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Surveillance video refers to video footage captured by cameras for the purpose of monitoring 

and recording activities in specific environments. These videos are commonly used for security 

purposes in places such as airports, shopping malls, streets, industrial facilities, hospitals, and 

other public or private spaces. The primary objective of surveillance video systems is to 

maintain safety, detect suspicious activities, and collect evidence for investigation. Anomaly 

detection in Surveillance video is an important and evolving field with applications across 

various industries. It involves analyzing video data to detect unusual or suspicious events, 

which could indicate threats, errors, or rare occurrences. While traditional methods have been 

useful, recent advancements in learning methods, particularly using 2D Convolutional Long 

Short Term Memory, Autoencoders, and Generative Adversarial Networks have made 

significant improvements in detecting complex anomalies. Our proposed system based on 

Autoencoder with Convolutional 2DLong Short Term Memory unit in Generative Adversarial 

Network. The model aims to learn the appropriate normal data distribution during training. 

Frames with a large variance in their regularity score are identified as anomalies based on this 

distribution. We have adopted depth-wise separable convolution with Conv2DLSTM unit in 

auto encoder to learn spatial and temporal features to reconstruct and differentiate generated 

frame with real frame in video sequence, and make the model lightweight and efficient. The 

entire system has been evaluated on many benchmark datasets using metrics like AUC and 

Equal Error Rate (EER) and shown to be reliable for complicated video anomaly identification. 

Keywords: LSTM, GAN, Autoencoder. 

 
1 Introduction: 

Anomaly detection in video surveillance focuses on identifying abnormal events or activities that deviate from expected patterns. 

Anomaly detection plays a crucial role in the functioning of modern video surveillance systems, helping to monitor large 

volumes of video data effectively and alert security personnel in real-time. Anomaly detection is useful for a variety of 

applications, including intrusion detection in time series, surveillance, activity detection, and healthcare monitoring. Manually 

finding anomalies in surveillance films is a laborious and time-consuming task that requires human resources. With the 

proliferation of security cameras, the necessity for an automated system for detecting anomalies in videos has become 

increasingly apparent. These systems serve an important role in security control, crime detection, accidents, and traffic 

monitoring, because the amount of data accessible from multiple sources is simply too large to manually analyse. 

An anomalous event occurs unexpectedly and rarely in practice, making it difficult to describe such different happenings. For  

example, running on the beach is regarded regular conduct, however running in a retail mall is considered unusual. As a result, 

the automated system will have no prior knowledge of the nature of past or future irregularities. Representational learning 

approaches, such as sparse coding, perform well in anomaly detection [20, 46]. Anomaly detection in videos, in particular, can 

be addressed in either a supervised or unsupervised learning scenario. In supervised anomaly detection, the system learns from 

example films that are classified as anomalous or non-anomalous [17, 37, 45]. In the unsupervised approach, the system 

considers each unusual or abnormal occurrence that differs from the learnt normal sample parameters to be anomalous [38]. 

The model can thus be taught to detect abnormalities with large amounts of unlabeled, 'regular' data. Variations in surveillance, 
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such as changes in scale and viewpoint, create extra ambiguity. 

Several research have focused on the application of Convolutional Neural Networks (CNNs) for (supervised) anomaly 

identification in industrial products [43], such as evaluating concrete surfaces [5] and cracking [15]. However, in the supervised 

situation, there is typically an unequal balance of normal and anomalous data. The use of data augmentation has been 

recommended to reduce this obstacle; nonetheless, this setting still has significant limitations in addressing real-world 

situations [9, 47]. In contrast, Ravanbakhsh et al. have recently proposed using adversarial learning to localise anomalous 

activity in an unsupervised scenario [30]. Generative Adversarial Networks (GANs), in particular, because of their ability to  

represent high-dimensional picture data, have recently emerged as the state-of-the-art in anomaly detection. Several GAN-

centric architectures, including AnoGAN [35] and GANomaly [2], have been proposed for this purpose. The goal of GAN, which 

promotes generated samples to resemble genuine data, is not directly related to the goal of conducting anomaly detection. As a 

result, in much recent work in anomaly detection, adversarial training has been tweaked to improve both training and inferenc e 

for this particular purpose [14, 39]. Overall, CNN and GAN designs are inefficient for use on edge devices such as robotics, smart 

surveillance cameras, self-driving cars, and microcomputers. Furthermore, most unsupervised GAN architectures use shallow 

networks that are meant to learn just spatial characteristics, ignoring the critical temporal component of movies. Because of  the 

enormous number of parameters, such networks are limited to low-dimensional data and are prone to overfitting. 

Conv2D-LSTM-AE-GAN Contributions: This paper, inspired by the AnoGAN architecture (encoder decoder encoder 

pipeline) but significantly departing from it, we propose a light-weight, efficient anomaly detection architecture with a reduced 

number of parameters, aimed at addressing the convergence and overfitting problems with GAN training and at achieving 

real-time performance. Our Proposed architecture is capable of learning in main contributions are: 

• Our Autoencoder based GAN making use of depth-separable and time distributed convolution 2D LSTM layers in 

Autoencoder in Generator and encoder with Conv2D LSTM layers in Discriminator of our   own           design, which leads 

to increased efficiency due to retaining the history of learning in LSTM Unit. Our model is both lightweight and more 

efficient. 

• Losses: Losses in our proposed architecture improves performance with total 4 losses (Adversarial loss, 

Contextual loss, Encoder loss, SVD loss)  

The losses in GANs drastically improves their performance, the new loss can be widely employed in other deep learning 

models for better representation learning, whenever few training samples are available. Our system can detect complex 

anomalous events occurring for a very short time, and outperforms on public alky available datasets like UCSD Ped1, 

UCSD Ped2, CHUK Avenue. 

2 Related Work 

Spatial Feature Extraction Methods for anomaly detection: In challenging scenarios, deep learning-based 

methods have outperformed the prior state of the art in the detection of anomalous events in films [7, 19, 21, 33, 40]. In 

typical architectures, handmade feature extraction methods are not as powerful as deep neural networks with hierarchical 

feature representation learning. In particular, deep generative models have drawn interest lately because to their ability to 

encode complex changes. GANs are suggested by Liu et al. as a way to identify anomalies by minimising the difference 

between ground truth frames and projected future video frames [19]. In order to minimise model reconstruction loss, 

training video frames (Vtrain = {Vi}) and a parametric representation (fθ: Vtrain → Rl) are used to approximate the 

normal data distribution during training. Every test frame Vj ∈ Vtest generates an anomaly score A(Vj) at test time based 

on the deviation from the learnt optimal representation fθ∗: A(Vj) = fδ∗ (Vj) Vj. Lastly, a threshold T, A(Vj)>T, is applied 

to the anomaly score in order to identify abnormalities. 

Generative Adversarial Networks (GANs) are made up of two networks: a generator and a discriminator trained on 

unlabeled data [10, 29, 32]. The generator G seeks to capture the data distribution and generate realistic video frames by 

constructing a data distribution for the input data V via a mapping from a previous latent space noise distribution z. The 

discriminator D's goal is to determine the likelihood of the sample being outputted by the generator. The generator and 

discriminator compete against each other in a zero-sum min-max game: minG maxD V (D, G) = EV Pdata(V) log D(V) + EZ 

pz(Z) log(1 D(G(Z)). In recent years, a variety of anomaly detection GAN designs have been presented. Mizra et al. [25] 

proposed an architecture called extended conditional GAN. This model conditions either the generator G or the 

discriminator D with additional information Y. The condition Y can be formulated using multimodal input data or class 

labels as auxiliary information. Vu et al. [41] introduced a robust anomaly detection system for movies that employs 
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conditional GANs to accurately detect video anomalies at various levels of representation using a layer-wise approach. 

The extraction of optical flow data is difficult in uncertain situations defined by untextured regions, light variations, 

occlusions, and quick motions. The generator's inverse mapping, E = G1, is learned by the encoder E (V, E(V)) in the 

bidirectional GAN (BiGAN) architecture proposed by Donahue et al. [8]. By learning to map the latent space to image 

data during training, the model improves results on the MNIST benchmark dataset (8) and lowers statistical complexity. 

'fast-AnoGAN' is a unique mapping approach that was introduced by Schlegl et al. [34] in 2019. It can detect anomalies at 

the image level and localise them at the pixel level. Utilising the BiGAN design, Zenati et al. presented the Efficient GAN-

Based Anomaly Detection (EGBAD) system in 2018 [44]. Conversely, Ackay and colleagues proposed the theory of 

integrated learning of latent space vectors and images.  

The architecture captures the data distribution of image and latent space vectors using an adversarial autoencoder and 

an encoder-decoder-encoder pipeline. However, this method has limitations in managing spatial-temporal learning, 

which leads to unstable reconstructions for real-time films [2]. Vu et al. [41] proposed a robust anomaly detection 

system for movies that uses conditional GANs to learn representations from both intensity and motion information. A 

deep CNN for anomaly detection that learns a correlation between frequent object appearances (such as pedestrians, 

backdrops, and trees) and their corresponding motions was proposed by Nguyen and Meunier [27]. Using two U-Net 

blocks in the generator, Tang et al. proposed a combination of future frame prediction and reconstruction for anomaly 

identification [1]. The first block attempted to anticipate frames, while the second block recreated the frames produced by 

the first block. CNN (Convolutional Neural Network) Excellent at image and video analysis, local feature extraction, 

spatial relationships, robustness to noise and translation invariance Large number of parameters, high computational 

cost, limited interpretability. LSTM (Long Short-Term Memory) Effective at capturing long-term dependencies, handles 

variable length sequences, robustness to vanishing/exploding gradient problem Computational complexity, training time, 

limited interpretability[48],[49],[50],[51]. 

Temporal Feature Extraction Methods: In an encoder-decoder paradigm, Jefferson et al. created a Conv-LSTM 

network to predict upcoming frames and identify anomalies through reconstruction [24]. For visual anomaly detection, 

the similar architecture was demonstrated to be promising in [22]. The input video frames are processed by the 

convolutional LSTM to extract features, which are subsequently deconvolutionally rebuilt. Stacking Recurrent Neural 

Networks (RNNs) map identical neighboring frames to a reconstruction coefficient in Luo et al.'s Temporally-coherent 

Sparse Coding (TSC) technique [21]. LSTM autoencoders are ideal for extracting spatial and temporal information. Shi et 

al. [36] and Pa-traucean et al. [28] used layered convolutional LSTMs in an autoencoder architecture to extract features 

from video sequence data. Conv-LSTMs can extract both spatial representations and spatio-temporal information from a 

sequence of video frames, as well as forecast future frames with high accuracy. In Conv-LSTMs, the size of the 

convolutional filter in the hidden-to-hidden connection determines how much information the hidden state receives in 

the preceding time step. Large transitional kernels are used to record faster motions, while smaller kernels are adequate 

for slower motions [41]. But as the number of parameters increases, GAN performance drastically declines, leading to 

GANs commonly failing on high-dimensional data. Our strategy reduces model size and the chance of overfitting during 

GAN training by utilizing depth-wise separable convolutions within the LSTM. To handle the spatial and depth 

dimensions of the video frames, depth-wise separable convolution is followed by pointwise convolution. LSTM Good at 

capturing temporal dependencies Suitable for time-series data Longer training times Difficulty in parallelizing. CNN High 

accuracy and performance Effective in handling spatial features Requires large datasets for training Computationally 

expensive [48],[49],[50],[51]. 
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3. Architecture & Proposed Methodology 

 

 

Figure 1: Block diagram for video anomaly detection. 

To identify abnormalities in video data, the Anomaly Detection method in video shown in Figure 2 combines Discriminative and 

Generative models. In order to ensure uniformity and lower computing cost, the process starts with the preprocessing step-by-

step technique illustrated in Algorithm1, where incoming videos are broken up into frames at a rate of 24 frames per second and 

downsized to 128x128 pixels. Sequential sets of seven scaled frames are aggregated and saved as individual clips during the 

preprocessing phase. These clips are then utilized as input to train the Generative Adversarial Network model. GAN contain 2 

blocks Generator and Discriminator. The Generator is an Autoencoder that uses convolutional LSTM, and transposed 

convolutional layers to recreate the input frames during the training phase. The Encoder-based Discriminator then assesses both 

the real and reconstructed frames to determine which are generated and which are real. To improve the Generator and 

Discriminator, a variety of losses are computed and backpropagated, such as Adversarial loss, Contextual loss, Encoding loss,  

and SVD losses. Once training is complete, the model is saved for testing. The same preparation procedures are used to a test  

video during the testing phase. The trained Discriminator then assesses the test frames after they have been rebuilt by the 

Generator. Anomalies are indicated by low scores, which are determined by how closely a frame resembles a real frame. Effective 

detection of anomalous occurrences is made possible by classifying frames below a predetermined threshold as Abnormal or 

Anomaly and those above the threshold as Normal. 

3.1 .Architecture 

Proposed Architecture framework for Conv2D-LSTM-AE- GAN given in figure 3. The diagram illustrates the (Convolutional 2D 

LSTM Auto Encoder Generative Adversarial Network) architecture for anomaly detection in video frames. It comprises two 

primary components: the Generator and the Discriminator. 

The Generator takes resized video frames (128x128) (step by step procedure shown in Algorithm1) as input and reconstructs the  

frames using a combination of Time Distributed Separable Conv2D layers, ConvLSTM2D layers, and Conv2DTranspose layers. 

These layers extract spatial and temporal features, progressively refine the reconstruction, and output the generated frame. The 

generated frame is compared with the real frame by the Discriminator, which also employs a similar architecture, including 

ConvLSTM2D and Time Distributed Dense layers, to classify frames as real or generated (step by step procedure shown in 

Algorithm 2). Losses from Generator and Discriminator (Adversarial loss, Contextual loss, Encoding loss, and SVD losses) are 

backpropagated to improve both components iteratively. During testing, low-scoring frames from the Discriminator are flagged 

as anomalous, while high-scoring ones are classified as normal (step by step procedure shown in Algorithm3). This architecture 

leverages spatiotemporal features to enhance anomaly detection accuracy. 
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Figure 2 Proposed Conv2D-LSTM-AE-GAN Architecture 

 

Algorithm 1 Preprocessing Algorithm for video anomaly detection 

 

Input:   video1 to videon,   

Output: clips [] 

Parameters: N=Total no. of frames, M=No. of clips. 

Method: For All video1 to videon. 

1.Begin 

2.For each video 

                 2.1 Convert video into frames (24 frame per sec.) 

3.For each frame in video 

                   3.1 resized_frame: =resize(frame,128,128)) 

                   3.2 allframes[] . append[resized_frame] 

4.N: =count(allframes)                              /*N =Total no. of frames*/ 

5.strides i:1 to 3, count: =0, clips: =[ ], clip:=[ ] 

6.For each stride 1 to 3 

                  6.1 For each frame of allframes 

                             6.1.1 clip.append[frame] 
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                             6.1.2 count++ 

                             6.1.3 if count: ==7                /*No. of sequential frames= 7*/ 

                                      6.1.4 clips. Append [clip]         

7.Return clips [ ]     M:=Count(clips)                                    /* M=No. of Clips*/ 

8.End 

Time Complexity of Preprocessing Algorithm O(NxM)  

          N=No. of Frames, M=No. of clips  (Reviewer 1) 

  

Algorithm 2 Training Algorithm for Conv2D-LSTM-AE-GAN Architecture Framework  

 

Input:  clips[ ] C1  to Cn  (HXW=128X128) 

 

Output:  LSTM_GAN_Model 

 

Parameters: Bat-Batches, Ep-Epochs, E=no. of. Epochs, n=no. of frames 

                           Af1-Tanh activation function,  Af2-Sigmoid Activation function, K = No. of Filters 

                           B= no. of batches (Ex.4)    Xn =no. frames for training.       

                            

Method: For clips Ci: C1 to Cn 

1.Begin 

2.For each Ep q :1 to E 

3.       For each Bat j:1 to B 

               3.1 Z: =E ɸ(ConvLSTM(Wi*Ci+ bi),K)   /*C=Input frame*/     

                                  /* Z= Latent space  */    /* E=Encoder with convLSTM=Convolutional LSTM layers*/ 

               3.2 Ć=Dɵ(Z)                                               /*D=Docoder, Ć=Reconstructed frame */  

                                                                                  

                                                                                  /* ɸ,ɵ denote hidden parameter */ 

               3.3  Ladv:=Dis(Af2(C, Ć) )                        /*Dis= Discriminator*/ 

 

4. Ź=  Eɸ(ConvLSTM(Ć))                                        /* Ź = Latent space of reconstructed frame */ 

 

5. Compute Losses  

               5.1 Ladv:=Mean(C- Ć)                               /* Ladv=Adversarial Loss */ 

               5.2 Lcnt:=Mean(abs(C- Ć))  /* Lcnt=Contextual Loss*/ 

               5.3 Lenc:= Mean(Z - Ź)^2    /* Lenc=Encoder Loss */ 

               5.4 Lsvd:= Mean(abs(difference in U,S,VT Matrices of C, Ć)      /* Lsvd =SVD Loss*/  
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               5.5 LGAN= Lsvd + Ladv + Lenc + Lcnt 

 

6. Back propagate and update weights: 

                 ΔW:=∇W∑i=1nLGAN 

 

7. Train LSTM_GAN_Model using LGAN 

 

8. Compile with optimizer, loss and weights: 

        LSTM_GAN_Model . compile (adam , LGAN, weights) 

 

9.    Trained LSTM_GAN_Model 

 

10.  End 

 

 

       Time Complexity: O(B*H*W*K*E) 

       B=Batch size, H=Height of frame, W=Width of frame, K=No. of Filters, E= No. of Epochs 

  

Algorithm 3 Testing Algorithm for Conv2D-LSTM-AE-GAN   Architecture     Framework  

  

Input:  Test Video frames t1 to tn , trained LSTMGANMODEL 

 

Output: Normal and Anomaly frames.   

 

Parameters: thr-Threshold, LGAN(ťi)-Model generated frame 

                      tn=No.of frames for testing  

Method:  

 

1. Begin 

 

2.  For each ti: t1 to tn     

             2.1 LGAN(t’i):=LSTM_GAN_MODEL(ti) 

             2. 2 Calculate RS:= | ti-LGAN(t’i)|                    /*RS= Reconstruction Score*/          

   

3.  Sort RS 
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4.  min_RS:=min(RS),  max_RS=max(RS)  

                                                   /*min_RS & max_RS- minimum & maximum value of RS */ 

 

5.  calculate mid:=min_RS/max_RS 

 

6.  For each ti: t1 to tn 

           6.1 Calculate NS[]:=RS[]-mid                            /* NS= normalized RS score */ 

           6.2  Calculate ReS[]:=1-NS[]                              /*ReS= Regularity Score */ 

 

7.  Calculate Threshold: 

           7.1   Median(m):=statistics.median(ReS[])  

           7.2   Standard Deviation(sd):=statistics.stdev(ReS[])  

           7.3   Threshold(thr):=m-sd 

 

8.  For each frame ti:t1 to tn: 

           8.1  If ReS[i]<thr, classify ti as Anomaly 

           8.2   If ReS[i]>=thr, classify ti as Normal      

 

9.  Mark each frame ti and Anomaly or Normal    

 

10.   End 

 

Testing Time Complexity: O(H*W+S+T) 

H=Height of frame, W=weight of frame, S=no. of steps for Score Calculation,  

T=no. of steps for threshold calculation  (Reviewer 1) 

4. Experimental Results: 

To test our Architecture, we conducted experiments on several benchmark databases, namely USCD 

Ped1, Ped2 and Avenue datasets. 

4.1. Data Sets: 

A. CUHK Avenue Dataset: 

CUHK Avenue dataset has 21 test videos and 16 training videos with a frame size of 360 x 640 pixels. 

The videos have a total of 30652 frames (15328 for training and 15324 for testing). There are many 

bizarre scenes, like people tossing objects, fleeing, and jumping on roadways.  

B. UCSD Ped Dataset: 

A stationary camera installed at a height and looking down on pedestrian pathways was used to 

collect the UCSD Anomaly Detection Dataset. The walkways had varying densities of people, from 

very few to many. Bikers, skateboarders, tiny carts, and pedestrians crossing a walkway or in its 

surrounding grass are examples of often occurring anomalies.  
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B.1.Ped1: footage showing crowds of people moving in both directions from and toward the 

camera, with some perspective distortion. Contains 34 examples of training videos(6800 frames) 

and 36 examples of testing videos(7200 frames) with Resolution 158X238.  

B.2.Ped2: Portrays pedestrians walking parallel to the camera plane, with 16 videos for training 

(2550 frames) and 12 for testing videos (2010 frames) with Resolution 240X360. Video sources from 

13 distinct scenarios, with varying lighting and camera perspectives, are included in the corpus. It 

contains 130 anomalous events total—330 video examples for training and 107 for testing. Complex, 

unexpected human actions, the existence of strange things, and movements in the incorrect 

direction are examples of anomalies. 

Public 

Datasets 

Anomalies Anomaly 

Events 

Duration Resolution Training 

Videos 

Testing 

Videos 

Anomalous 

Frames 

UCSD 

Ped1 

40 Skaters, 

Bikers,Small 

carts, 

Walking 

Sideways 

5 min 238X158 34 36 4005 

UCSD 

Ped2 

12 Skaters, 

Bikers,Small 

carts, 

Walking 

Sideways 

5 min 360X240 16 12 1636 

CHUK 

Avenue 

47 Throwing, 

Running. 

Loitering 

30 min 640X360 16  21 3820 

Table 1: Characteristics of the datasets used in this work 

4.2 Implementation: 

Our architecture is implemented using Python, Keras, and the TensorFlow framework. Hardware 16 

GB RAM and IRIS Xe Graphics used to implement.  We utilize resized frames extracted from 

videos,( as described in Algorithm 1). These frames are divided into batches and used to train the 

architecture (as described in Algorithm 2) in specific number of epochs. The trained model is then 

saved and loaded during the testing phase. In the testing process (as described in Algorithm 3), the 

test video is fed into the architecture. The generator reconstructs the frames, which are evaluated by 

the discriminator. Based on a predefined threshold (as described in Algorithm3), the frames are 

classified as either Anomalous or Normal. 

4.2.1 Regularity Score: During testing, Low Regularity Score frames from the Discriminator are 

flagged as Anomalous, while High-scoring ones are classified as normal.  
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4.2.2 Evaluation Metrics: 

In the field of video anomaly detection, two commonly used anomaly detection criteria are Equal-

Error Rate (EER) and Area under Curve.  

i) AUC- Area Under the ROC(Receiver Operating Characteristics )Curve  

 ii)     EER-Equal Error Rate is defined as the percentage of misclassified frames     when the TPR is 

equal to the FNR. It is effective for the detection of video anomalies, the lower the equal error rate 

value is best result. 

AUC is measured between 0 and 1. The better the results, the higher the AUC value execution. 

4.2.3 Result Analysis: 

For computing EER and AUC, first we need to compute True Positive (TP), False Positive (FP), True 
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Negative (TN), False Negative (FN) using the following: 

TPR = TP/TP+FN                        ----------------------------------------------(1) 

FPR = FP/FP+TN                      ------------------------------------------------(2) 

FNR=FN/TP+FN                      -------------------------------------------------(3) 

AUC=1+TPR-FPR/2 = 0.91   -------------------------------------------------(4)        

EER = FNR+FPR/2 = 0.08995   ---------------------------------------------(5) 

These values are depicted in Table 1 for Test Video 5  

Table 2. TP, FP, TN and FN of Avenue Dataset Test Video 5 using 

Conv-LSTM-ED2D-GAN  

 

Plot of AUC curve drawn shown in the figure. From the plotted AUC curve it is inferred that AUC 

0.91 and EER 0,08995.  

 

Figure 7   AUC Curve of Conv2D-LSTM-AE-GAN for Test Video 5  

4.2.4 Performance Comparison with Existing Models: 

The Conv2D-LSTM-AE-GAN Architecture's AUC and EER outcomes compared with existing 

unsupervised models are shown in Table 2. The suggested Conv2D-LSTM-AE-GAN Architecture 

framework achieved an AUC of 75.17 and an EER of 25.53 for the UCSD Ped1 dataset. The evaluated 

AUC and EER for the UCSD Ped2 dataset were 80.30 and 22.60, respectively. The suggested 

Conv2D-LSTM-AE-GAN Architecture framework performed best on the CHUCK Avenue dataset, 

with an AUC of 90.6 and an EER of 11.56.  

Actual Test Video 

Frames

Avenue Dataset

Sample Test Video 
NormalAnomaly

20(FP)186(TP)AnomalyPredicted

Test Video

Frames

766(TN)34(FN)Normal
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Table 2 Comparison of Proposed Method with the Existing Methods (Unsupervised Methods) 

  UCSD Ped1 UCSD Ped2 Avenue 

Unsupervised 

Methods 

AUC EER AUC EER AUC EER 

Conv-AE [2016] [16] 81.1 27.9 90.0 21.7 70.2 25.1 

MLAD [2019] [17] 82.34 23.50 99.21 2.49 52.82 38.82 

SVDGAN [2021] [18] 73.26 28.75 76.98 23.46 89.82 21.55 

Conv-LSTM-ED2D-

GAN 

75.17 25.53 80.30 22.60 90.6 11.56 

 

5. Conclusion: 

Even for anomalous frames, the suggested framework shows good reconstruction skills, but it 

sometimes has trouble identifying particular anomalies. For LSTM-based models like ours to 

activate and function properly, there must be enough sequential data. Interestingly, the suggested 

approach performs noticeably better on the CHUCK Avenue dataset than previous research. The 

proposed lighter GAN architecture outperforms state-of-the-art unsupervised anomaly detection 

methods while utilizing fewer parameters, thanks to the utilization of temporal blocks for improved 

spatiotemporal feature learning and an original SVD loss for more robust GAN learningIn the 

future, the system's accuracy can be increased further by incorporating a memory module or a 

cutting-edge 3D feature extraction algorithm. 
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