the Wiener filter was applied to each color channel 

of the retinal images separately. This approach ensures that the noise reduction is performed independently for each 

color component, thus preserving the color information in the images. The filter parameters, such as the size of the 

neighborhood window and the noise variance, were selected based on the specific characteristics of the DRIVE, 

STARE and MESSIDOR datasets. 

Algorithm 1: Wiener Filtering 

Input: Image I, Window size W, Noise variance N 

Output: Filtered Image F 

    Function WienerFilter(I, W, N): 

    Convert image I to the frequency domain, obtaining I_fft 

    Compute the power spectrum P_I of I_fft 

    Create a Gaussian kernel K with window size W 

    Compute the power spectrum P_K of the Gaussian kernel K 

    Compute the signal-to-noise ratio SNR = P_I / N 

    Compute the Wiener filter H = (SNR / (SNR + 1)) * P_K 

    Apply the Wiener filter H to I_fft, obtaining F_fft 

    Convert F_fft back to the spatial domain, obtaining F 

    Return F 

 

2 Modified CLAHE 

The modified CLAHE was applied to the retinal images after the Wiener filter to improve the local contrast. CLAHE 

offers an advantage over global histogram equalization since it works on non-overlapping, small regions called 

tiles. This local approach allows better adaptation to changing illumination conditions within the images. In this 

study, a modified CLAHE method was applied to luminance channels of images that were converted first from RGB 

color space into YCbCr. The contrast enhancement was then performed without regard to the color information. The 

modified CLAHE algorithm was fine-tuned for optimal results on the DRIVE, STARE and MESSIDOR datasets. 

Algorithm 2: M-CLAHE 

Input: Image I, Tile size T, Clip limit C, Number of bins B 

Output: Enhanced Image E 

    Function CLAHE(I, T, C, B): 

    Convert image I to YCbCr color space, obtaining Y, Cb, and Cr channels 

    Divide the Y channel into non-overlapping tiles of size T x T 

    For each tile: 
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    Compute the histogram H of the Y channel using B bins 

    Clip the histogram H at the clip limit C 

    Redistribute the clipped values uniformly across all bins 

    Compute the cumulative distribution function (CDF) of the clipped histogram 

    Map the original pixel values in the tile to the equalized values using the CDF 

    Combine the equalized tiles using bilinear interpolation, obtaining the enhanced Y     

    channel E_Y 

    Combine E_Y, Cb, and Cr channels to form the enhanced image E in YCbCr color    

    Space 

    Convert the image E from YCbCr to the original color space 

    Return E 

 

3 Modified Deep Neural Network-based Denoiser (DnCNN) 

The Third stage of preprocessing involved denoising retinal images with a modified DnCNN. This deep-learning-

based denoising method is based upon a convolutional neural network (CNN), which was designed to learn how to 

map between noisy and clear images. In this study, DnCNN has been modified and fine-tuned in order to address the 

noise properties of retinal images from the DRIVE, STARE and MESSIDOR datasets. The network architecture was 

composed of convolutional layers, batch normalization layers, a ReLU activation layer, and a final convolutional with 

a linear function. The modified DnCNN model was trained with pairs of noisy retinal images and clean retinal 

image. The clean images were generated by applying a high-quality denoising algorithm on the original images. 

Meanwhile, the noisy images were produced by adding different levels synthetic noise to clean images. 

The modified DnCNN, once trained, was then used to denoise retinal images from the DRIVE dataset and STARE 

dataset. The network was applied separately to each color channel to ensure denoising occurred independently of 

color information. Combining the denoised channels resulted in the final output images. 

 

Figure 4: DnCNN Denoiser 

Algorithm 3: M-DnCNN Denoising Model 

Input: Noisy Image I, Trained DnCNN model M 

Output: Denoised Image D 



139  

 

J INFORM SYSTEMS ENG, 10(14s) 

    Function DnCNN(I, M): 

    Initialize input_tensor with the noisy image I 

    For each layer L in the DnCNN model M: 

        If L is a convolutional layer: 

            Apply convolution to input_tensor using the layer's filters and biases 

        ElseIf L is a batch normalization layer: 

            Apply batch normalization to input_tensor using the layer's parameters 

        ElseIf L is a ReLU activation layer: 

            Apply ReLU activation to input_tensor 

        ElseIf L is the final layer: 

            Apply convolution to input_tensor using the layer's filters and biases 

            Apply linear activation to input_tensor 

   EndFor 

    Compute the residual R by subtracting input_tensor from the noisy image I 

    Add the residual R to the noisy image I, obtaining the denoised image D 

    Return D 

 

V Evaluation and Validation 

To assess the efficacy of the proposed method, preprocessed retinal pictures were compared to originals in terms of 

visual quality and quantitative metrics such as peak signal-to-noise ratio (PSNR). The performance of different 

retinal vessel segmentation algorithms and optical disc detection algorithms were also assessed by comparing the 

preprocessed and original images. This was done to assess the effect of the preprocessing. 

Algorithm 4: Combined Algorithm for PSNR computation 

Input: Original Image I Output: Preprocessed Image D, PSNR value 

 

Let G be the green channel of I 

1. Adaptive CLAHE:  

 

a. Define tile size M * M  

b. Divide G into tiles T(i, j) for i, j ∈ {1, 2, ..., M}  

c. Calculate Histogram H(i, j) for each tile T(i, j)  

d. Calculate Clip Limit CL(i, j) for each tile T(i, j)  

e. Redistribute pixel values in H(i, j) based on CL(i, j) f. Perform bilinear interpolation on 

processed tiles to obtain G' 

2. DNCNN denoising:  

 

a. Define DnCNN architecture with M layers  
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b. Input G' to the DnCNN model  

c. Perform convolution, batch normalization, ReLU activation, and zero-padding on each   

    layer  

d. Train the DnCNN model to minimize the loss function L  

e. Calculate the denoised output D 

3. Wiener Filter: a. Apply Wiener filter on D to obtain W 

4. PSNR computation: a. Calculate Mean Squared Error (MSE) between I and W b. 

Calculate PSNR: PSNR = 10 * log10((max(I)^2) / MSE) 

Output: Preprocessed Image W, PSNR value 

 

VI Addressing Limitations in Noise Reduction Techniques 

Existing Gaps: 

1. Many existing methods like CNN-based, RNN-based, or traditional denoisers fail to achieve an optimal 

balance between noise suppression and detail preservation, particularly for sensitive retinal structures such 

as blood vessels and the optic disc.  

2. Traditional techniques like Gaussian or median filtering often smooth important image features, leading to 

the loss of critical diagnostic details. 

3. Methods like CLAHE or global histogram equalization often over-amplify noise in regions with uneven 

illumination, impacting the effectiveness of subsequent analysis. 

4. Some approaches fail to adapt dynamically to variations in retinal image quality across datasets like DRIVE, 

STARE, and MESSIDOR. 

5. Methods often fail to generalize across datasets with varying image qualities and noise levels, resulting in 

inconsistent performance. 

VII Proposed Retinal Denoiser 

In this work the proposed modified DnCNN had been utilized to propose a new denoiser specifically for retinal images 

named as Retinal_denoiser.  

Architecture of Retinal Denoiser 

The proposed Retinal_denoiser architecture is designed specifically for denoising retinal images, considering the 

unique characteristics of these images. In order to attain exceptional denoising performance while preserving crucial 

features, the design incorporates components from several cutting-edge deep learning models, including 

convolutional neural networks (CNNs) and U-Net-like structures. Below, we outline the key components and 

structure of the Retinal_denoiser architecture: 

1. Input layer: The input layer accepts retinal images with a specified size, such as 64x64 pixels, with a single 

channel (grayscale). 

2. Convolutional and batch normalization layers: The retinal_denoiser uses a combination of convolutional 

layers and a kernel of small size (e.g., 3x3) with varying numbers of filters (e.g., 64, 128, 256) to extract and 

learn features from the input image. These convolutional layers are interleaved with batch normalization 

layers, which help improve the model's training speed and stability by normalizing the input to each layer. 

3. Activation layers: After batch and convolutional normalization layers, the model employs ReLU activation 

layers. The model gains knowledge of complex, non-linear relationships between the input and output data 

with the use of these non-linear activation functions. 

4. Pooling layers: The Retinal_denoiser includes max-pooling layers with a stride of 2 to reduce the spatial 

dimensions of the feature maps, which helps to control the computational complexity of the model and 

improves its ability to capture high-level features. 
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5. Transposed convolution layers: The model uses transposed convolution layers (also known as deconvolution 

layers) to up sample the feature maps, increasing their spatial dimensions. This process helps to reconstruct 

the denoised image at the original input size. 

6. Depth concatenation layers: The Retinal_denoiser uses depth concatenation layers, which merge feature 

maps from previous levels with those from later layers, to aggregate data from various network layers. In 

order to preserve details in the denoised image, this method enables the model to collect both low-level and 

high-level characteristics. 

7. Final convolutional and regression layers: The architecture concludes with a final convolutional layer to 

produce a single-channel output feature map, followed by a regression layer that produces the final denoised 

image. 

The Retinal_denoiser architecture combines these elements in a meticulously crafted framework especially suited 

for denoising retinal images. The Retinal_denoiser is a very successful solution for retinal image denoising tasks 

because it combines the advantages of multiple deep learning approaches into a single, cohesive architecture, 

resulting in superior denoising performance while maintaining the important details of the input images. 

 

Figure 5: Architecture of Proposed Retinal Denoiser 
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Our Retinal_denoiser model is a superior denoising solution for retinal images compared to existing methods, such 

as CNN-based, RNN-based, DnCNN-based, and other popular denoisers. The following table shows the comparison 

of various models and their denoising outcomes. Our model performs excellent in terms of performance, by giving 

PSNR value of 62.12. 

Table II Comparison of Retinal Denoiser with other denoising models: 

Model Name 

Number of 

Layers Major Applications 

Denoising 

Outcome 

CNN-based 5-10 Image classification Moderate 

RNN-based 3-5 Sequence-to-sequence Moderate 

DnCNN-based 17-20 Image denoising Good 

U-Net-based 10-15 Medical image denoising Very Good 

Retinal_denoiser (our 

model) 10 Retinal image denoising Excellent 

 

VIII Results and Discussion of Preprocessing 

When it comes to denoising retinal images, the Retinal_denoiser has a number of advantages over other denoising 

models. Its specialized design for retinal images, adaptability to various image modalities and noise levels, 

applicability to retinal image analysis, robustness to diverse noise types, and computational efficiency make it a 

superior choice. 

Figure 6: Retinal Images from STARE, DRIVE and MESSIDOR dataset along with Enhanced Images 

 

Image 

Type 

 

Original Image 

 

Enhanced Image (using 

Retinal_denoiser) 

Normal 

 

  
Mild 

  

Moderate 

 

 

  



143  

 

J INFORM SYSTEMS ENG, 10(14s) 

 

 

 

 

 

 

 

 

 

 

 

 

Table III Comparison of Preprocessing Models for Retinal Image Enhancement 

Preprocessing 

Method Description Limitations 

Proposed 

Retinal_Denoiser 

Improvements 

Gaussian Filtering Uses a Gaussian kernel 

to smooth images and 

reduce noise 

Blurs fine details; not 

adaptive to varying noise 

levels 

Adaptive deep-learning-

based denoising retains 

fine details while 

reducing noise 

effectively 

Median Filtering Replaces pixel values 

with the median of 

surrounding pixels to 

remove salt-and-pepper 

noise 

Loss of structural details; 

ineffective against 

Gaussian noise 

Deep-learning approach 

learns feature-preserving 

noise reduction 

CLAHE (Contrast 

Limited Adaptive 

Histogram 

Equalization) 

Enhances local contrast 

by equalizing 

histograms in small 

regions 
 

May amplify noise in 

some regions, affecting 

overall quality 
 

Modified CLAHE 

improves contrast while 

minimizing noise over-

enhancement 

Wavelet-Based 

Denoising 
Uses multi-resolution 

wavelet decomposition 

to remove noise while 

preserving edges 
 

Computationally 

expensive; performance 

varies across datasets 
 

Deep learning-based 

Retinal_Denoiser 

dynamically adapts to 

noise properties 

Total Variation 

Minimization (TVM) 

Minimizes intensity 

variation to remove 

noise while preserving 

edges 

Prone to staircasing 

artifacts; parameter 

tuning required 

Retinal_Denoiser adapts 

automatically without 

manual tuning 

CNN-Based Denoisers Uses convolutional 

layers to learn noise 

patterns and remove 

them 

Struggles with complex 

noise distributions in 

medical images 

Retinal_Denoiser 

optimizes CNN 

architecture for retinal 

image characteristics 

Severe  

 

  
Hypertensive 
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Preprocessing 

Method Description Limitations 

Proposed 

Retinal_Denoiser 

Improvements 

DnCNN (Denoising 

Convolutional Neural 

Network) 

Deep CNN-based 

denoiser trained for 

generic image noise 

removal 

Not optimized for medical 

images; may remove 

essential retinal features 

Retinal_Denoiser fine-

tunes DnCNN for retinal 

structures, improving 

PSNR 

U-Net-Based Denoising Uses U-Net for pixel-

wise noise reduction 

with skip connections 

High computational cost; 

requires extensive labeled 

data 

Lightweight 

Retinal_Denoiser 

with optimized 

feature extraction 

and retention 

  

The comparative analysis in Table III highlights how the traditional preprocessing techniques such as Gaussian, 

Median, and Wavelet-based filtering struggle to balance noise reduction with the preservation of essential 

retinal structures, often leading to blurred images or loss of diagnostic details. While advanced deep-learning models 

like CNN, DnCNN, and U-Net improve denoising performance, they are not specifically optimized for retinal 

images, making them less effective in handling the unique noise characteristics of fundus images. The proposed 

Retinal_Denoiser overcomes these limitations by combining adaptive filtering, a modified CLAHE for 

contrast enhancement, and a fine-tuned deep-learning architecture tailored for retinal image denoising. 

This results in superior noise suppression while preserving critical anatomical features, achieving a 

PSNR of 62.12, which outperforms existing methods. The adaptability of Retinal_Denoiser across multiple datasets 

(DRIVE, STARE, MESSIDOR) ensures more consistent and clinically reliable image enhancement, making 

it a robust preprocessing solution for diabetic retinopathy diagnosis. 

Table IV Comparison of PSNR Values with other existing techniques  

Author/Year Technique PSNR 

[5] Fuzzy Gray Level Difference, Clip Limit 38.15 

[14] CNN 46.23 

[15] Multi Model 56.22 

[16] CLAHE + DNCNN + Wiener Filter 60.95 

[17] DnCNN 60.20 

[18] Lab Color Space, CLAHE, Discrete Wavelet Transform 52.86 

[19] Histogram Clipping, Radiance Indicator, Histogram Equalization 29.87 

[20] 

CIECAM Model Conversion, Histogram Equalization, Laplacian 

Transform 23.78 

[21] 

Singular Value Equalization, Shearlet Transformation, CLAHE, 

Adaptive Gamma Correction 55.79 

[22] DnCNN 37.11 

[23] Shearlet Transform, Fuzzy Contrast Enhancement 33.15 

[24] Fuzzy Dissimilarity, Adaptive Histogram 37.81 

[25] Median, Gaussian, Weighted Median, CLAHE 35.35 

[26] CLAHE, Gamma Correction, Morphological, Hessian 24.87 

[27] Morphological Operators, Histogram Equalization, Mean Filtering 37.6 

Proposed Adaptive CLAHE + Retinal_Denoiser 62.12 
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IX Conclusion 

The field of retinal image denoising has seen significant advancements over the years, with various methods and 

techniques being developed to achieve better outcomes. The comparison table shows that the proposed Adaptive 

CLAHE + Retinal_Denoiser model outperformed other methods currently in use, exhibiting greater performance 

with a PSNR of 62.12. These include methods like CNNs, fuzzy gray level difference, multi-model approaches, and 

algorithmic combinations like Wiener Filter, DNCNN, and CLAHE. The high PSNR achieved by our proposed method 

indicates that it is more effective in preserving the image details while effectively suppressing noise. The combination 

of the Retinal_Denoiser model, an improved DnCNN architecture designed especially for denoising retinal pictures, 

and a modified CLAHE algorithm for preprocessing is responsible for this improvement. Our method can more 

effectively handle the issues related to noise and artifacts in retinal images by adapting these techniques to their 

unique features. By combining modified CLAHE with the Retinal_Denoiser, our preprocessing pipeline enhances 

contrast without amplifying noise. This dynamic adaptation ensures robust performance across diverse datasets, 

providing more consistent results. This robustness ensures reliable preprocessing for diverse patient populations and 

imaging modalities. 

X Discussion & Future Work 

As a result, the Adaptive CLAHE + Retinal_Denoiser model has the potential to significantly impact the field of retinal 

image processing and analysis. This improved denoising performance can lead to more accurate diagnoses, more 

effective monitoring of disease progression, and better treatment planning for patients with retinal conditions. Its 

architecture ensures computational efficiency, enabling deployment in real-world settings, including resource-

constrained environments. By significantly enhancing retinal image quality, the proposed Retinal_Denoiser 

aids ophthalmologists in making faster, more accurate, and more reliable DR diagnoses. This improvement 

not only benefits individual patient outcomes but also contributes to scalable, AI-assisted DR screening 

programs, potentially reducing the global burden of diabetic blindness. Future work includes real-time 

implementation and integration with AI-based diagnostic systems. 
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