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One of the common outcomes of coronary artery disease (CAD) is Sudden Cardiac Death 

(SCD). Sudden cardiac arrest can lead to death without immediate treatment. The risk factors 

should be examined to analyse the risk level of SCD earlier. Nevertheless, it is challenging to 

analyse such parameters in Electrocardiogram (ECG) signals. Hence, the risk factors are 

analyzed in this article to predict the risk level of SCD utilizing a Bilinear Interpolation-based 

Adaptive Neuro-Fuzzy Inference System (BI-ANFIS) in ECG signal. Primarily, the ECG signal is 

taken as input and pre-processed for noise removal and frequency modulation correction. 

Afterward, by utilizing the Pan-Tompkins-based Hidden Markov Model (PT-HMM), the signal 

intervals are segmented. Thereafter, for analysing the first risk factor, the features from 

segmented waves are extracted, selected, and validated; also, CAD is predicted utilizing Soft 

plus error function-based Multi-Layer Perceptron (Serf-MLP). Concurrently, the smoke and 

QTc risk factors are evaluated. Now, the fourth risk factor is analyzed by the extraction of ST 

wave, J-wave selection, and type identification. Lastly, the BI-ANFIS is utilized to predict the 

SCD level of the ECG wave features grounded on the analyzed factors. Hence, the proposed 

technique’s superiority over the conventional approaches is proved by the final outcomes. 

Keywords: Sudden Cardiac Death (SCD), Electrocardiogram (ECG), coronary artery disease 

(CAD), Bilinear Interpolation-based Adaptive Neuro-Fuzzy Inference System (BI-ANFIS), Pan-

Tompkins-based Hidden Markov Model (PT-HMM), SCD risk analysis. 

 

1. INTRODUCTION 

One of the severe outcomes of heart disease is SCD in which the survival rate of the patient is less than the other 

heart issues. However, the diagnosis of SCD risk level in a person at the early onset of symptoms remains very poor 

despite the advancement of medical technology (Pan et al., 2020). Therefore, the risk of SCD needs to be identified 

as early as possible. CAD is said to be the most general underlying condition that leads to SCD (Schröder et al., 

2022). CAD occurs owing to atherosclerosis, which causes a narrowing of the artery lumen, thus leading to reduced 

blood flow being supplied to the distal myocardium (Alizadehsani et al., 2020). This results in arrhythmia. Hence, a 

significant role has been played by CAD detection in analyzing the risk factors of SCD. Nevertheless, SCD is not 

limited to only CAD syndrome, it may also occur owing to an extensive variety of various electrical substrates  

(Haleem et al., 2021). Therefore, to analyze the risk of SCD, the continuous monitoring of heart signals is necessary. 

For this purpose, researchers presently utilize numerous time-series systems, namely Photoplethysmograph, 

Phonocardiogram, and ECG to detect heart pathologies (Khan et al., 2022). Yet, an electrocardiograph, which is a 

graphic record of electrocardiography, is the most common test for heart conditions (Ahsanuzzaman et al., 2020). 

The features in the heart’s electrical signal are changed by cardiovascular issues. Identifying the SCD occurrence 

in the ECG signal earlier is possible if significant changes are found concerning a reference signal (healthy) 

(Velázquez-González et al., 2021). However, for the detection of SCD, there is a need for highly correlated variables, 

dynamic modelling, and nonlinear associations betwixt variables in conventional statistical methods (Jentzer et al., 

2023). Hence, to enhance the SCD’s risk prediction, the approach for efficient research is exemplified by the 
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utilization of Machine Learning (ML) as well as Deep Learning (DL) mechanisms (Corianò & Tona, 2022). For the 

prediction of SCD, the DL mechanisms, namely Long Short Term Memory (LSTM) (Banerjee et al., 2020) and 

MLP-LSTM (Baral et al., 2021) are utilized. Yet, in ECG classification systems, the accuracy as well as speed of 

diagnosis of SCD risk are challenging; also, in the characterization of the true cause of SCD, these systems are 

challenged by the presence of noise, instability, and imbalance in heartbeats (Ha et al., 2022; Shoughi & 

Dowlatshahi, 2021). It is a great challenge to recognize those who benefit from an Implantable Cardioverter-

Defibrillator (ICD) because SCD can be prevented in those who wear an ICD (Martinez-Alanis et al., 2020). Most 

studies failed to generate a visualization risk score even though some models derived from DL algorithms can 

accurately predict SCD (Wu et al., 2021). Therefore, this research proposes a risk-level analysis of the SCD using BI-

ANFIS based on the high-risk factors.   

1.1 Problem statements 

Some of the shortcomings in the prevailing works for SCD’s early diagnosis are given further, 

• Even though SCD diagnosis models were developed, there was still no research for the prediction of the risk 

of occurrence of SCD grounded on the various risk factors.  

• The risk factor analysis for SCD grounded on CAD in ECG poses a major challenge. Moreover, important 

risk factor, such as J-wave syndrome is neglected. 

• The lack of proper feature selection and validation of the more extracted features increased the time and 

decreased the efficiency of the CAD prediction model.  

• The segmentation of the intervals centered on the onset of the s-point value from the PQRST wave is a 

challenging process. 

By considering these limitations, the proposed technique aims to develop a suitable SCD risk-level diagnosis 

model based on the risk factor analysis.  

The remaining article is formatted as; the related works are displayed in Section 2. The proposed mechanism is 

exemplified in Section 3. The experiential outcomes are elucidated in Section 4. The paper is wrapped up in Section 

5.  

2. RELATED LITERATURE WORKS 

(Parsi et al., 2021) examined an automated prediction of SCD grounded on the selected features of heart rate 

variability in an Implantable ICD. For the SCD prediction, the infinite latent feature selection and the minimal 

Redundancy-Maximal Relevance (mRMR) were utilized to select the optimal features. The results proved that the 

features selected with mRMR achieved superior sensitivity and accuracy levels for Support Vector Machine (SVM) 

and Random Forest (RF) models. Yet, the significant number of feature calculations became a challenge for ICD, 

because of less storage resources in it.  

(Gupta et al., 2023) proffered an ML technique to detect cardiac arrest earlier in newborn babies. The cardiac arrest 

was identified by the logistic regression and SVM grounded on the combined neonates’ physiological parameters. 

The efficiency of cardiac arrest detection was proved by the higher accuracy and precision rate of this scheme. 

However, the early diagnosis performance was able to deteriorate without considering the previous health data.  

(Shahid & Singh, 2020) presented a CAD diagnosis framework grounded on a hybrid approach. The hybrid 

approach was developed with Particle Swarm Optimization (PSO) and emotional neural networks. This hybrid 

model’s performance was enhanced with features extracted utilizing fisher, relief-F, along with mRMR-based 

techniques. The attained higher rates of performance on experimental evaluation showed the introduced scheme’s 

superiority. When more data was used, optimal features were not selected by the PSO.   

(Atal & Singh, 2020) propounded an ECG signal-based arrhythmia classification grounded on the optimization-

enabled Deep Convolutional Neural Network (DCNN). The features extracted by the Gabor filter were given to the 

DCNN in which the parameters were optimally tuned with the rider optimization approach as well as the multi-

objective bat approach for arrhythmia classification. This classification framework attained better performance on 

parameters like accuracy and sensitivity. However, owing to the intervention of noise, this model could not localize 

the fiducial points in the ECG waves. 
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(Abdalla et al., 2020) exemplified an arrhythmia classification framework in the ECG signal grounded on a DCNN. 

4 layers of convolution interchanged with 4 layers of max-pooling as well as 3 fully connected layers were the eleven 

layers for the heart abnormality classification utilized by the DCNN. The developed DCNN’s reliability was proved 

for the arrhythmia classification grounded on the accuracy and Receiver Operating Characteristics (ROC) levels. 

Nevertheless, without the noise removal in the input ECG signal, the DCNN was unable to predict inaccurate 

results.  

(Sridhar et al., 2021) examined non-linear features for detecting myocardial infarction in ECG signals. Here, the 

Pan-Tompkins (PT) approach detected the R peaks in the ECG signal. Non-linear features were extracted from the 

detected R peaks and then ranked, and further given to the KNN, SVM, DT, and Probabilistic Neural Network 

(PNN) to differentiate normal and myocardial infarction classes. This non-linear feature-based SVM model 

achieved superior performance on experimental analysis. Still, the non-linear method was computationally 

complex.  

(Murugappan et al., 2021) established a morphological features-based framework for predicting SCD utilizing ECG 

signals. The morphological features, namely the Hurst exponent, approximate entropy, largest Lyapunov exponent, 

and sample entropy were extracted from the R peak to the T-end in the ECG signal. The experimental analysis 

exposed a higher SCD prediction rate for the SVM trained with the extracted features. Yet, the characteristics of the 

extracted features were altered by the interference of circadian rhythms, which resulted in incorrect predictions.    

(Asgharzadeh-Bonab et al., 2020) recommended an ECG beat classification scheme grounded on the time-

frequency features. The features were extracted with the time-frequency spectral entropy; then, with the 2-

directional 2-dimensional principal component analysis, the feature dimensionality was reduced. Lastly, CNN 

classified the features into normal and arrhythmia classes. The efficiency of the CNN-based heartbeat classification 

model was proved by the comparative assessment of the accuracy level with the conventional works. However, this 

framework neglected to obtain high time resolution in the ECG signal, which could deteriorate the experimental 

outcomes. 

3. PROPOSED RISK FACTOR ANALYSIS FOR THE SCD RISK LEVEL PREDICTION 

The early diagnosis of SCD risk aids a physician in making appropriate decisions. However, the analysis of risk 

factors influencing SCD from the ECG signal is a complex process. Therefore, this research proposes the BI-ANFIS-

based risk level prediction based on risk factor analysis, which is given in Figure 1.  

 

Figure 1: Proposed architecture for SCD risk level prediction 
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3.1 Input data 

Here, the ECG signals of multiple patients who have normal heart conditions and heart failure are taken as input. 

The input signal is expressed as, 

 xEEEE ,...,, 21=                                                                  (1) 

Where, E exemplifies the x number of ECG signals of patients. 

3.2 Pre-processing 

The input signals ( )E  are pre-processed since the accurate analysis of rhythms is hindered by the presence of 

artifacts in the ECG signal. Here, to obtain a clear ECG wave, the artifacts, namely noise and modulated frequency 

are processed. 

3.2.1 Noise removal  

The noise is generated in the ECG signal ( )E  by the griping force and other muscular actions. This noise is 

removed utilizing the Short-Time Fourier Transform (STFT) technique. To reconstruct a noise-removed signal, the 

STFT utilizes a window function ( )( )f . For that, a symmetric half-cycle sine window is first estimated as, 

( ) ( ) 1,..,0,5.0sin −=







+= Fnf

F
f


                                                          (2) 

Here, f specifies the F number of window lengths and F symbolizes the total window length. The signal E is 

taken in the 
thz window block, ( )fz  and is described as, 

( ) ( ) 2.., FzfEz −=                                                             (3) 

Wherein,  illustrates the discrete-time Fourier transform and ( ).  exemplifies the STFT transformed signal. 

Afterward, to neglect the noise, the threshold of STFT is calculated as, 

( ) ( )( ) ,,2 zQz =                                                             (4) 

Here, ( ).Q symbolizes the thresholding function. The signal values below the threshold are set to 0. Thereafter, 

the Inverse STFT ( )1− is taken to retrieve the noise-removed signal as, 

( ) ( )( ) ,2

1 zfX −=                                                           (5) 

Where, ( )fX elucidates the noise-removed signal. 

3.2.2 Frequency correction 

The frequency correction is performed in the ECG signal ( )( )fX  after denoising. The frequency modulation in the 

ECG signal occurs owing to breathing, thus creating interference in the heart waves. For this, the notch filter is 

employed for correcting the frequencies in the ECG signal. The notch filter, which neglects the frequencies of the 

signal at a very low level, is a band-pass filter.  

3.3 Segmentation 

Segmentation is done utilizing the PT-HMM to analyze each interval in the ECG wave  . The HMM (Akhbari et 

al., 2016) is selected owing to the less segmentation error in ECG wave segmentation. However, the standard HMM 

lacks information about the states of the onset. Hence, to determine the wave information in ECG, the PT technique 

is utilized.  
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3.4 Analysis of Risk Factor 1 

The first risk factor, which is the CAD, is detected by performing feature extraction, selection, validation, and 

prediction with the segmented signals to identify the risk level of SCD. 

3.4.1 Feature extraction 

The features, namely Hurst exponent, R-R intervals’ root mean square, the number of adjacent R-R intervals, 

largest Lyapunov exponent, entropies, standard deviation, and mean are extracted from the segmented signal wave

S .  

3.4.2 Feature selection 

By using the mRMR technique, the less correlated features and relevance features that are more relevant to the 

CAD class are selected from the extracted features.  

3.4.3 Feature validation 

To ensure that the selected features can really enhance the CAD prediction model’s performance, the selected 

features are validated using the t-test. The large t-test score specifies that the features correspond to different 

groups.  

3.4.4 CAD detection 

With the validated features, the CAD in the patient’s ECG is detected using the Serf-MLP algorithm. Here, the MLP 

(Mirjalili et al., 2020) is selected as it could learn non-linear relationships between the features of different classes 

effectively. The ReLu activation in the hidden layers of MLP induced dying ReLu, which leads to the neurons being 

inactive in the MLP network. Hence, the Serf technique is utilized in the MLP to activate the neurons effectively. 

Input layer: The Serf-MLP’s input layer receives the validated features of the segmented ECG waves. These 

features are prepared for processing in the other layers. The validated features given as the input are represented 

as, 

 
yg  ,..,, 21=                                                             (6) 

Where, g implies the y number of validated features.  

Hidden layers: From the input layer, the prepared g  is given to hidden layers. Here, to differentiate the final 

output, the non-linearity between the features is learned. Each hidden layer in Serf-MLP generates individual 

output ( )  by using the hidden neuron as,  





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


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.

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Where, 
 illustrates the bias value of the hidden layer ( ) , the total number of hidden neurons is displayed as 

p , 


 signifies the weight value of 
th  hidden neuron of the 

th layer, and ( ). defines the serf activation 

function, which can be defined as, 

( ) ( )( )( )  exp1ln +=                                                        (8) 

Where, ( ). illustrates the error function, and expln,  signify the natural logarithm and exponential functions, 

correspondingly.  

Output layer: After that, to predict the output class ( )outO , the processed outputs ( )  from the hidden neurons 

are summed up and given to the output layer. The output of the Serf-MLP is expressed as,  
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Here, outout , illustrate the weight value and bias value of the output neuron. For the output outO , the loss 

function is calculated to predict whether the output reached the target outt  as, 

( )
=

−=
y

g

outout tO
y

loss
1

1
                                                      (10) 

Here, y represents the total number of inputs. The output class will be considered if the estimated error value

( )loss  is less than or equal to the threshold ( )Tr ; or else, the training continues by changing the weight values. By 

doing this in ECG, the presence of CAD can be detected, and the class of CAD is symbolized as ( )1C
, 

and the normal 

heart class is notated as ( )0C . 

3.5 Analysis of Risk factor 2 and 3 

Concurrently, the other risk factors of SCD, namely QTc interval and smoke factor analysis are analyzed in the 

segmented ECG signal.  

QTc interval analysis: A chief role is played by the prolonged QTc interval in the occurrence of SCD. The QTc 

interval is determined utilizing the Bazzets’ formula ( )BF   

Smoke factor analysis: Thereafter, to predict the SCD risk level, smoking, which is also one of the risk factors of 

SCD, is evaluated. 

3.6 Analysis of Risk Factor 4 

The J-wave syndrome plays a significant role in the prediction of the risk levels of SCD, but it was neglected as 

noise while predicting heart diseases. The type of J-wave mirrors the risk level of SCD. Therefore, in this research, 

the J-wave syndrome is analyzed as the risk factor for SCD. The processes, such as ST wave extraction, J-wave 

selection, and level prediction, are performed to detect the level of J-wave. 

3.6.1 ST wave extraction 

The ST wave interval ( )sstI , which contains multiple signal points, is extracted from the segmented signals.  

3.6.2 J-Wave selection 

Thereafter, to select the curve points corresponding to J-wave, the curve points of sstI are given to the Parzen 

Window-based Billiards Optimization Algorithm (PW-BOA). Here, the BOA is selected owing to the advantage of 

balancing the features in the exploration and exploitation phase. However, a slow convergence rate is introduced by 

the random initialization of the balls. Hence, using the Parzen window technique, the position of the ball is 

determined. 

3.7 SCD Risk Prediction 

After analzing the four types of risk factors, the risk of SCD is predicted based on these factors. Here, the BI-ANFIS 

is proposed for the risk level prediction. The ANFIS (Akhbari et al., 2016) is selected since it possesses less 

memorization error for the prediction of the risk level. However, the ANFIS had the limitation of creating errors for 

the updation of the parameters of the network. Hence, the Bilinear Interpolation (BI) technique is utilized in the 

ANFIS to select the most adaptable parameters.  

4. RESULTS AND DISCUSSION 

This phase assesses the proposed technique’s performance, and the experiments were conducted in the working 

platform of PYTHON.  
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4.1. Dataset description  

For cardiac arrhythmia analysis and detection, the Massachusetts Institute of Technology-Beth Israel Hospital 

(MIT-BIH) Arrhythmia Database is a widely utilized dataset. 48 half-hour ECG recordings acquired from 47 

subjects are enclosed in the database. Each subject is associated with different ECG records that capture the heart’s 

electrical activity over time. The recordings are digitized at a sampling rate of 360 samples per second, thus 

providing the ECG signal’s high-resolution representation. 

4.2. Performance Analysis 

Here, the performance as well as comparative analysis take place to validate the efficiency of the proposed model.  

 
 

Figure 2: Prediction rate and prediction error 
comparison 

Figure 3: Comparative analysis of the proposed Serf-
MLP 

         The prediction rate and prediction error of the proposed BI-ANFIS and the existing ANFIS, Deep Neural 

Network (DNN), Deep Belief Network (DBN), and Artificial Neural Network (ANN) are presented in Figure 2. The 

proposed BI-ANFIS model demonstrates the highest prediction rate (97.63%) with a relatively low prediction error 

(2.296%). However, the existing works remain with an average prediction rate of 91.72% and a prediction error of 

8.23%. As per the outcomes, the proposed BI-ANFIS performs better than other conventional systems. This is 

because the proposed BI-ANFIS adjusts its parameters dynamically during the learning process, and learns 

complex relationships, which results in improved prediction accuracy.  

 

Figure 4: Efficiency comparison with related works 

         The accuracy, recall, f-measure, precision, and specificity of the proposed Serf-MLP and the conventional 

MLP, Bidirectional LSTM (Bi-LSTM), LSTM, and Recurrent Neural Network (RNN) are compared in Figure 3. The 

problem of dying ReLU is addressed by the Softplus error function in Serf-MLP and ensures that all neurons 
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remain active during training. By combining the benefits of the Serf and MLP architecture, the proposed Serf-MLP 

achieves better performance accuracy (98.97%), precision (99.46%), recall (98.73%), F-Measure (99.06%), and 

specificity (98.83%) compared to traditional methods. Hence, the proposed Serf-MLP is more efficient in CAD 

detection.  

           The efficiency of the proposed and the existing methods is compared in Figure 4. The proposed model 

incorporates a well-designed feature selection and validation process. The model can reduce the data’s 

dimensionality by selecting relevant and informative features from the ECG signal, thus resulting in faster 

computation and enhanced efficiency. Moreover, the validation step ensures that the chosen features are robust 

and have a meaningful impact on the SCD prediction, thus avoiding unnecessary computational overhead. These 

factors ensure better efficiency (98.57%) of the model. 

5. CONCLUSION   

                      This article proposed a BI-ANFIS-based risk factor analysis for the early prediction of SCD using ECG 

signal analysis. BI-ANFIS, Serf-MLP techniques are combined by the proposed model, thus resulting in high 

accuracy in the recognition of risk levels for SCD. Also, it efficiently handles complex non-linear relationships, 

reduces memorization errors, and accurately identifies risk levels for SCD. The proposed mechanism’s performance 

is validated by the experimental analysis. The proposed system, which provides auspicious outcomes, could handle 

several uncertainties. For the analysis, the MIT-BIH Arrhythmia Database is utilized in which the proposed method 

withstands the highest prediction rate of 97.63% with a low prediction error of 2.29%. Therefore, the proposed 

mechanism performs superior to the conventional approaches and remains to be more reliable as well as robust. 

Yet, the ECG signals are only concentrated by the proposed system. The future work would integrate multiple data 

sources, namely ECG, imaging, and patient demographics. This can further enhance the model's accuracy and 

robustness in CAD risk prediction. 
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