
Journal of Information Systems Engineering and Management
2025, 10(14s)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Optimizing Spot Instance Reliability and Security Using

Cloud-Native Data and Tools

Muhammad Saqib∗, Shubham Malhotra†, Dipkumar Mehta‡, Jagdish Jangid §, Fnu Yashu ¶, and Sachin Dixit

∗

Texas Tech University, Dept. of Computer Science saqibraopk@hotmail.com
†Rochester Institute of Technology, Dept. of Software Engineering

shubham.malhotra28@gmail.com
‡C.K.Pithawalla College of Engineering and Technology

dipkumar.mehta@gmail.com
§Infinera Corp

jangid.jagdish@gmail.com
¶Stony Brook University, Department of Computer Science

yyashu@cs.stonybrook.edu

Stripe Inc

spdixit@gmail.com

ARTICLE INFO ABSTRACT

Received: 15 Nov 2024

Revised: 18 Jan 2025

Accepted: 26 Jan 2025

This paper presents "Cloudlab," a comprehensive, cloud-native laboratory designed to support

network security research and training. Built on Google Cloud and adhering to GitOps

methodologies, Cloudlab facilitates the creation, testing, and deployment of secure,

containerized workloads using Kubernetes and serverless architectures. The lab integrates tools

like Palo Alto Networks firewalls, Bridgecrew for "Security as Code," and automated GitHub

workflows to establish a robust Continuous Integration/Continuous Machine Learning

pipeline. By providing an adaptive and scalable environment, Cloudlab supports advanced

security concepts such as role-based access control, Policy as Code, and container security. This

initiative enables data scientists and engineers to explore cutting-edge practices in a dynamic

cloud-native ecosystem, fostering innovation and improving operational resilience in modern

IT infrastructures.

Keywords: Cloud-Native, Continuous Integration (CI), Continuous Machine Learning (CML),

GitOps, Kubernetes Security, Policy as Code, Security as Code, Container Security, Serverless

Computing, Infrastructure as Code (IaC), DevSecOps, Google Cloud (GCP), Container

Orchestration, Observability and Monitoring.

I. Introduction

The ever-existing nature of cloud-native technologies has brought a shift in the way organi- zations build, deploy,

and manage modern applications. As businesses switch to cloud environ- ments—spanning public, private, and

hybrid models—they gain access to advanced scalability and flexibility. However, this transition introduces a host of

complexities, particularly in ensuring the reliability, security, and adaptability of cloud-based solutions.

Organizations must steer their way through an ever-expanding ecosystem of tools, frameworks, and methodologies

to address challenges such as securing containerized workloads, managing role-based access, implementing

continuous integration, and adhering to Policy as Code principles. These challenges are further compounded by the

dynamic nature of cloud-native environments, where traditional security paradigms often fall short.

To address these pressing concerns, this paper introduces Cloudlab, a dedicated cloud-native laboratory

meticulously designed to support advanced security research, testing, and training. Built on Google Cloud’s

infrastructure and adhering to GitOps methodologies, Cloudlab serves as a comprehensive platform for exploring

and validating cutting-edge security concepts. It incorporates advanced technologies such as Kubernetes, serverless

architectures, and automated workflows to create a scalable and adaptive environment. The lab integrates

tools like Palo Alto Networks CN-Series firewalls and Bridgecrew’s "Security as Code" framework, enabling

mailto:saqibraopk@hotmail.com
mailto:shubham.malhotra28@gmail.com
mailto:dipkumar.mehta@gmail.com
mailto:spdixit@gmail.com

721

J INFORM SYSTEMS ENG, 10(14s)

researchers and engineers to adopt best practices in cloud security.

The foundation of Cloudlab lies in its dual pipelines: Continuous Integration (CI) and Con- tinuous Machine

Learning (CML). The CI pipeline is responsible for generating Docker images, managing version control, and

automating the testing and deployment of secure workloads. On the other hand, the CML pipeline facilitates

experimentation with machine learning models and their secure deployment. Together, these pipelines foster an

ecosystem of automation, innovation, and operational resilience, aligning with the needs of modern IT

infrastructures.

Through Cloudlab, this paper seeks to explore a range of topics critical to cloud-native environments. These

include provisioning secure infrastructure, implementing serverless cloud functions, automating security

workflows, and ensuring the security of containerized applications. The lab’s design not only promotes the adoption

of advanced security practices but also bridges the gap between theoretical research and real-world application.

By delving into the nuances of API endpoints, container security, role-based access control, and Policy as Code,

Cloudlab provides a hands-on platform for engineers and security practitioners to enhance their expertise.

Furthermore, the lab underscores the importance of automating security processes, leveraging tools like Terratest

and Kyverno to validate and enforce security policies. These capabilities demonstrate the potential of cloud-

native approaches to revolutionize the field of network security, offering robust solutions to the challenges posed

by modern cloud ecosystems.

This paper aims to provide a detailed account of Cloudlab’s architecture, capabilities, and applications,

showcasing how it addresses key challenges in cloud security and reliability. By presenting a scalable, adaptable,

and secure laboratory environment, this study highlights the transformative potential of cloud-native tools and

methodologies. Ultimately, Cloudlab serves as a testament to the critical role of innovation in advancing security

practices and supporting the next generation of cloud-native technologies.[1].

The Cloudlab is a cutting-edge, private laboratory environment meticulously designed to ad- vance security

research, testing, and training in cloud-native ecosystems. It represents a paradigm shift in how modern security

practices are approached, leveraging the principles of cloud-native technologies to ensure scalability, adaptability,

and operational efficiency. What sets Cloudlab apart is its adherence to GitOps practices , a revolutionary

methodology that redefines infras- tructure management. By treating infrastructure as code (IaC), GitOps

facilitates the seamless storage, review, and maintenance of complex cloud configurations, ensuring a robust

foundation for experimentation and deployment.

At its core, Cloudlab is engineered to support researchers, engineers, and practitioners in tackling the

multifaceted challenges of securing modern IT infrastructures. It does so through two primary, purpose-driven

pipelines. The first pipeline is dedicated to Continuous Integration (CI), streamlining the development process by

automating the testing, building, and deployment of containerized workloads. This pipeline ensures that new code

integrations are rigorously tested and securely deployed, fostering a culture of rapid innovation without

compromising stability.

The second pipeline, Continuous Machine Learning, or CML[2], is equally transformative. As artificial

intelligence (AI) and machine learning (ML) become integral to cloud-native systems, the CML pipeline facilitates

the development, testing, and secure deployment of ML models. By automating the end-to-end lifecycle of machine

learning workflows, the CML pipeline enables researchers to iterate rapidly, test at scale, and deploy models with a

high degree of reliability. This capability is particularly valuable for exploring novel AI-driven security solutions,

enhancing the lab’s capacity for cutting-edge research.

Together, these pipelines form the backbone of Cloudlab, creating a dynamic and adaptive envi- ronment capable

of addressing the demands of modern security challenges. They empower users to experiment with advanced

concepts like role-based access control (RBAC), Policy as Code, and container security while integrating state-of-

the-art tools and methodologies. Cloudlab’s adherence to GitOps practices ensures that every change is version-

controlled and reproducible, providing a transparent and collaborative platform for innovation.

This holistic approach makes Cloudlab an invaluable resource for security practitioners aiming to stay ahead in

the rapidly evolving world of cloud-native technologies. By combining rigorous methodologies with advanced tools,

the lab not only supports groundbreaking research but also bridges the gap between theoretical knowledge and

https://www.cloudbees.com/gitops/what-is-gitops
https://cml.dev/doc

722

J INFORM SYSTEMS ENG, 10(14s)

practical application. In doing so, it paves the way for a more secure and resilient future in cloud computing.

As security practitioners, it is important for us to understand the infrastructure and applications being built in

the public clouds as a first step to making things more secure.

II. Project Goals

There are several goals associated with the development and operation of this project, each of which plays a

pivotal role in achieving a comprehensive understanding of cloud-native environments. These goals are

interconnected, emphasizing the integration of advanced tools, methodologies, and security concepts. The

overarching objective is to explore, evaluate, and enhance the composition, management, and resilience of various

components, as outlined below:

1) Provisioning Palo Alto Networks CN-Series firewall products, integrating them with Calico and protecting

containerized workloads (Kubernetes “pods”).

2) Researching containerized deployments, workloads, and security.

3) Integration of Bridgecrew “Security as Code” tooling with GitHub repositories.

4) Developing and demonstrating expertise in “serverless cloud functions” (GCP Cloud Functions in this case).

5) Developing and utilizing a cloud-native Continuous Integration build pipeline. The output of this pipeline is a

Docker image that is stored in gcr.io. These images include a fully contained set of tools, documentation,

and Terraform code for customer deployments.

6) Demonstrating Policy as Code concepts using Terratest and Kyverno.

III. Learning Objectives

The primary aim of building and operating this lab is to foster learning and experimentation in key areas of

cloud-native security. Engineers and researchers can benefit from engaging with various topics that are critical to

modern cloud operations. The following list highlights the main learning objectives:

1) API Endpoints.

2) Deployment and operation of CN-Series firewalls.

3) Kubernetes role-based access control (RBAC) and security.

4) Developing serverless functions in Python.

5) ML/AI pipelines, containerized workloads, and their security.

6) Containers and container security.

7) Automation.

8) Testing perspectives, including Policy as Code and Security as Code.

9) CI/CD Pipelines and security.

Training materials derived from the lab’s construction and operation are readily available, enabling engineers to

build proficiency in these areas and apply their knowledge to real-world scenarios.

A. API Endpoints

API endpoints are foundational to the interaction of applications across environments, in- cluding serverless

systems and Kubernetes clusters. Their construction and operation provide an ideal space for exploring

potential vulnerabilities and security challenges within cloud-native ecosystems. Understanding and securing API

endpoints is critical for maintaining the reliability and integrity of applications, as they often serve as gateways for

data exchange and system integration.

B. Containers and Container Security

Containerized environments, while offering immense flexibility and scalability, introduce unique security

https://docs.paloaltonetworks.com/cn-series.html
https://www.tigera.io/project-calico/
https://docs.bridgecrew.io/docs
https://www.accurics.com/products/terrascan/
https://kyverno.io/

723

J INFORM SYSTEMS ENG, 10(14s)

challenges. Addressing these challenges involves understanding container architecture, identifying vulnerabilities,

and implementing best practices for container security. This includes securing Kubernetes pods, employing role-

based access controls, and integrating automated tools to monitor and protect containerized workloads.

C. Automation

Automation is a cornerstone of cloud-native operations, enabling organizations to scale effi- ciently and maintain

operational consistency. By automating processes such as infrastructure provisioning, security scans, and policy

enforcement, organizations can significantly reduce manual errors and improve overall system reliability. The lab

emphasizes the use of tools and methodologies to automate complex workflows, ensuring that security and

operational excellence remain integral to cloud-native environments.

IV. Lab Configuration Details

The configuration and codebase for the lab are meticulously maintained on GitHub, ensuring transparency,

collaboration, and version control. By leveraging GitHub repositories as a cen- tralized storage system, the lab

facilitates efficient infrastructure management, version tracking, and seamless collaboration between engineers,

researchers, and developers. Hosted on Google Cloud—one of the “big three” public cloud providers—the lab

serves a dual purpose: acting as a proof of concept for innovative cloud-native solutions and as a training platform

to enhance hands-on expertise in modern security and automation practices.

The lab’s architecture is composed of several core components that work cohesively to create a secure, scalable,

and adaptive environment. Each of these components is described below:

1) GitHub Repositories: The GitHub repositories are the foundation of the lab’s infrastructure as code (IaC)

approach. They store all configuration files, pipeline scripts, and containerized application code, ensuring a

single source of truth. By maintaining these files in GitHub, the lab enables automated workflows such as pull

request reviews, code scanning, and testing, which are crucial for ensuring the reliability and integrity of the

infrastructure. These repositories also facilitate collaboration by allowing multiple contributors to work

simultaneously, with built-in features for managing changes and resolving conflicts.

2) Google Kubernetes Engine (GKE): GKE provides the backbone for the lab’s computa- tional and

orchestration needs. It hosts the Kubernetes clusters that underpin the Continuous Integration (CI) pipeline and

enable machine learning experimentation. The GKE clusters are designed to support containerized workloads

efficiently, ensuring seamless scalability and resource optimization. By integrating role-based access control

(RBAC) and network policies, the GKE environment ensures that workloads are both secure and compliant with

best practices. This infrastructure allows for real-time testing and deployment of workloads while maintaining

high availability and fault tolerance.

3) Private Container Repository (GCR): The Google Container Registry (GCR) serves as a secure

storage location for Docker images generated by the CI pipeline. These images encapsulate the tools,

libraries, and application code required for deployment, ensuring consistency across environments. By

maintaining a private repository, the lab guarantees that sensitive configurations and dependencies are securely

stored, reducing the risk of unauthorized access. Additionally, GCR supports automated vulnerability scanning,

allowing the lab to identify and address potential security risks in container images.

4) Automation Frameworks: Automation is a cornerstone of the lab’s design, with frame- works such as

GitHub Actions and webhooks playing a critical role in streamlining CI/CD workflows. These automation

tools trigger events such as testing, building, and deployment whenever changes are made to the codebase.

Webhooks enable seamless integration between GitHub repositories and other services, such as the CI pipeline

hosted on GKE. The automation frameworks also incorporate security measures like “Security as Code” tooling,

ensuring that every build and deployment adheres to predefined security standards.

The lab’s design underscores the importance of integrating automation, security, and scalability into cloud-native

environments. By harmonizing these elements, the lab creates a robust platform for exploring advanced cloud

concepts and gaining practical expertise. It empowers researchers and engineers to test innovative solutions in a

controlled environment, bridging the gap between theoretical knowledge and real-world application.

A detailed description of the five main blocks seen in Figure 1 is provided below:

724

J INFORM SYSTEMS ENG, 10(14s)

1) CI/CD Pipelines: The lab incorporates a robust CI/CD pipeline hosted on the GKE cluster. This pipeline

automates the process of building, testing, and deploying applications. Each code commit triggers a series of

automated tasks, including static code analysis, container image creation, and security checks. The pipeline

ensures that only tested and verified code is promoted to production environments, significantly reducing

deployment risks.

Figure 1. High-Level Lab Design Diagram

2) Kubernetes Clusters: Two Kubernetes clusters form the core of the lab’s infrastructure. The primary cluster

hosts the CI pipeline and containerized applications, while the sec- ondary cluster is dedicated to machine

learning experiments. These clusters are designed to be flexible and scalable, enabling rapid prototyping

and testing of new workloads.

3) Security Tools and Policies: Security is integral to the lab’s architecture. Tools such as Bridgecrew and

Kyverno enforce “Security as Code” and “Policy as Code” practices, ensuring that all configurations and

deployments adhere to industry standards. Automated security scans are performed on code, configurations,

and container images, reducing vulnerabilities across the development lifecycle.

4) Monitoring and Observability: The lab integrates monitoring and observability tools to provide real-

time insights into system performance and security. Metrics and logs are collected from Kubernetes clusters, CI

pipelines, and containerized applications, allowing engineers to identify and resolve issues proactively.

5) Training and Experimentation: As a training platform, the lab is designed to simulate real-world scenarios,

providing engineers with hands-on experience in managing cloud- native infrastructures. The inclusion of

advanced tools and workflows ensures that users can experiment with cutting-edge technologies while adhering

to best practices.

The Cloudlab serves as a versatile platform that aligns theoretical research with practical ap- plications. By

integrating the components described above, the lab not only enhances operational resilience but also fosters

innovation, making it a critical resource for advancing cloud-native security and scalability.

1 [GitHub Repositories]

The code base for the lab is broken down into several GitHub repositories, more or less around the functional

area.

https://docs.bridgecrew.io/docs
https://kyverno.io/

725

J INFORM SYSTEMS ENG, 10(14s)

Example pipeline command

franklin /gke: tkn pr ls NAME STARTED DURATION STATUS gh-pr-run-ncwrr 1 hour ago 1 minute

Succeeded gh-pr-run-vhrvs 2 hours ago 1 minute Succeeded gh-pr-run-q6szq 3 hours ago 1

minute Succeeded gh-pr-run-8vn22 6 hours ago 1 minute Succeeded gh-pr-run-h7twc 14 hours

ago 17 seconds Failed gh-pr-run-74wm7 21 hours ago 1 minute Succeeded gh-pr-run-tqlfg 1 day

ago 1 minute Succeeded gh-pr-run-xs52f 1 day ago 1 minute Succeeded gh-pr-run-xtdz6 1 day ago

1 minute Succeeded gh-pr-run-w2zn7 1 day ago 1 minute Succeeded

Repo Name Purpose

bot-cloudbot A custom Python 3.9 GCP Cloud Function for GitHub pull

request task

automation.

bot-ml-container An experimental containerized machine learning model.

gke-cluster Infra as Code files for GKE cluster, YAML files for Tekton CI

pipeline. CN

Series firewall nodes.

ps-containerizer An “invisible shim” with a Docker image for each “public

cloud” VM-Series Terraform module development repo.

Allows PRs to be ingested into Tekton

CI pipeline without any integrations with the source

repository.

ps-devsecops-alpha IaC files for Alpha K8s cluster.

python-project-template Python project template for writing serverless code in AWS

Lambda and GCP

cloud functions.

Table I

PROJECT CODEBASE - GITHUB REPOSITORIES

2 [GitHub Actions]

GitHub repositories that have been “on-boarded” to the project have certain “actions” included.

1) Bridgecrew is used to scan all commits to all open pull requests.

2) Whitesource Renovate is used to track keep project dependencies up to date and secure.

3) Another GitHub action defines the parameters of the GCP project and helps the “ps-cloudbot” with pull request

maintenance tasks.

Note that there is also a webhook to make the CI pipeline aware of each commit and kick off a test and

build cycle.

3 [Kubernetes Clusters] Two clusters are deployed with the Google Kubernetes Engine

(GKE). The “gke” cluster hosts the Tekton CI pipeline. The “alpha” cluster is used for machine learning

experimentation.

Pipeline runs can be viewed and managed through a graphical interface that is well suited for development

teams. There is also the ability to manage pipeline runs and their requisite tasks using standard command line

tooling.

https://tekton.dev/
https://tekton.dev/
https://docs.bridgecrew.io/docs
https://tekton.dev/

726

J INFORM SYSTEMS ENG, 10(14s)

4 [GCR Private Container Repository]

To date there are about 15 GitHub repositories that are integrated with the CI pipeline outlined in this paper.

Each commit to a pull request causes the CI pipeline to generate a Docker image. These Docker images are stored in

a private GCR location.

5 [Panorama Management]

Panorama is a key component in deployment and maintenance of Kubernetes clusters and CN Series firewalls.

Currently there are two virtual Panorama devices deployed in a high availability (HA) configuration.

Palo Alto Networks has historically maintained serverless functions, for example in AWS Lambda, for firewall

“auto-scaling” tasks. This has since been replaced by a set of official Panorama “plug-ins” that can be downloaded to

PanOS devices. Lambda and Cloud functions are still frequently used to augment the capabilities of this new

family of plug-ins.

V. Serverless Functions

Google Cloud offers Cloud Functions, among other serverless computing offerings. This is a good set of

patterns to learn and comes up often in security infrastructure work since organizations can use it to run jobs at a

lower cost. Securing the webhooks and connection between cloud functions and the VPC the GKE cluster is in is an

important factor in deployments. Making XML or other sorts of API calls is often used to pass data between

management platforms, ticketing systems, custom applications, and so on.

A. Github Webhook

The Github webhook can be combined with a set of GCP credentials stored as a “repository secret” in a

repository. Available is a powerful and flexible method to combine systems into a more intricate Continuous

Integration and testing pipeline.

Figure 2. Webhook configuration settings in Github

https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/functions/docs/concepts/overview

727

J INFORM SYSTEMS ENG, 10(14s)

Example deployment YAML for a cloudbot

apiVersion: apps/v1 kind: Deployment metadata: creationTimestamp: null labels: app: cloudbot

name: cloudbot-deployment namespace: ci-build spec: replicas: 3 selector: matchLabels: app:

cloudbot strategy: template: metadata: creationTimestamp: null labels: app: cloudbot spec:

nodeSelector: env: build containers: - name: cloudbot image: gcr.io/gcp-gcs-pso/build-pod

imagePullPolicy: Always volumeMounts:

- name: nfs-volume-1 mountPath: "/data" volumes: - name: nfs-volume-1 persistentVolumeClaim:

claimName: nfs-pvc

Example Dockerfile for a cloudbot pod in GKE

COPY ["app.js", "package.json", "package-lock.json", "./"]

RUN npm install –production

COPY . .

ENTRYPOINT ["node", "app.js"]

Figure 3. Check only this box in the webhook settings

B. Connecting Serverless to GKE

A network peering is created between the Cloud Function and the VPC that the GKE cluster resides in. This

allows the serverless function application to make calls to a containerized deployment, such as a Node application.

VI. Continuous Integration

Ensuring the security of both internal and external build pipelines, as well as performing comprehensive scans

on work products traversing these pipelines, is a critical aspect of modern cloud-native operations. These measures

are essential to maintain the integrity, reliability, and security of the development and deployment processes. In

alignment with these objectives, a fully operational Cloud Native Continuous Integration (CI) pipeline has been

meticulously designed and implemented within the lab environment.

The implemented CI pipeline is designed to handle a wide range of repository types, whether they are public

repositories or private ones that require secure authentication credentials. This flexibility ensures that

organizations can leverage the pipeline for diverse projects, enabling seamless integration with existing workflows

Example YAML for a cloudbot service

apiVersion: v1 kind: Service metadata: name: cloudbot-service namespace: ci-build annotations:

cloud.google.com/load-balancer-type: "Internal" labels: app: cloudbot-service spec: type:

LoadBalancer selector: app: cloudbot ports: - port: 80 targetPort: 8089 protocol: TCP

728

J INFORM SYSTEMS ENG, 10(14s)

and infrastructure. The lab uses a specialized repository, referred to as the “containerizer” repository, to

streamline the process of collecting files from source repositories, preparing them for deployment, and packaging

them into secure and reliable container images.

The “containerizer” repository acts as a critical intermediary, bundling source files with es- sential components

such as command-line tools, test cases, and additional dependencies. These elements are necessary to validate and

prepare the application for deployment. Once all com- ponents have been processed and verified, the pipeline

generates a Docker image and securely stores it in the gcr.io container registry. This repository not only ensures a

centralized location for managing container images but also includes features like automated vulnerability

scanning, providing an added layer of security to the deployment lifecycle.

A pipeline run is the foundational unit of operation in this system. It represents a sequence of automated tasks,

including testing, building, and packaging, that must be completed successfully to produce a deployable artifact.

These tasks are orchestrated and executed using Tekton, an open-source framework for creating cloud-native CI/CD

pipelines. Tekton provides a scalable and flexible approach to managing these pipelines, allowing engineers to

define tasks and workflows as code. This enables greater transparency, reproducibility, and adaptability to evolving

project requirements.

The CI pipeline offers several key capabilities and benefits:

1) Automated Testing and Validation: Each code commit triggers a series of automated tests to validate

functionality, security, and compliance with predefined standards. This ensures that only high-quality code

progresses through the pipeline.

2) Dynamic Source Code Integration: The pipeline seamlessly integrates with source reposi- tories, whether

public or private, enabling organizations to incorporate multiple contributors and projects without

compromising security.

3) Comprehensive Security Scans: The CI pipeline incorporates tools such as Bridgecrew to perform “Security

as Code” scans, identifying and mitigating vulnerabilities in the codebase and container images.

4) Containerization and Image Management: Leveraging the “containerizer” repository, the pipeline

produces Docker images that are ready for deployment. These images include all necessary tools, libraries, and

configurations, ensuring consistency across environments.

5) Storage and Accessibility: All generated Docker images are securely stored in the gcr.io container registry.

This centralized repository not only simplifies version management but also facilitates the secure distribution

of images across environments.

6) Scalability and Modularity: Tekton allows for the modular definition of tasks and work- flows, enabling the

CI pipeline to scale with the needs of the project. Engineers can add or modify tasks without disrupting the

overall pipeline.

7) Enhanced Observability: The pipeline includes logging and monitoring tools to provide real-time insights

into its performance. This allows engineers to quickly identify and resolve issues during pipeline execution.

8) Seamless Deployment Readiness: By the end of a successful pipeline run, a fully vali- dated and packaged

Docker image is produced, ensuring that deployments to production environments are secure, efficient, and

reliable.

The role of Tekton in orchestrating the CI pipeline cannot be overstated. Tekton’s task-based framework

provides granular control over each step of the pipeline, allowing for extensive customization and optimization.

Tasks within a pipeline can include activities such as linting, compiling, testing, security scanning, and packaging.

Tekton also supports pipeline-as-code practices, enabling the storage of pipeline definitions in source repositories

alongside application code. This ensures that the pipeline is version-controlled, auditable, and easily shareable.

Furthermore, Tekton’s integration with Kubernetes adds a layer of scalability and resilience to the pipeline.

By running tasks as Kubernetes pods, the pipeline can dynamically allocate resources based on workload demands.

This not only optimizes resource utilization but also ensures that pipeline tasks are isolated and secure.

In summary, the fully operational Cloud Native Continuous Integration pipeline implemented in the lab

https://tekton.dev/
https://docs.bridgecrew.io/docs
https://tekton.dev/

729

J INFORM SYSTEMS ENG, 10(14s)

exemplifies best practices in modern DevOps. By combining automated testing, secure containerization, and

dynamic orchestration through Tekton, the pipeline serves as a powerful tool for accelerating development while

maintaining the highest standards of security and reliability. Its design and capabilities demonstrate the

transformative potential of cloud-native technologies in streamlining CI/CD processes, making it an indispensable

component of the lab’s infrastructure.

Figure 4. Tekton automated pipeline run results in a GitHub comment

Consider figure 4. The “Renovate” bot detects an out-of-date or insecure dependency. A pull request is opened by

the Renovate bot. Next, the “ps-cloudbot” GCP cloud function is notified of the new pull request via webhook. The

second bot places a label on the pull request to indicate it is performing administrative actions on the pull request.

The cloud function might perform other actions, such as assigning the pull request to a certain user, adding certain

users as reviewers, providing documentation, and so on. In this example, the cloud function adds a comment to the

pull request to inform project members that it has been accepted by the CI pipeline. A set of test cases based ona

certain technology or functional area is executed, and the results are returned to the pull request in a second

comment. There is also a link to the container image in the container registry. Although the pull request is merged

manually in this instance, the workflow could be modified to approve and merge the pull request with no human

interaction whatsoever.

730

J INFORM SYSTEMS ENG, 10(14s)

Figure 5. Bridgecrew integration with pull request automation

In addition to the ability to scan for dependencies that are out of date or have vulnerabilities of note, automated

security scanning of the code base can be performed as seen in figure 5. As before, the Renovate bot has detected

the use of an out-of-date Docker base image for Golang. Because the Dockerfile is updated as part of this pull

request, Bridgecrew scans the file and triggers misconfigurations that may lead to security issues. The results of the

scans and the issues found are noted in the pull request comments. Automated remediation and merging of these

issues may be possible in some cases.

VII. Conclusion

The development and implementation of the Cloudlab project represent a significant step forward in advancing

cloud-native security research and training. By combining state-of-the-art tools, methodologies, and

infrastructure, the lab provides a robust platform for exploring modern IT challenges, fostering innovation, and

equipping engineers with practical expertise. While the lab has already achieved substantial progress in areas such

as container security, Policy as Code, and Continuous Integration pipelines, the potential for future enhancements

remains vast.

Looking ahead, the lab aims to address several ambitious goals that will further expand its scope and

capabilities. These goals include:

1) Orchestration of Multi-Cloud Infrastructure Builds and Deployments: As organiza- tions

increasingly adopt multi-cloud strategies to optimize resource utilization and ensure redundancy, the lab seeks

to explore advanced orchestration techniques. This includes leveraging tools like Crossplane, which allows

seamless integration and management of resources across multiple cloud providers. By achieving this, the lab

https://docs.bridgecrew.io/docs
https://crossplane.io/docs/v1.3/

731

J INFORM SYSTEMS ENG, 10(14s)

can serve as a testbed for developing scalable, resilient, and interoperable multi-cloud solutions.

2) Expanding Knowledge of Infrastructure as Code (IaC) Languages: While tools like Terraform (using

HCL) have become synonymous with IaC, the lab aims to broaden its horizons by delving into alternative IaC

languages and frameworks. For instance, Pulumi offers a programming-language-based approach to IaC,

enabling the use of familiar lan- guages like Python, JavaScript, and Go for defining and managing

infrastructure. Exploring Pulumi will allow the lab to compare and evaluate the strengths and use cases of

different IaC paradigms.

3) Conducting Red Team Exercises: Security remains at the heart of the Cloudlab project, and one of the key

future goals involves “red teaming” the lab itself. By conducting dynamic application security testing (DAST)

exercises, the lab can identify vulnerabilities, validate its defenses, and simulate real-world attack scenarios.

These exercises will not only enhance the lab’s security posture but also provide invaluable insights into how

cloud-native systems can be hardened against evolving threats.

These future objectives highlight the lab’s commitment to continuous improvement and adapt- ability in an ever-

changing technological landscape. By orchestrating multi-cloud environments, expanding expertise in IaC

languages, and proactively addressing security vulnerabilities, the lab will remain at the forefront of cloud-native

innovation.

In conclusion, the Cloudlab project exemplifies the transformative potential of cloud-native technologies. It

bridges the gap between theoretical knowledge and practical application, em- powering researchers and engineers

to tackle the complexities of modern IT ecosystems. With its robust infrastructure, innovative methodologies, and

ambitious future goals, the lab not only supports groundbreaking research but also fosters a culture of learning

and collaboration. As the lab evolves, it is poised to play a pivotal role in shaping the future of secure, scalable, and

adaptive cloud-native environments.

References

[1] C. Pettey, “Cloud shift impacts all it markets,” https://www.gartner.com/smarterwithgartner/

cloud-shift-impacts-all-it-markets/, 2020, [Online; accessed 2021-09-05].

[2] E. Alpaydin, Machine Learning: The New AI. MIT Press, 2016.

[3] G. Kim, The DevOps handbook : how to create world-class agility, reliability, & security in technology

organizations. Portland, OR: IT Revolution Press, LLC, 2016.

[4] D. Sullivan, Official Google Professional Cloud Architect : study guide. Hoboken, NJ: Sybex, a Wiley brand,

2020.

[5] B. Burns, Kubernetes best practices : blueprints for building successful applications on Kubernetes.

Sebastopol, CA: O’Reilly Media, 2019.

https://www.pulumi.com/
https://www.gartner.com/smarterwithgartner/cloud-shift-impacts-all-it-markets/
https://www.gartner.com/smarterwithgartner/cloud-shift-impacts-all-it-markets/

