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Deep Learning (DL) has rapidly become a transformative force across various industries, and 

geotechnical engineering is no exception. The ability of DL models to autonomously learn and 

identify intricate patterns in vast datasets has made them invaluable in addressing the 

complexities inherent in geotechnical problems. These advanced computational models have 

the potential to revolutionize how engineers analyze subsurface conditions, predict geological 

phenomena, and design infrastructure, making them an essential tool in the evolving landscape 

of geotechnical research and practice. This review paper presents a thorough exploration of DL 

techniques specifically tailored to the needs of geotechnical engineering. The paper begins by 

providing an in-depth analysis of the foundational principles of deep learning, followed by an 

examination of various DL architectures such as convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and generative adversarial networks (GANs), and their 

applicability to geotechnical challenges. The discussion includes the integration of these 

methods into traditional geotechnical practices such as soil characterization, rock mechanics, 

foundation design, and slope stability analysis. Furthermore, this review highlights the 

advantages of utilizing DL for modeling complex geotechnical systems, particularly in the 

context of predictive modeling and forecasting. It showcases examples where DL has been 

employed to improve the accuracy of site-specific predictions, enhance decision-making 

processes, and optimize resource allocation in engineering projects. Alongside these 

advancements, the paper also delves into the obstacles and limitations encountered when 

implementing DL in geotechnical applications, including the need for high-quality data, 

interpretability of results, and computational resource requirements. The paper concludes by 

identifying emerging opportunities for future research and technological advancements in this 

domain. A particular emphasis is placed on the integration of artificial intelligence (AI) with 

geotechnical engineering, exploring the potential synergy between DL and other AI techniques 

such as machine learning and evolutionary algorithms. As the field of DL continues to evolve, 

the paper suggests avenues for continued exploration, particularly in improving the robustness 

of models, enhancing their interpretability, and scaling them for large-scale, real-world 

geotechnical projects. 

Keywords: Geotechnical engineering, Deep Learning, Modelling, Forecasting, Artificial 

intelligence. 

 
INTRODUCTION 

Geotechnical engineering, a crucial branch of civil engineering, focuses on understanding and managing the 

behavior of soil and rock to ensure the stability and durability of infrastructure projects [1]. The discipline 

encompasses a wide array of tasks, from evaluating slope stability and seismic risks to analyzing soil characteristics 

for foundation design. Traditionally, geotechnical engineers have relied on empirical formulas, manual calculations, 

and simplified models to address these challenges. However, these methods often fail to fully capture the complex 

interactions of geological, hydrological, and environmental factors affecting soil behavior [2,3]. 
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In recent years, Deep Learning (DL) has revolutionized the geotechnical engineering field, offering a promising 

solution to long-standing problems [4]. A subfield of machine learning, DL utilizes multi-layer artificial neural 

networks to identify intricate patterns and relationships within data. This transformative technology has not only 

enhanced prediction accuracy but also accelerated decision-making by enabling the rapid processing of large 

datasets [5]. DL’s ability to uncover complex patterns in vast data sets makes it a valuable tool in various industries, 

including geotechnical engineering. These advantages justify the increasing adoption of DL [6-9]. 

The primary goal of this comprehensive review is to highlight the substantial impact Deep Learning (DL) has had, 

and continues to have, on geotechnical engineering. As we stand at the threshold of a technological revolution, it is 

crucial to understand the methodology, applications, and implications of DL in this field. This review aims to equip 

geotechnical engineers, researchers, and professionals with the necessary knowledge and insights to fully leverage 

DL’s potential. To begin this exploration, the fundamental concepts of Deep Learning are presented, providing 

readers with a solid understanding of DL-based geotechnical applications. The review also covers key DL 

architectures such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Generative 

Adversarial Networks (GANs), and the concept of transfer learning. Understanding these architectural details is 

vital for selecting the most appropriate model for specific geotechnical tasks. Additionally, the review examines 

crucial aspects of data sources and preprocessing, recognizing the importance of high-quality, and diverse training 

data in ensuring the success of DL models. 

Geotechnical data is sourced from various origins, including laboratory experiments, field measurements, remote 

sensing technologies, and geographic information systems (GIS). Preprocessing steps, such as data cleaning, 

standardization, and augmentation, are essential to ensure that DL models can learn effectively from this data. The 

review also delves into several applications where DL has made a significant impact within geotechnical 

engineering, including slope stability analysis, soil property prediction, landslide detection, foundation design, 

predictive modeling, and seismic hazard assessment. Each of these applications holds substantial potential to 

improve the accuracy and reliability of geotechnical engineering practices, ultimately contributing to the 

development of safer, more resilient infrastructure [10]. However, despite its vast potential, DL is not without 

challenges. Researchers and practitioners must address obstacles related to data quality, model interpretability, 

generalization, and the need for domain-specific expertise. To effectively harness DL's transformative impact in 

geotechnical engineering, it is essential to acknowledge these challenges and work collaboratively toward their 

resolution [11]. 

This study aims to achieve the following objectives: (i) To explore deep learning architectures in geotechnical 

engineering; (ii) To examine data sources and preprocessing techniques in geotechnical DL; (iii) To evaluate the 

challenges and limitations of DL in geotechnical engineering; and (iv) To investigate the applications of DL in 

geotechnical engineering. This review provides a detailed analysis of DL approaches in geotechnical engineering, 

offering an overview of its various applications and consequences. It also highlights DL's use in geotechnical 

research, modeling, and forecasting, while addressing the challenges, opportunities, and future research directions 

in this rapidly evolving field. 

DEEP LEARNING ARCHITECTURES FOR GEOTECHNICAL ENGINEERING: 

Convolutional Neural Networks (CNNs): 

CNNs have proven to be highly effective in geotechnical engineering, particularly in interpreting images of soil and 

rock. These networks excel at automatically learning and detecting spatial patterns within images, making them 

ideal for tasks like classifying soil textures, identifying rock types, and analyzing geological formations [12]. The 

geotechnical community has seen marked improvements in the accuracy of its predictions, thanks to CNNs’ 

enhanced ability to detect intricate patterns in images of soil and rock [13]. 

Recurrent Neural Networks (RNNs): 

RNNs play a vital role in processing sequential geotechnical data, where temporal dependencies are often present. 

For instance, geotechnical data like rainfall patterns, which influence slope stability over time, requires models that 

can capture these dependencies. RNNs can simulate the impact of such relationships on geotechnical behavior. This 

makes them invaluable for tasks such as investigating long-term slope stability and predicting the effects of climate 

change on soil behavior [14][15]. 
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Generative Adversarial Networks (GANs): 

GANs have become increasingly popular for generating synthetic geotechnical data, helping to address data scarcity 

challenges in the field. GANs can create datasets for training DL models by instructing a generator network to 

produce data similar to real-world geotechnical samples (Figure 1). A discriminator network is then trained to 

differentiate between real and synthetic data. This approach has proven especially useful when collecting enough 

real-world data is difficult [16], helping to fill gaps and enhance model training. 

 

Figure 1. Generative Adversarial Networks (GANs): 

Transfer Learning: 

Transfer learning involves applying pre-trained deep learning models, which have been trained on large datasets 

from other domains to specific geotechnical problems. This approach allows for the fine-tuning of these models for 

geotechnical applications, leveraging existing knowledge and adapting it to new challenges [17]. Transfer learning 

has shown significant promise in soil property prediction and slope stability analysis, reducing the need for large 

amounts of domain-specific data. This technique allows for faster and more efficient model development by 

capitalizing on general knowledge gained from other fields [18]. 

Each of these DL architectures—CNNs, RNNs, GANs, and Transfer Learning—plays a critical role in advancing 

geotechnical engineering by addressing specific challenges in the field. Researchers and practitioners select the 

most suitable architecture based on the task at hand and the characteristics of the geotechnical data, ultimately 

improving predictive capabilities and enhancing infrastructure safety [19]. 

DATA SOURCES AND PREPROCESSING IN GEOTECHNICAL DL 

Laboratory Data: 

Geotechnical engineers often rely on laboratory testing to assess the properties of soil and rock. These tests 

generate structured data, including parameters such as grain size, density, shear strength, and permeability values 

[20]. Preprocessing laboratory data involves quality control, data cleaning, and normalization to ensure the data is 

accurate and consistent, which is essential for training deep learning (DL) models [21]. 

Field Measurements: 

Geotechnical instruments like piezometers, inclinometers, and settlement plates collect real-time data from 

construction sites or geological formations. Continuous monitoring provides valuable insights into the behavior of 

soil and rocks under different conditions [22]. Preprocessing field measurement data includes tasks like data 

filtering, noise reduction, and synchronization to prepare datasets that are suitable for DL analysis [23]. 

Remote Sensing Data: 

Geospatial data can be gathered using remote sensing technologies such as satellite imaging, LiDAR (Light 

Detection and Ranging), and drones. These technologies offer a more comprehensive perspective on geological and 
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environmental features. Preprocessing remote sensing data involves techniques like georeferencing, image 

registration, and feature extraction to obtain useful information for DL models [24]. 

Geographical Information Systems (GIS): 

 

Figure 2. Components of GIS 

GIS data integrates various geographic layers, such as land use, topography, geological maps, and hydrological 

data, to create comprehensive geotechnical datasets. To prepare GIS data for DL applications, preprocessing tasks 

include data fusion, interpolation, and spatial analysis (Figure 2). Combining DL and GIS can enhance geotechnical 

prediction accuracy by incorporating multiple geographic elements [25,26]. 

Data Cleaning and Quality Assurance: 

Geotechnical data, regardless of its source, often contains outliers, missing values, and inaccuracies [27]. Data 

cleaning is the process of identifying and rectifying these issues to ensure the dataset is reliable [28]. Quality 

assurance measures, such as sensor and device calibration, are essential for minimizing measurement errors in 

field data [29,30]. 

Data Normalization and Standardization: 

Normalizing or standardizing the data is crucial for facilitating DL model training. This ensures that features with 

different scales do not dominate the learning process [31]. Common strategies for normalization include min-max 

scaling, z-score normalization, and logarithmic transformations, depending on the data distribution and the 

specific needs of the DL model [32]. 

Data Augmentation: 

Data augmentation techniques can be used when there is a lack of sufficient data. These methods artificially expand 

the dataset by applying transformations to existing data samples, such as rotation, cropping, and flipping [33]. Data 

augmentation enhances the generalization of DL models and helps to reduce overfitting [34]. 
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Feature Engineering: 

Feature engineering involves selecting, creating, or transforming relevant features from raw data. In geotechnical 

DL, this may include extracting texture features from soil images, generating hydrological parameters from remote 

sensing data, or constructing composite features that capture complex geotechnical interactions [35]. Effective 

feature engineering is key to improving the performance and accuracy of DL models in geotechnical applications. 

APPLICATIONS OF DL IN GEOTECHNICAL ENGINEERING 

Prediction of Soil Properties: 

Deep Learning (DL) models are employed to predict key soil properties such as shear strength, density, and 

permeability, based on laboratory test results or geospatial data. These predictions are instrumental in site 

characterization and foundation design, ensuring more accurate and reliable geotechnical evaluations [36,37]. 

Analysis of Slope Stability: 

DL techniques are used to analyze various factors such as rainfall data, geological characteristics, and soil 

parameters. By simulating these interactions, DL models can predict the likelihood of landslides and slope failures, 

enabling the development of early warning systems for better risk management [38,39]. 

Design of the Foundation: 

DL contributes to optimizing foundation designs by considering multiple factors, including soil properties, 

structural requirements, and geotechnical constraints. This results in foundation designs that are not only stronger 

but also more cost-efficient [40]. 

Detection of Landslides: 

When combined with remote sensing technology, DL models can detect and monitor changes in terrain and 

vegetation that may indicate potential landslides or slope instability. This serves as an early warning system, 

improving disaster preparedness and mitigation efforts [41]. 

Assessment of Seismic Risk: 

DL models are used to predict how seismic events influence soil behavior and ground motion. These predictions 

play a crucial role in guiding the design of earthquake-resistant structures and assessing seismic risks in specific 

regions, helping engineers make more informed decisions about safety and infrastructure [42]. 

Modeling Prediction: 

DL-based predictive models consider the complex interactions between geological, hydrological, and environmental 

factors. These models help forecast geotechnical behavior and risks, which are vital for project planning, design, 

and decision-making [43]. 

Soil Analysis Using Images: 

DL models are also employed to analyze soil images to evaluate characteristics like texture and composition. This 

image-based approach complements traditional soil testing methods, enhancing the accuracy and efficiency of 

geotechnical assessments [44]. 

Enhancement of Finite Element Analysis (FEA): 

DL improves the precision of material property inputs used in Finite Element Analysis (FEA) simulations. By 

predicting material behavior under various loading conditions, DL enhances the accuracy of FEA results, leading to 

more reliable structural analysis [45]. 

CHALLENGES AND LIMITATIONS IN DL FOR GEOTECHNICAL ENGINEERING: 

Quality and Quantity of Data: 

Geotechnical databases are often limited in size and may contain data quality issues. Deep learning models require 

large amounts of high-quality data for effective training, which can be difficult to obtain. A lack of sufficient data or 

inaccuracies within the data can lead to poor model performance and unreliable predictions. 
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Interpretability: 

Deep learning models, particularly deep neural networks, are often referred to as black boxes due to their complex 

architectures. Understanding the inner workings of these models and interpreting their decisions can be 

challenging, raising concerns about transparency and trust in the results. This lack of interpretability may hinder 

widespread adoption in fields where clear, explainable reasoning is essential. 

Generalization: 

One of the challenges with deep learning models is their ability to generalize effectively to new data or unfamiliar 

geotechnical conditions. Overfitting, where a model performs well on training data but poorly on unseen data, is a 

common problem. Ensuring that DL models generalize well across various scenarios remains a major challenge in 

the field. 

Domain Knowledge: 

Successful implementation of deep learning in geotechnical engineering requires expertise in both deep learning 

techniques and geotechnical concepts. The need for transdisciplinary knowledge can be a barrier to adopting DL in 

the field, as combining these areas of expertise may require specialized training and collaboration between different 

disciplines. 

Complexity of Data Preprocessing: 

Geotechnical data typically requires extensive preprocessing, including cleaning, standardizing, and transforming 

the data into suitable formats for deep learning models. Developing efficient preprocessing pipelines can be time-

consuming and resource-intensive, adding another layer of complexity to the DL implementation process. 

Considerations for Ethical Behavior: 

Geotechnical data may include sensitive information, such as property ownership, environmental impacts, or 

infrastructure risks. Ethical concerns regarding data privacy, security, and responsible usage are paramount. 

Ensuring the ethical handling of geotechnical data is essential to avoid misuse or breaches of confidentiality. 

Fairness and Bias: 

Deep learning models may inadvertently reinforce biases present in the training data. This could result in unfair or 

discriminatory outcomes, especially if the data used to train the models is historically skewed or reflects biases in 

certain regions or populations. Addressing fairness and bias in DL models is critical to ensure that they are applied 

equitably in geotechnical engineering. 

Computing Resources: 

Training deep neural networks requires substantial computational resources, such as high-performance GPUs or 

TPUs. Access to these resources may be limited for some researchers or organizations, potentially hindering the 

development and deployment of deep learning models in geotechnical engineering. 

The findings from this research highlight the transformative impact of deep learning on geotechnical engineering. 

DL models have shown exceptional accuracy and efficiency across various applications, such as soil property 

prediction, slope stability analysis, foundation design, landslide detection, seismic hazard assessment, and 

predictive modeling. These advancements have the potential to revolutionize the field by providing more reliable, 

data-driven solutions. However, it is essential to address the challenges and limitations associated with DL, 

including data quality, interpretability, and model generalization. The lack of high-quality geotechnical data and the 

interpretability of complex DL models remain significant obstacles. Moreover, ethical considerations regarding the 

use of DL in geotechnical engineering require continuous monitoring. Despite these challenges, the research 

underscores the potential of DL to improve geotechnical practices and enhance infrastructure safety. Overcoming 

these challenges through collaboration and embracing future innovations will be crucial for unlocking the full 

potential of DL in the field of geotechnical engineering. 
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FUTURE DIRECTIONS: 

Data Quality and Availability: 

The effectiveness of DL models heavily relies on the quality and quantity of data. In geotechnical engineering, data 

collection is often limited, noisy, or incomplete (e.g., soil properties, geological conditions). Developing methods to 

generate synthetic data, enhance data collection techniques, or handle missing and incomplete data in a way that 

improves the performance of DL models. Additionally, exploring techniques such as semi-supervised learning or 

transfer learning to leverage limited data could be beneficial. 

Interpretability and Transparency of DL Models: 

Deep learning models, especially neural networks, are often considered black box models, meaning that their 

decision-making processes are not always transparent or interpretable. Research into explainable AI (XAI) 

techniques to enhance the interpretability of DL models, which is crucial in geotechnical engineering applications 

where decision-making processes need to be clear and justified to practitioners and regulatory bodies. 

Integration of DL with Traditional Geotechnical Methods: 

While DL has shown promise, its integration with traditional geotechnical engineering methods (e.g., finite element 

models, geostatistics) is still not fully explored. Exploring hybrid models that combine DL with conventional 

geotechnical analysis techniques could lead to more robust solutions. This could include the integration of DL with 

geotechnical modeling tools like finite element analysis or other numerical methods. 

Real-Time Data Processing and Automation: 

The application of DL in real-time data processing for monitoring and decision-making is underdeveloped. Many 

geotechnical applications require real-time analysis of sensor data for monitoring soil behavior, slope stability, or 

foundation movements. Research on implementing DL techniques for real-time geotechnical monitoring, 

particularly in the context of remote sensing, geospatial data, and sensor networks. This could lead to the 

development of automated decision support systems for geotechnical engineering. 

Scalability and Generalization: 

Many DL models have been developed for specific case studies or datasets and may not generalize well to other sites 

or conditions. The ability to scale these models to handle large, diverse geotechnical datasets remains a challenge.  

Studying the generalization of DL models across diverse geotechnical environments, and addressing how to develop 

scalable models that can be applied to a wide range of geotechnical problems, such as varying soil conditions, 

geological formations, and environmental factors. 

Model Robustness and Validation: 

The robustness of DL models in the face of noisy or uncertain geotechnical data is still an area in need of 

improvement. Additionally, there is often a lack of comprehensive validation techniques for these models. 

Developing advanced validation techniques for DL models, especially in terms of cross-validation, uncertainty 

quantification, and model verification using real-world case studies. Robustness could also be enhanced by 

incorporating uncertainty modeling into DL models to better handle the inherent variability in geotechnical data. 

Geotechnical Feature Engineering: 

The feature selection and extraction process in DL is often automated, but understanding which geotechnical 

features are most influential for model predictions has not been fully explored. Research on effective feature 

engineering techniques specific to geotechnical data that can improve DL model performance. This includes 

identifying key soil parameters, geological features, or environmental factors that impact the model’s predictions. 

Cross-disciplinary Collaboration: 

The collaboration between AI researchers and geotechnical engineers is often limited. Many DL methods are 

developed in isolation without a deep understanding of the specific challenges faced by geotechnical engineers. 

Fostering cross-disciplinary research to develop more practical, industry-relevant DL solutions. This could involve 

closer collaboration between computer scientists, geotechnical engineers, and domain experts to ensure that DL 

models are directly applicable to real-world geotechnical challenges. 



692  

 

J INFORM SYSTEMS ENG, 10(14s) 

Optimization of Geotechnical Design using DL: 

The application of DL to optimize geotechnical designs, such as foundation design, slope stability, or soil 

improvement techniques, has been relatively underexplored. Investigating how DL can be applied to optimize 

design parameters for geotechnical projects, taking into account safety, efficiency, and cost. This could include the 

development of DL-based optimization algorithms for various engineering challenges. 

AI-Assisted Geotechnical Risk Assessment: 

AI methods, including DL, have not yet been widely applied to comprehensive geotechnical risk assessment, which 

involves evaluating site-specific risks based on a wide range of factors (e.g., soil behavior, weather conditions, 

human factors). Exploring how DL can assist in probabilistic risk modeling and geotechnical hazard prediction. 

This could involve developing models that assess and predict risks associated with earthquakes, landslides, 

flooding, or other geotechnical hazards. 

CONCLUSION 

Deep Learning (DL) is revolutionizing the way we assess, predict, and design solutions for soil and rock-related 

challenges. This comprehensive review has explored various facets of the multidimensional landscape of DL in 

geotechnical engineering, ranging from fundamental concepts to real-world applications. As we conclude this 

assessment, DL holds the potential to significantly transform the field into several key areas. First and foremost, DL 

models have demonstrated remarkable accuracy in predicting soil parameters, analyzing slope stability, optimizing 

foundation design, detecting landslides, assessing seismic risks, and developing predictive models. These 

applications contribute to safer, more resilient infrastructure, cost savings, and enhanced decision-making. 

Moreover, DL has created new opportunities to address long-standing challenges in geotechnical engineering. By 

analyzing large datasets and identifying intricate patterns, DL provides the potential to solve complex problems 

that were once considered beyond the reach of traditional methods. However, it is important to acknowledge the 

challenges and limitations associated with DL integration in geotechnical engineering. Issues such as data quality, 

model interpretability, and the need for specialized domain knowledge must be addressed. Additionally, ethical 

concerns surrounding data privacy and bias need to be carefully managed to ensure the responsible and equitable 

application of DL in this field. Looking ahead, DL is poised to play an increasingly prominent role in geotechnical 

engineering. The ongoing development of DL techniques, particularly in conjunction with emerging technologies 

like 3D printing and robotics, has the potential to further enhance construction and excavation processes. 

Furthermore, the dynamic nature of geotechnical projects will require the creation of adaptive DL models capable 

of responding to changing environmental conditions and unforeseen challenges, thereby ensuring the continued 

progress of the discipline. 
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