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The operational dependability of centrifugal pumps holds paramount significance within 

industrial applications, thereby necessitating the implementation of sophisticated health 

monitoring systems to proactively identify potential failures. This investigation introduces an 

innovative Health Monitoring System (HMS) meticulously engineered for centrifugal pumps, 

utilizing Machine Learning (ML) and Deep Learning (DL) algorithms to augment predictive 

maintenance capabilities. Our framework amalgamates real-time data acquisition, rigorous 

feature extraction, and advanced predictive analytics to effectively evaluate pump health. By 

employing a comprehensive dataset that encompasses operational parameters alongside 

historical failure records, the research includes executing a variety of ML algorithms, which 

include Logistic Classifier, Decision Tree Classifier, XGB Classifier, Naïve Bayes Classifier, 

Random Forest, Support Vector Classifier, and Neural Network, for the classification of 

centrifugal pump health status. Moreover, the research accentuates the application of 

sophisticated deep learning techniques, particularly Artificial Neural Networks (ANN), to 

discern intricate patterns and temporal relationships within the data. Experimental results 

demonstrate that our proposed HMS markedly enhances fault detection accuracy, accomplishing 

classification rates that surpass 99%. This system not only enables timely maintenance 

interventions but also mitigates operational downtime and maintenance expenditures. The 

research elucidates the potential of advanced AI-driven methodologies in the formulation of 

intelligent monitoring solutions, ultimately contributing to the sustainability and reliability of 

centrifugal pump operations in industrial contexts. 

Keywords: Health Monitoring System, Data Acquisition, Artificial Intelligence, Machine 

Learning, Deep Learning, Centrifugal Pump. 

 

1. INTRODUCTION 

Centrifugal pumps are integral components in various industrial applications, playing a critical role in fluid 

transportation across sectors such as manufacturing, power generation, chemical processing, and water treatment 

[1]. The reliability and efficiency of these pumps directly impact overall operational performance, making it 

imperative to ensure their continuous and fault-free functioning [2]. Despite their robust design, centrifugal pumps 

are susceptible to wear, degradation, and unexpected failures due to prolonged operation, fluctuating load conditions, 

and environmental factors [3]. Such failures can lead to unplanned downtime, increased maintenance costs, and 

potential safety hazards [4]. Therefore, the implementation of advanced health monitoring systems is essential to 

predict, detect, and mitigate failures proactively [5]. 

Traditional maintenance strategies, such as reactive maintenance (fixing components after failure) and scheduled 

preventive maintenance, often fail to optimize maintenance costs and operational efficiency [6]. These approaches 

either result in excessive downtime or unnecessary part replacements, leading to suboptimal resource utilization [7]. 
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In contrast, predictive maintenance, enabled by artificial intelligence (AI) and machine learning (ML), offers a data-

driven approach to identifying potential failures before they occur [8]. By leveraging real-time sensor data and 

historical operational records, predictive maintenance strategies facilitate informed decision-making, thereby 

enhancing system reliability and longevity [9]. 

This research introduces an innovative Health Monitoring System (HMS) designed specifically for centrifugal pumps, 

employing state-of-the-art ML and deep learning (DL) techniques to enhance fault detection and predictive 

maintenance capabilities [10]. The proposed HMS integrates real-time data acquisition, feature extraction, and 

predictive analytics to assess the health status of pumps with high accuracy. Various ML classifiers, including Logistic 

Classifier, Decision Tree Classifier, XGB Classifier, Naïve Bayes Classifier, Random Forest, Support Vector Classifier, 

and Neural Networks, are utilized for health classification, ensuring a comprehensive evaluation of the pump's 

operational status. Furthermore, deep learning methodologies, particularly Artificial Neural Networks (ANN), are 

applied to identify complex patterns and temporal dependencies in the data, improving fault prediction capabilities 

[11]. 

The experimental outcomes of this study highlight the effectiveness of the proposed system, achieving classification 

accuracies exceeding 99%. By implementing this AI-driven approach, industries can significantly reduce downtime, 

minimize maintenance costs, and improve overall pump performance [12]. The findings of this research underscore 

the transformative potential of intelligent health monitoring solutions in industrial settings, paving the way for more 

sustainable and resilient pump operations. This paper aims to explore the development, implementation, and impact 

of the proposed HMS, demonstrating its efficacy in real-world industrial applications. 

2. LITERATURE REVIEW 

2.1 Current Fault Detection Methods 

Within the specialized field of industrial machinery maintenance, it has become evident that centrifugal pumps have 

historically depended on traditional monitoring methodologies that frequently fail to meet the stringent reliability 

standards demanded by contemporary operational environments [13]. Initial fault detection strategies 

predominantly concentrated on the analysis of vibrations and the monitoring of acoustic emissions, providing only a 

limited scope of understanding regarding the inception of potential faults [14]. These conventional methodologies 

typically utilized threshold-based detection systems, which had the significant drawback of being capable of 

identifying faults only after considerable damage had already transpired. Moreover, the traditional methodologies 

grounded in time-domain analysis, although they form the foundational basis of fault detection, have consistently 

demonstrated their inadequacy in recognizing subtle and nuanced alterations in pump performance that could signify 

the emergence of significant operational issues [15]. 

In response to these shortcomings, frequency domain analysis techniques, such as the Fast Fourier Transform (FFT), 

were subsequently developed and implemented in an effort to enhance the overall capabilities of fault detection, yet 

these methodologies continued to grapple with the intricacies associated with complex and non-linear fault patterns 

[16]. The limitations inherent in these conventional approaches became particularly pronounced in situations where 

multiple faults occurred simultaneously or when confronted with varying operational conditions that could affect 

performance. Furthermore, statistical process control (SPC) methodologies were also adopted in an attempt to 

improve monitoring processes; however, their overall effectiveness was hampered by the necessity for extensive 

historical data and their lack of adaptability to dynamic changes in operating conditions [11], [17]. Consequently, 

these traditional methodologies often culminated in instances of false alarms or the failure to detect actual faults, 

resulting in unnecessary maintenance interventions or, in more severe cases, catastrophic operational failures [18]. 

2.2 Machine Learning Applications 

The incorporation of machine learning algorithms into the realm of fault detection has fundamentally transformed 

the landscape of monitoring solutions for centrifugal pumps, thereby providing more sophisticated and precise 

methodologies for identifying potential issues [19]. Support Vector Machines (SVM) have exhibited remarkable 

efficacy in the classification of diverse pump faults by adeptly managing the non-linear relationships present within 

sensor data [12],[20] . Extensive research has indicated that SVM-based systems can attain classification accuracies 

that exceed 95% when they are adequately trained utilizing comprehensive and extensive datasets that encompass a 

wide range of fault scenarios [21]. 
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Moreover, Multi-Layer Perceptrons (MLP) have also proven to be significantly effective, especially in contexts that 

necessitate the simultaneous processing of multiple sensor inputs [1]. The inherent capability of MLPs to learn 

intricate patterns and discern relationships among various operational parameters has rendered them indispensable 

within the frameworks of predictive maintenance strategies [21]. Recent scholarly investigations have delved into 

ensemble learning methodologies, which entail the amalgamation of multiple machine learning algorithms to 

augment the accuracy and reliability of fault detection processes [5]. Random Forest algorithms have exhibited 

promising performance in addressing the challenges posed by imbalanced datasets, a common occurrence in 

scenarios involving pump faults. Additionally, the application of feature selection techniques and dimensionality 

reduction methods has further advanced the efficacy and performance of these machine learning models, allowing 

for more accurate fault identification [15], [22], [23]. 

2.3 Deep Learning Advancements 

The advent of deep learning architectures has signified a substantial progression in the capabilities associated with 

pump fault prediction, marking a pivotal point in technological advancement [24]. Convolutional Neural Networks 

(CNN) have shown exceptional proficiency in the processing of raw sensor data, particularly excelling at identifying 

spatial features embedded within vibration signals [25], [26]. The introduction of Wide Deep Convolutional Neural 

Networks (WDCNN) has further elevated the capacity to extract significant features from noisy sensor data, resulting 

in the attainment of higher classification accuracies in comparison to traditional CNNs, thereby enhancing overall 

detection performance [24], [25], [27], [28]. 

Furthermore, hybrid architectures that integrate CNNs with Long Short-Term Memory (LSTM) networks have 

demonstrated remarkable effectiveness in capturing both spatial and temporal patterns inherent in pump operation 

data [10]. These hybrid models have exhibited superior performance in predicting the development of faults 

significantly ahead of their manifestation as operational failures, thereby allowing for proactive maintenance 

strategies [29]. The intrinsic ability of deep learning models to autonomously learn hierarchical features has 

effectively eradicated the necessity for manual feature engineering, rendering them more adaptable and responsive 

to a variety of operating conditions [10], [30], [31]. Recent advancements in transfer learning techniques have also 

facilitated the deployment of these models across different pump configurations with minimal requirements for 

retraining, thereby fostering greater versatility in fault detection applications [32]. 

3. PROPOSED METHODOLOGY 

3.1 Data Collection and Preprocessing 

The development of an effective health monitoring system for centrifugal pumps begins with comprehensive data 

collection and preprocessing strategies [9], [33]. The intelligent DAQ system through strategically placed sensors 

helps to monitor the critical operational parameters of CPM [34]. These sensors continuously collect data on vibration 

patterns, pressure fluctuations, temperature variations, and flow rates. The raw sensor data undergoes rigorous 

preprocessing to ensure quality and reliability. This includes noise reduction techniques, signal filtering, and 

normalization procedures to standardize the data across different operational conditions. The centrifugal pump 

machine used is 0.5 hp motor and the sensors used to record parameters are 3 accelerometers, 1 pressure sensor, 1 

flow sensor, current and voltage meter as observed in figure 1.  

 

Figure 1: CPM - DAQ Health Monitoring System.  
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The data extracted from CPM by DAQ system is recorded in .csv & .xslx format as shown in figure 2. The data contains:  

 12 independent variables 

 4 dependent variables 

 70,062 observations. 

 

Figure 2: The Features recorded from the CPM based DAQ system  

3.2 The Basic architecture of model 

The data recorded from the CPM machine is further analysed using Exploratory Data Analysis (EDA) and Data 

visualization technique. The insight of data observed from EDA and visualization helps to preprocess the data. The 

Feature Transformed and clean data is directed to ML and AI model. The best model is pickled based on the 

performance evaluation. The figure 3 shows the basic architecture of the model 

 

Figure 3: The Basic architecture of model. 

4. EDA- DATA VISUALIZATION, STANDARDIZE & HYPOTHESIS TESTING. 

After data cleaning and processing through EDA- Statistical Feature engineering, the final stage of EDA is Data 

Visualization, Train-Test split, Standardization & Hypothesis testing. Merging the EDA & data visualization 

accelerates the model understanding & deployment [35]. 

4.1 Data Visualization 

Data visualization is the analysis technique to discover patterns & visualize the statistics. The data visualization is 

further divided into three classes as below: 

4.1.1 Univariate Analysis 

Univariate analysis consists of one variable at a time. The CPM data has been investigated using univariate analysis 
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[36]. 

 Histogram Plot: The insight from histogram based univariate analysis is shown in figure 4: 

 

 

Figure 4: Histogram analysis of Casing, Impeller & Bearing 

The univariate analysis using histogram plot shows the distribution of casing, bearing & impeller data which starts from 

190 – 800 G. The histplot comes under Matplot library. The high variance is observed in range because dataset 

contains misalignment. 

 Violin Plot: The violin plot is product of seaborn library that comes under univariate analysis. It 

shows the data density for each value within feature. The figure 5 shows the violin plot of Surface roughness of 

different features [37]. 

 

 

Figure 5: Violin analysis of Casing, Impeller, Bearing & DC_RA 

The Casing, Impeller & Bearing feature shows the density of variable spread majorly on 200, moderate density on 500 
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G and less dense on 800 G. The DC_RA feature shows   the surface roughness variables spread within two specific 

values only. The Density                     of roughness variables near 2.5 is less as compare to density of variables near 4.5. 

4.1.2 Multivariate Analysis 

Multivariate analysis consists of more than two variables at a time. The CPM data has been investigated using 

Multivariate analysis. 

Heatmap: Heatmap is part of seaborn library which shows the co-relation between all the numerical datatype 

features. It shows positive co-relation as well as negative                  co-relation between multiclassification of features [38]. 

 

Figure 6: Heatmap of CPM dataset 

As observed in Figure 6 the lighter color shade shows strong positive co-relation and Darker negative color shade 

shows strong negative co-relation. Strong positive co-relation is observed between the feature casing and bearing 

vibration. Strong negative co-relation is observed between current and flow. 

5. MACHINE LEARNING ALGORITHMS 

5.1 Logistic Regression Model 

The evaluation of the logistic regression model provides valuable insights into its classification performance [39]. 

The confusion matrix and key performance metrics highlight both strengths and areas for improvement. The figure 

7 shows the confusion matrix of logistic regression. 

 

Figure 7: Logistic Regression Confusion matrix 

Overall Performance 

The model achieved an accuracy of 85.89% as shown in table 1, indicating strong predictive capability. The 

misclassification rate is 14.11%, suggesting that there is still room for refinement. The macro-F1 score (0.8591) and 

weighted-F1 score (0.8587) further support the model's overall robustness. 
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Table 1: Overall Performance table of Logistic Regression Model 

Class Name Precision 
1-

Precision 
Recall 1-Recall 

F1 

Score 

GHC 0.8291 0.1709 0.9693 0.0307 0.8937 

IF 0.9455 0.0545 0.8418 0.1582 0.8906 

IBF 0.8227 0.1773 0.8144 0.1856 0.8186 

MA 0.8379 0.1621 0.829 0.171 0.8334 

Accuracy 0.8589 

Misclassification 

Rate 
0.1411 

Macro- F1 0.8591 

Weighted-F1 0.8587 

Class-Specific Performance 

 GHC (Class 1): 

o Precision: 0.8291, Recall: 0.9693, F1 Score: 0.8937 

o The model effectively captures GHC instances with high recall (96.93%), ensuring minimal false 

negatives. However, its precision (82.91%) indicates some false positives. 

 IF (Class 2): 

o Precision: 0.9455, Recall: 0.8418, F1 Score: 0.8906 

o The model performs exceptionally well in precision (94.55%), meaning it makes very few false 

positive predictions. However, recall is slightly lower (84.18%), implying some missed instances. 

 IBF (Class 3): 

o Precision: 0.8227, Recall: 0.8144, F1 Score: 0.8186 

o IBF has the lowest recall (81.44%) among the classes, suggesting a higher rate of misclassification. 

 MA (Class 4): 

o Precision: 0.8379, Recall: 0.8290, F1 Score: 0.8334 

o The model maintains a balanced precision-recall trade-off for MA classification. 

Confusion Matrix Analysis 

 The IF class shows the highest accuracy (94.55%), with minimal misclassifications. 

 The GHC class also performs well but has 17.09% misclassification, primarily due to being confused with MA. 

 The IBF class has the highest misclassification rate (17.73%), with instances being misclassified as IF. 

 The MA class is frequently confused with IBF, leading to a misclassification rate of 16.21%. 

Key Observations and Recommendations 

 The high recall for GHC suggests strong sensitivity, but improving precision can reduce false positives. 

 IF classification is strong, but efforts to enhance recall will further improve overall performance. 

 IBF misclassifications should be reduced, possibly by refining feature selection or incorporating additional 

data points. 
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 Class imbalance or feature similarity may be causing misclassification in IBF and MA, warranting further 

investigation. 

5.2 Decision Tree Classifier model 

The Decision Tree [3], [4], [40] model exhibits strong classification performance as shown in figure 8, with a higher 

overall accuracy (95.59%) compared to the Logistic Regression model. The misclassification rate is 4.41%, indicating 

significantly fewer incorrect predictions. Below is an analysis of the key performance aspects. 

 

Figure 8: Decision Tree Classifier confusion matrix 

Overall Performance 

The model achieved an accuracy of 95.59%as shown in table 2, indicating strong predictive capability. The 

misclassification rate is 4.41%, suggesting that there is still room for refinement. The macro-F1 score (0.9564) and 

weighted-F1 score (0.9556) further support the model's overall robustness. 

Table 2: Overall Performance table of Decision Tree Classifier Model 

Class Name Precision 
1-

Precision 
Recall 1-Recall 

F1 

Score 

GHC 1.0000 0.0000 1.0000 0.0000 1.0000 

IF 0.9322 0.0678 0.9285 0.0715 0.9303 

IBF 0.9284 0.0716 0.8997 0.1003 0.9138 

MA 0.9635 0.0365 1.0000 0.0000 0.9814 

Accuracy 0.9559 

Misclassification 

Rate 
0.0441 

Macro- F1 0.9564 

Weighted-F1 0.9556 

Class-Specific Performance 

 GHC (Class 1) 

o 100% of GHC instances were correctly classified, showing perfect recall. 

o Precision: 100%, Recall: 100% – No false positives or false negatives. 

 IF (Class 2) 
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o Precision: 92.85%, Recall: 93.22% 

o A small misclassification rate (6.78%) with instances incorrectly predicted as IBF. 

 IBF (Class 3) 

o Precision: 89.97%, Recall: 92.84% 

o Misclassification primarily occurs with IF (7.16% misclassification rate). 

 MA (Class 4) 

o Precision: 100%, Recall: 96.35% 

o Almost all MA instances are correctly classified (3.65% misclassified into IBF). 

Confusion Matrix Analysis 

 The GHC class is perfectly classified, which is a significant improvement over the Logistic Regression model. 

 The major source of misclassification is between IBF and IF, similar to the Logistic Regression model. 

 The MA class is also well-classified, with very few misclassifications into IBF. 

 The misclassification rates are lower across all classes compared to Logistic Regression, demonstrating better 

separability in decision boundaries. 

Key Observations and Recommendations 

 Decision Trees perform exceptionally well for GHC and MA, achieving nearly perfect classification. 

 Misclassification between IF and IBF persists, though the error rates are lower than in Logistic Regression. 

 The model has low generalization error, suggesting it effectively captures patterns in the dataset. 

 A potential drawback is that Decision Trees tend to overfit, meaning their performance on unseen data 

should be validated using cross-validation or pruning techniques. 

The Decision Tree model outperforms the Logistic Regression model in accuracy and precision, particularly for GHC 

and MA classes. While misclassification between IF and IBF still occurs, it is significantly reduced. Future 

improvements may involve pruning the tree, using ensemble methods like Random Forest or Gradient Boosting, and 

further feature selection to improve differentiation between IF and IBF. 

5.3 Support Vector Classifier Model 

The Support Vector Classifier (SVC) [20], [41], [42], [43] model exhibits strong classification performance as shown 

in figure 9, with a higher overall accuracy (97.73%) compared to the Decision Tree Classifier model. The 

misclassification rate is 2.27%, indicating significantly fewer incorrect predictions. Below is an analysis of the key 

performance aspects. 

 

Figure 9: Support Vector Classifier Confusion Matrix 
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Overall Performance 

The SVC model achieved an accuracy of 97.73% as shown in table 3, indicating strong predictive capability. The 

misclassification rate is 2.27%, suggesting that there is still room for refinement. The macro-F1 score (0.9774) and 

weighted-F1 score (0.9773) further support the model's overall robustness. 

Table 3: Overall Performance table of Support Vector Classifier Model 

Class Name Precision 
1-

Precision 
Recall 1-Recall 

F1 

Score 

GHC 0.9867 0.0133 1.0000 0.0000 0.9933 

IF 0.9861 0.0139 0.9866 0.0134 0.9863 

IBF 0.9866 0.0134 0.9396 0.0604 0.9625 

MA 0.9496 0.0504 0.9860 0.0140 0.9674 

Accuracy 0.9773 

Misclassification 

Rate 
0.0227 

Macro- F1 0.9774 

Weighted-F1 0.9773 

Key Observations: 

1. Class GHC: 

o Correctly classified: 7,401 instances (98.67%). 

o Misclassified as IBF: 100 instances (1.33%). 

o No instances were classified as IF or MA. 

2. Class IF: 

o Correctly classified: 7,430 instances (98.61%). 

o Misclassified as IBF: 105 instances (1.39%). 

o No instances were classified as GHC or MA. 

3. Class IBF: 

o Correctly classified: 7,453 instances (98.66%). 

o Misclassified as IF: 101 instances (1.34%). 

o No instances were classified as GHC or MA. 

4. Class MA: 

o Correctly classified: 7,042 instances (94.96%). 

o Misclassified as IBF: 374 instances (5.04%). 

o No instances were classified as GHC or IF. 

Overall Performance: 

 Total correctly classified instances: 29,326 out of 30,006 (97.73%). 

 Total misclassified instances: 680 out of 30,006 (2.27%). 

 Lowest accuracy: Class MA (94.96%) due to misclassification as IBF. 



371  

 
J INFORM SYSTEMS ENG, 10(14s) 

 The Support Vector Classifier (SVC) performed exceptionally well with an overall accuracy of 97.73%. Most 

misclassifications occurred between IBF and IF, as well as IBF and MA, suggesting some overlap in feature space. 

Compared to previous models like Decision Tree and Random Forest, SVC exhibits better accuracy and lower 

misclassification rates, making it a strong model for classification. 

5.4 Naïve Bayes Classifier 

The Naïve Bayes Classifier (NBC) model [44], [45] shows strong classification performance as shown in figure 10, 

with a higher overall accuracy (98.82%) compared to LR, DT & SVC models. The misclassification rate is 1.18%, 

indicating significantly fewer incorrect predictions. Below is an analysis of the key performance aspects. 

 

Figure 10: Naïve Bayes Classifier Confusion Matrix 

Overall Performance 

The NBC model achieved an accuracy of 98.82% as shown in table 4, indicating strong predictive capability. The 

misclassification rate is 1.18%, suggesting that there is still room for refinement. The macro-F1 score (0.9883) and 

weighted-F1 score (0.9882) further support the model's overall robustness. 

Table 4: Overall Performance table of Naïve Bayes Model 

Class Name Precision 
1-

Precision 
Recall 1-Recall 

F1 

Score 

GHC 1.0000 0.0000 1.0000 0.0000 1.0000 

IF 0.9891 0.0109 0.9872 0.0128 0.9881 

IBF 0.9872 0.0128 0.9668 0.0332 0.9769 

MA 0.9765 0.0235 1.0000 0.0000 0.9881 

Accuracy 0.9882 

Misclassification 

Rate 
0.0118 

Macro- F1 0.9883 

Weighted-F1 0.9882 

 

Confusion Matrix Interpretation 

The confusion matrix shows how well the classifier predicted each class. Here’s the breakdown: 

 GHC Class: 

o Correctly classified: 7501 (100.00%) 

o Misclassified as IF, IBF, or MA: 0 (0.00%) 
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o Recall for GHC: 100.00% (No false negatives) 

 IF Class: 

o Correctly classified: 7453 (98.91%) 

o Misclassified as IBF: 82 (1.09%) 

o Recall for IF: 98.91% 

 IBF Class: 

o Correctly classified: 7457 (98.72%) 

o Misclassified as IF: 97 (1.28%) 

o Recall for IBF: 98.72% 

 MA Class: 

o Correctly classified: 7242 (97.65%) 

o Misclassified as IBF: 174 (2.35%) 

o Recall for MA: 97.65% 

Key Insights 

 The Naïve Bayes Classifier performs extremely well, achieving 98.82% accuracy. 

 The GHC class has perfect recall (100%), meaning all GHC instances were correctly classified. 

 The MA class has the highest misclassification rate (2.35%), mostly confused with IBF. 

 Misclassification is minimal, with only 1.18% of instances wrongly classified. 

This indicates that the Naïve Bayes Classifier performed very well, achieving an accuracy of 98.82% with very high 

F1 scores across all classes. The GHC and MA classes had perfect precision and recall, making it one of the best-

classified categories. 

5.5 XGBoost (XGB) Classifier Model 

The XGBoost (XGB) Classifier [46] confusion matrix indicates an extremely high performance with 99.98% accuracy, 

achieving nearly perfect classification across all categories as seen in figure 11. Here are the key details: 

 

Figure 11: XGBoost (XGB) Classifier Confusion Matrix 

Overall Performance 

The XGB model achieved an accuracy of 99.98% as shown in table 5, indicating strong ensemble technique model. 

The misclassification rate is 0.02%, suggesting that there is still room for refinement. The macro-F1 score (0.9883) 

and weighted-F1 score (0.9882) further support the model's overall robustness. 
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Table 5: Overall Performance table of XGB classifier Model 

Class Name Precision 
1-

Precision 
Recall 1-Recall 

F1 

Score 

GHC 0.9999 0.0001 1.0000 0.0000 0.9999 

IF 1.0000 0.0000 1.0000 0.0000 1.0000 

IBF 0.9995 0.0005 1.0000 0.0000 0.9997 

MA 1.0000 0.0000 0.9993 0.0007 0.9997 

Accuracy 0.9998 

Misclassification 

Rate 
0.0002 

Macro- F1 0.9998 

Weighted-F1 0.9998 

 

XGB Classifier achieved the highest accuracy (99.98%) among all models. Zero misclassification for IF and MA, 

indicating exceptional precision and recall. Negligible misclassification in IBF and GHC, making this model the most 

reliable among all classifiers tested.  

Insights from the XGBoost Classifier Performance 

The accuracy of 99.98% indicates that the model correctly classifies nearly all instances. The misclassification rate is 

just 0.02%, meaning the model makes almost no mistakes. Precision for all classes is ≥ 0.9995, which means that 

when the model predicts a class, it is almost always correct. Recall for all classes is ≥ 0.9993, meaning that the model 

captures almost all true instances of each class. A high recall and high precision across all classes confirm that the 

model does not suffer from bias toward any particular class. 

The Macro-F1 (0.9998) and Weighted-F1 (0.9998) scores confirm that the model maintains an excellent balance 

across all classes. No class is overrepresented or underrepresented, reducing the risk of misclassifications. Given the 

outstanding performance, this model is ideal for critical applications where misclassification has high costs (e.g., 

medical diagnosis, fraud detection, or industrial defect detection). 

6. RESULTS & CONCLUSION 

The table 6 shows the detailed comparison summarizing their performance. The model has been evaluated on basis 

of testing accuracy, misclassification rate, Precision, Recall, macro- F1 & weighted F1. 

Table 6: Comparison of ML models 

Model Accuracy 
Misclassification 

Rate 

Macro-

F1 

Weighted-

F1 

SVM 99.01% 0.99% 99.02% 99.01% 

Naïve 

Bayes 
98.82% 1.18% 98.83% 98.82% 

XGBoost 99.98% 0.02% 99.99% 99.98% 

Logistic 

Regression 
85.89% 14.11% 86.00% 85.89% 

Decision 

Tree 
95.59% 4.41% 95.60% 95.59% 
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Figure 12: Performance comparison of ML models 

As shown in figure 12 the XGBoost performs the best in terms of overall accuracy (99.98%) and precision/recall for 

each class. SVM and Naïve Bayes also perform well, achieving an accuracy above 98%. Decision Tree model shows a 

decent performance (95.59%) but is slightly lower than SVM and Naïve Bayes. Logistic Regression has the lowest 

performance, with an accuracy of 85.89% and higher misclassification rates. If accuracy and robustness are the 

primary concerns, XGBoost is the best model. If interpretability is needed, Decision Trees or Logistic Regression can 

be considered. SVM and Naïve Bayes are great alternatives when computational efficiency is required. 

Artificial Neural Network Model (ANN) 

Artificial neural network model is a deep ANN (Artificial Neural Network) designed for multi-class classification [17], 

[47]. Below is a breakdown of its architecture, training behaviours, and key characteristics. The figure 13 shows the 

architecture of neural network used for generating the deep learning model. The Input Layer of ANN accepts 11 

features, indicating the dataset has 11 distinct input variables. The hidden layer contains three dense layers with 256, 

128, and 64 neurons, respectively, all using the ReLU activation function. A dropout layer with a rate of 30% follows 

the third dense layer, mitigating overfitting by randomly deactivating neurons during training. The Output Layer is 

a dense layer with 4 neurons and a SoftMax activation function, designed for multi-class classification (4 classes). 

 

Figure 13: Architecture of ANN 

The neural network was run for 20 epochs as shown in figure 14. The model is heavy and takes higher GPU then ML 

models. The accuracy reached here is 100% but with higher GPU and computational time. Training and validation 

accuracy improve significantly as epochs increase. 
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Both curves approach near-perfect accuracy (close to 100%) by the 20th epoch, with minor deviations due to noise. 

The training accuracy increases steadily, reflecting the model's capacity to learn patterns in the training data. The 

validation accuracy closely follows the training accuracy, confirming good generalization. The noise doesn't lead to 

drastic drops or divergence, indicating model robustness. 

 

Figure 14: Training vs Validation Loss 

The training and validation graphs confirm good generalization, as both losses decrease and accuracies converge 

without overfitting. Despite noisy validation data, the model maintains stable performance, proving its resilience. 

The architecture is well-suited for classification tasks, with progressively reduced neuron counts to capture relevant 

features while minimizing complexity. Dropout ensures additional regularization. 

Future work may focus on integrating additional real-time sensor data, expanding the model's applicability to 

different pump types, and refining the architecture using advanced techniques such as convolutional and recurrent 

neural networks to capture temporal dependencies in operational data. This study underscores the transformative 

potential of AI-driven health monitoring systems in industrial applications, paving the way for more sustainable and 

resilient manufacturing operations. 

REFERENCES 

[1] M. Al Tobi, G. Bevan, P. Wallace, D. Harrison, and K. E. Okedu, “Faults diagnosis of a centrifugal pump using 

multilayer perceptron genetic algorithm back propagation and support vector machine with discrete wavelet 

transform‐based feature extraction,” Computational Intelligence, vol. 37, no. 1, pp. 21–46, Feb. 2021, doi: 

10.1111/coin.12390. 

[2] M. A. Nour and M. M. Hussain, “A Review of the Real-Time Monitoring of Fluid-Properties in Tubular 

Architectures for Industrial Applications,” Sensors, vol. 20, no. 14, p. 3907, Jul. 2020, doi: 10.3390/s20143907. 

[3] R. Liu, B. Yang, E. Zio, and X. Chen, “Artificial intelligence for fault diagnosis of rotating machinery: A review,” 

Mechanical Systems and Signal Processing, vol. 108, pp. 33–47, Aug. 2018, doi: 10.1016/j.ymssp.2018.02.016. 

[4] N. Dutta, P. Kaliannan, and P. Shanmugam, “Application of machine learning for inter turn fault detection in 

pumping system,” Sci Rep, vol. 12, no. 1, p. 12906, Jul. 2022, doi: 10.1038/s41598-022-16987-6. 

[5] G. S. Dave, A. P. Pandhare, and V. Budruk, “Designing Health Monitoring System for Centrifugal Pump Using 

Artificial Intelligence Approach: A Review,” vol. 9, no. 2. 

[6] V. T. T. Nguyen and T. M. N. Vo, “Centrifugal Pump Design: An Optimization,” EPSTEM, vol. 17, pp. 136–151, 

Sep. 2022, doi: 10.55549/epstem.1176074. 

[7] M. Stan, I. Pana, M. Minescu, A. Ichim, and C. Teodoriu, “Centrifugal Pump Monitoring and Determination of 

Pump Characteristic Curves Using Experimental and Analytical Solutions,” Processes, vol. 6, no. 2, p. 18, Feb. 

2018, doi: 10.3390/pr6020018. 

[8] G. S. Dave, A. P. Pandhare, A. Kamane, A. Konkar, A. Konde, and S. Mane, “Health Monitoring System for Fault 

Identification on Centrifugal Pump Using ML,” vol. 10, no. 1. 

[9] R. Aliyu, A. A. Mokhtar, and H. Hussin, “Prognostic Health Management of Pumps Using Artificial Intelligence 

in the Oil and Gas Sector: A Review,” Applied Sciences, vol. 12, no. 22, p. 11691, Nov. 2022, doi: 

10.3390/app122211691. 



376  

 
J INFORM SYSTEMS ENG, 10(14s) 

[10] M. J. Hasan, A. Rai, Z. Ahmad, and J.-M. Kim, “A Fault Diagnosis Framework for Centrifugal Pumps by 

Scalogram-Based Imaging and Deep Learning,” IEEE Access, vol. 9, pp. 58052–58066, 2021, doi: 

10.1109/ACCESS.2021.3072854. 

[11] A. Azadeh, M. Saberi, A. Kazem, V. Ebrahimipour, A. Nourmohammadzadeh, and Z. Saberi, “A flexible algorithm 

for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector 

machine with hyper-parameters optimization,” Applied Soft Computing, vol. 13, no. 3, pp. 1478–1485, Mar. 

2013, doi: 10.1016/j.asoc.2012.06.020. 

[12] K. C. Gryllias and I. A. Antoniadis, “A Support Vector Machine approach based on physical model training for 

rolling element bearing fault detection in industrial environments,” Engineering Applications of Artificial 

Intelligence, vol. 25, no. 2, pp. 326–344, Mar. 2012, doi: 10.1016/j.engappai.2011.09.010. 

[13] J. Wang, L. Zhang, Y. Zheng, and K. Wang, “Adaptive prognosis of centrifugal pump under variable operating 

conditions,” Mechanical Systems and Signal Processing, vol. 131, pp. 576–591, Sep. 2019, doi: 

10.1016/j.ymssp.2019.06.008. 

[14] A. H. A. Haddabi, “An experimental approach for controlling centrifugal pump’s cavitation”. 

[15] P. Samanipour, J. Poshtan, and H. Sadeghi, “Cavitation detection in centrifugal pumps using pressure time-

domain features,” Turk J Elec Eng & Comp Sci, vol. 25, pp. 4287–4298, 2017, doi: 10.3906/elk-1701-2. 

[16] S. Farokhzad, “Vibration Based Fault Detection of Centrifugal Pump by Fast Fourier Transform and Adaptive 

Neuro-Fuzzy Inference System,” JMET, pp. 82–87, Nov. 2013, doi: 10.18005/JMET0103001. 

[17] Q. Chao, J. Tao, X. Wei, Y. Wang, L. Meng, and C. Liu, “Cavitation intensity recognition for high-speed axial 

piston pumps using 1-D convolutional neural networks with multi-channel inputs of vibration signals,” 

Alexandria Engineering Journal, vol. 59, no. 6, pp. 4463–4473, Dec. 2020, doi: 10.1016/j.aej.2020.07.052. 

[18] J. Kléma, O. Flek, J. Kout, and L. Nováková, “Intelligent Diagnosis and Learning in Centrifugal Pumps,” in 

Emerging Solutions for Future Manufacturing Systems, vol. 159, L. M. Camarinha-Matos, Ed., in IFIP 

International Federation for Information Processing, vol. 159. , Boston: Kluwer Academic Publishers, 2005, pp. 

513–522. doi: 10.1007/0-387-22829-2_56. 

[19] M. S. Shewale, S. S. Mulik, S. P. Deshmukh, A. D. Patange, H. B. Zambare, and A. P. Sundare, “Novel Machine 

Health Monitoring System,” in Proceedings of the 2nd International Conference on Data Engineering and 

Communication Technology, vol. 828, A. J. Kulkarni, S. C. Satapathy, T. Kang, and A. H. Kashan, Eds., in 

Advances in Intelligent Systems and Computing, vol. 828. , Singapore: Springer Singapore, 2019, pp. 461–468. 

doi: 10.1007/978-981-13-1610-4_47. 

[20] V. Muralidharan, V. Sugumaran, and V. Indira, “Fault diagnosis of monoblock centrifugal pump using SVM,” 

Engineering Science and Technology, an International Journal, vol. 17, no. 3, pp. 152–157, Sep. 2014, doi: 

10.1016/j.jestch.2014.04.005. 

[21] M. Al Tobi, G. Bevan, P. Wallace, D. Harrison, and K. E. Okedu, “Using MLP‐GABP and SVM with wavelet packet 

transform‐based feature extraction for fault diagnosis of a centrifugal pump,” Energy Science & Engineering, 

vol. 10, no. 6, pp. 1826–1839, Jun. 2022, doi: 10.1002/ese3.933. 

[22] M. Irfan et al., “A Novel Feature Extraction and Fault Detection Technique for the Intelligent Fault Identification 

of Water Pump Bearings,” Sensors, vol. 21, no. 12, p. 4225, Jun. 2021, doi: 10.3390/s21124225. 

[23] A. Husna, K. Indriawati, and B. L. Widjiantoro, “Discriminant Feature Extraction of Motor Current Signal 

Analysis and Vibration For Centrifugal Pump Fault Detection,” in 2021 International Conference on 

Instrumentation, Control, and Automation (ICA), Bandung, Indonesia: IEEE, Aug. 2021, pp. 207–212. doi: 

10.1109/ICA52848.2021.9625679. 

[24] A. Kumar, C. P. Gandhi, Y. Zhou, R. Kumar, and J. Xiang, “Improved deep convolution neural network (CNN) 

for the identification of defects in the centrifugal pump using acoustic images,” Applied Acoustics, vol. 167, p. 

107399, Oct. 2020, doi: 10.1016/j.apacoust.2020.107399. 

[25] J. Chen, J. Jiang, X. Guo, and L. Tan, “An Efficient CNN with Tunable Input-Size for Bearing Fault Diagnosis:,” 

IJCIS, vol. 14, no. 1, p. 625, 2021, doi: 10.2991/ijcis.d.210113.001. 

[26] Department of Mechanical Engineering, V B S Purvanchal University Jaunpur (U.P.)-222001, India and S. K. 

Singh, “CNN-based Single-Fault Diagnosis of Self-Priming Centrifugal Pump,” IJEAT, vol. 9, no. 1, pp. 1839–

1848, Oct. 2019, doi: 10.35940/ijeat.A1473.109119. 

[27] Y. Yang, H. Zheng, Y. Li, M. Xu, and Y. Chen, “A fault diagnosis scheme for rotating machinery using hierarchical 

symbolic analysis and convolutional neural network,” ISA Transactions, vol. 91, pp. 235–252, Aug. 2019, doi: 

10.1016/j.isatra.2019.01.018. 



377  

 
J INFORM SYSTEMS ENG, 10(14s) 

[28] X. Liu et al., “Convolution Diagnosis Model of Centrifugal Pump Based on Fractal Dimension,” J. Phys.: Conf. 

Ser., vol. 2095, no. 1, p. 012061, Nov. 2021, doi: 10.1088/1742-6596/2095/1/012061. 

[29] V. Muralidharan and V. Sugumaran, “Rough set based rule learning and fuzzy classification of wavelet features 

for fault diagnosis of monoblock centrifugal pump,” Measurement, vol. 46, no. 9, pp. 3057–3063, Nov. 2013, 

doi: 10.1016/j.measurement.2013.06.002. 

[30] A. Nasiri, A. Taheri-Garavand, M. Omid, and G. M. Carlomagno, “Intelligent fault diagnosis of cooling radiator 

based on deep learning analysis of infrared thermal images,” Applied Thermal Engineering, vol. 163, p. 114410, 

Dec. 2019, doi: 10.1016/j.applthermaleng.2019.114410. 

[31] C. E. Hachem, G. Perrot, L. Painvin, and R. Couturier, “Automation of Quality Control in the Automotive 

Industry Using Deep Learning Algorithms,” in 2021 International Conference on Computer, Control and 

Robotics (ICCCR), Shanghai, China: IEEE, Jan. 2021, pp. 123–127. doi: 10.1109/ICCCR49711.2021.9349273. 

[32] A. Hajnayeb, “Cavitation Analysis in Centrifugal Pumps Based on Vibration Bispectrum and Transfer Learning,” 

Shock and Vibration, vol. 2021, no. 1, p. 6988949, Jan. 2021, doi: 10.1155/2021/6988949. 

[33] L. Swathy and L. Abraham, “Analysis of vibration and acoustic sensors for machine health monitoring and its 

wireless implementation for low cost space applications,” in 2014 First International Conference on 

Computational Systems and Communications (ICCSC), Trivandrum, India: IEEE, Dec. 2014, pp. 80–85. doi: 

10.1109/COMPSC.2014.7032625. 

[34] G. S. Dave, A. P. Pandhare, A. P. Kulkarni, D. V. Khankal, and M. Abdullah, “Experimental investigation of 

centrifugal pump machine and its faults through different type of DAQ system and selecting one based on 

statistical approach,” Cogent Engineering, vol. 11, no. 1, p. 2417683, Dec. 2024, doi: 

10.1080/23311916.2024.2417683. 

[35] R. A. Giro, G. Bernasconi, G. Giunta, and S. Cesari, “A data-driven pipeline pressure procedure for remote 

monitoring of centrifugal pumps,” Journal of Petroleum Science and Engineering, vol. 205, p. 108845, Oct. 

2021, doi: 10.1016/j.petrol.2021.108845. 

[36] D. A. Quintero, H. Claro, F. Regino, and J. A. Gómez, “Development of a data acquisition system using LabVIEW 

and Arduino microcontroller for a centrifugal pump test bench connected in series and parallel,” J. Phys.: Conf. 

Ser., vol. 1257, no. 1, p. 012002, Jun. 2019, doi: 10.1088/1742-6596/1257/1/012002. 

[37] “Experimental Comparative Investigations to Evaluate Cavitation Conditions within a Centrifugal Pump Based 

on Vibration and Acoustic Analyses Techniques,” Archives of Acoustics, Jul. 2023, doi: 

10.24425/aoa.2020.134070. 

[38] G. Qiu, S. Huang, and Y. Gu, “Experimental investigation and multi-conditions identification method of 

centrifugal pump using Fisher discriminant ratio and support vector machine,” Advances in Mechanical 

Engineering, vol. 11, no. 9, p. 1687814019878041, Sep. 2019, doi: 10.1177/1687814019878041. 

[39] J. Ma, C. Lu, W. Zhang, and Y. Tang, “1255. Health assessment and fault diagnosis for centrifugal pumps using 

Softmax regression,” . VOLUME, vol. 16, no. 3. 

[40] N. Dutta, P. Kaliannan, and P. Shanmugam, “Application of machine learning for inter turn fault detection in 

pumping system,” Sci Rep, vol. 12, no. 1, p. 12906, Jul. 2022, doi: 10.1038/s41598-022-16987-6. 

[41] V. Muralidharan and V. Sugumaran, “A Comparative study between Support Vector Machine (SVM) and 

Extreme Learning Machine (ELM) for Fault Detection in Pumps,” Indian Journal of Science and Technology, 

vol. 9, no. 48, Jan. 2017, doi: 10.17485/ijst/2016/v9i48/107915. 

[42] P. F. Orrù, A. Zoccheddu, L. Sassu, C. Mattia, R. Cozza, and S. Arena, “Machine Learning Approach Using MLP 

and SVM Algorithms for the Fault Prediction of a Centrifugal Pump in the Oil and Gas Industry,” Sustainability, 

vol. 12, no. 11, p. 4776, Jun. 2020, doi: 10.3390/su12114776. 

[43] A. K. Panda, J. S. Rapur, and R. Tiwari, “Prediction of flow blockages and impending cavitation in centrifugal 

pumps using Support Vector Machine (SVM) algorithms based on vibration measurements,” Measurement, vol. 

130, pp. 44–56, Dec. 2018, doi: 10.1016/j.measurement.2018.07.092. 

[44] A. Kapuria and D. G. Cole, “Integrating Survival Analysis with Bayesian Statistics to Forecast the Remaining 

Useful Life of a Centrifugal Pump Conditional to Multiple Fault Types,” Energies, vol. 16, no. 9, p. 3707, Apr. 

2023, doi: 10.3390/en16093707. 

[45] D. Wu et al., “Application of Bayesian regularization back propagation neural network in sensorless 

measurement of pump operational state,” Energy Reports, vol. 8, pp. 3041–3050, Nov. 2022, doi: 

10.1016/j.egyr.2022.02.072. 



378  

 
J INFORM SYSTEMS ENG, 10(14s) 

[46] L. Yang, H. Chen, Y. Ke, M. Li, L. Huang, and Y. Miao, “Multi-source and multi-fault condition monitoring based 

on parallel factor analysis and sequential probability ratio test,” EURASIP J. Adv. Signal Process., vol. 2021, no. 

1, p. 37, Dec. 2021, doi: 10.1186/s13634-021-00730-w. 

[47] S. M. Matloobi, M. Riahi, and H. Sadeghi, “Identification of Cavitation Phenomenon in Centrifugal Pump by 

Artificial Immune Network Method”. 

 


