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Human Activity Recognition (HAR) is a machine learning (ML) application that plays a vital role 

in various fields such as medicine and sports. Recent advancements have made HAR a well-

established field. HAR can be performed using imagery or sensory data; this study focuses on 

sensory data generated by the Inertial Measurement Units (IMUs). HAR typically requires data 

from at least one sensor. However, raw sensor data from two sensors—specifically raw sensors 

placed on two joint body joints- are needed to calculate a joint's three-axis angles. To our 

knowledge, no evidence in the literature compares the performance of HAR models trained on 

raw sensory data versus those trained on body joint angles in sports science. In this study, we 

aim to bridge this research gap by studying the difference in training on both data types in the 

karate sport as a case study. The current work includes two comprehensive four karate skills 

datasets: one consisting of raw sensory data and the other comprising calculated body joint 

angles derived from the raw data. The datasets were collected from professional karate players 

performing four distinct skills. We proposed a normalization algorithm to address the different 

numbers of readings per player performing the same karate skill. Next, several ML models were 

trained on the normalized versions of both datasets to determine which dataset contains more 

easily predictable patterns. The results indicate that the body joint angles dataset exhibited 

significantly higher accuracy than the raw sensory dataset. Moreover, the proposed 

normalization algorithm demonstrated promising results across all models and effectively 

mitigated the overfitting issue in both datasets.  

Keywords:  Biomechanics of Bodies (BoB), Features extraction, Human Activity Recognition 

(HAR), Inertial Measurement Unit (IMU), Machine learning (ML), and Wearable sensors.  

 

 

I. INTRODUCTION 

HAR describes the ability to recognize people's different activities, such as sitting, standing, walking, running, eating, 

sleeping, and more. Recently, HAR has gained more interest in some fields, such as intelligent systems, healthcare, 

and sports science  [1-4]. Recent studies in literature have employed IMUs and motion capture systems to track 

human motion during individual activities [5-7]. While multi-camera-based motion capture systems can be used for 

human activity data collection, they require large-scale, complicated, and costly measuring environments. By 

contrast, IMUs consist of accelerometers, gyroscopes, and magnetic trackers that capture data across nine axes, three 

for each sensor, two approaches are commonly used to store data for HAR models from IMU sensors: the non-sliding 

mailto:eba_ashour@science.suez.edu.eg
mailto:fathalla_sci@science.suez.edu.eg
mailto:s.hassan@science.suez.edu.eg
mailto:ahmad.salah@utas.edu.om.
mailto:ahmad@zu.edu.eg.
mailto:em.eldesouky@psau.edu.sa.


24  

 
 J INFORM SYSTEMS ENG, 10(15s) 

window-based [8] and the sliding-window-based methods [9]. The non-sliding window-based method treats each 

sensor reading as a separate feature. In contrast, the sliding-window-based method involves sliding a window over a 

sequence of consecutive sensor readings, with each window position generating new features for training the 

predictive model. The window size is defined by the number of samples it contains.  

Sikder et al [8]. developed a non-sliding window-based method to create the KU-HAR dataset, which consists of data 

from 90 participants engaging in 18 activities. They collected accelerometer and gyroscope (Accel-Gyro) sensor data 

and organized them using a non-sliding window technique. They then trained a random forest (RF) algorithm on this 

dataset, achieving an accuracy of 89.67%. In contrast, Grzeszick et al. [10] used the sliding window technique to 

collect data from three workers in two warehouses using IMUs placed at their wrists and torso. They then used a 

conventional Neural Network (CNN) model to recognize human activities based on the extracted features from the 

sliding windows.  

Sports activity analysis is an important application of HAR models. Jaehyun Lee et al. [11] aimed to construct a self-

coaching system suited for squat exercises. Thus, they built a public-domain HAR dataset based on the data gathered 

from 39 participants. They utilized a deep learning CNN-LSTM and the RF models to be trained on the collected 

dataset.  They used one or a combination of two or five IMUs to train the collected dataset. The accuracy with five 

IMUs using the RF model was 75.4%; the accuracy using the CNN-LSTM model was 91.7%. Training on the data from 

a single IMU placed on the right thigh produced the lowest results, with 58.7% accuracy for the RF model and 80.9% 

for the CNN- LSTM model. Rafael Kuperman et al. [12] built a football activity recognition system. They used five 

IMUs placed on each of 11 male soccer players in different body joints such as the pelvis, right thigh, etc. A 

combination of CNN layers followed by recurrent (bidirectional) LSTM layers was employed to train and evaluate the 

dataset, which consists of five football-related activities. Their proposed model achieved an accuracy of 98.3%.  

The shortcomings of recent research motivated the current study. These shortcomings are two-fold. First, recent 

studies have not applied deep learning or ML algorithms to recognize and evaluate performance on a real dataset of 

karate sports. Second, recent studies did not use body joint angle readings; instead, they depended on the 

accelerometer and gyroscope sensor (raw sensor) dataset. In this context, we proposed utilizing a karate dataset of 

four skills captured with the help of a set of 17 IMUs [13] to generate two datasets; one includes raw sensor readings, 

and the other includes the body joint angles. Then, we proposed utilizing the non-sliding window technique to extract 

the features of these datasets. Next, a set of ML models was trained on these two datasets to predict karate skills. 

Moreover, we proposed analyzing the performance gap of the HAR predictive models on the accuracy rate for the 

sensor readings and body joint angles datasets in recognizing karate skills. The proposed datasets and source code 

are publicly available on a GitHub repository1. The main contributions of this study are as follows: 1) We proposed 

framing the problem of recognizing four different karate skills as a HAR problem on two datasets: raw sensor and 

body joint angles. In this context, appropriate real-life datasets were utilized to achieve this goal. 2) We proposed a 

non-sliding window technique to extract the required features for training the proposed predictive HAR models. 3) 

To our knowledge, this is the first work to compare the performance of HAR models trained on two different karate 

datasets. 

 

II. RELATED WORK 

In [14] the authors introduced a framework for the intricate analysis of motion kinematics. This study relied on 

dynamic time wrapping and a hidden Markov classifier to compare the captured motion with the action templates. 

The Gesture Description Language segmentation module divides the motion samples recorded from the incoming 

motion capture (MoCap) system. The actions associated with kicking were defined solely based on attributes related 

to using legs. The attributes considered for kicking actions included the speed, the body joint, the body joint angles, 

and the force exerted by the legs. By analyzing these attributes, the framework could accurately identify and classify 

different kicking motions. The recognition rate of 0.92 indicated that the framework was highly effective in accurately 

recognizing and categorizing kicking actions based on leg-related attributes. The comparison and analysis of the 

MoCap measurements obtained from athletes have been addressed in [14, 15]. In [14] the authors deployed a signal 

comparison technique based on the Dynamic Time Warping (DTW) algorithm to evaluate the efficacy of commonly 

performed karate kicks executed by athletes. As a result, DTW is used to evaluate the singular action using distances 

and alignments on pre-processed MoCap data to define the repetition degree. However, nonlinear temporal 

displacements of action phases and spatial variations in trajectories can impact this repetition level. In }[15], the 

authors produced a visual representation to generate the kinematic analysis. The dataset was acquired by recording 

https://github.com/heba185a/HAR-karate
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the movements of two proficient black-belt practitioners (i.e., 560 recordings) using IMUs. A comprehensive analysis 

is conducted to compute the accuracy of the proposed algorithm by comparing similarities and differences with 

ground-truth data. The proposed study indicates that Algorithm 1 performs optimally when applied to activities of 

shorter duration, typically ranging from 2 to 4 seconds, and the actions are all classified correctly. However, this work 

is limited by its inability to yield favorable outcomes for extended physical activity and its reliance on a small sample 

of athletes to document proficient motions. The KUMITRON is an artificial intelligence system mainly designed to 

analyze real-time sensor data, aiming to deliver individualized feedback and recommendations to individuals 

engaged in karate [16]. This system employs a combination of a sensor and a drone camera to track the physical 

exertion of karate practitioners during kumite, which refers to the combat aspect of karate sport. By capturing data 

on factors such as speed, power, and reaction time, the KUMITRON system can provide valuable insights into the 

players' performance. The amalgamation of computer vision and ML algorithms enables the system to explore the 

adversary’s motions and offer recommendations on proactively predicting and preventing them with efficacy. The 

KUMITRON system revolutionizes the practice of karate, enabling practitioners to refine their techniques and 

augment their combat skills. In [17], the authors introduced a novel dataset named MS-KARD, which incorporates 

several vision perspectives and sensor data from accelerometers and gyroscopes. The dataset was specifically 

proposed to improve the identification of movements characterized by comparable spatial trajectories, making it a 

significant resource for research on human action recognition. It has 2,814,930 frames and 5,623,734 sensor data 

samples, encompassing 23 distinct karate movements. Notably, the data is captured using three IMUs and 2 RGB 

cameras. An ensemble-based approach, known as KarateNet, employs deep learning methods trained on the vision 

and sensor streams of MS-KARD to achieve precise classification for movements. A cross-sectional study was 

conducted, and it included a sample of 20 male karate players and 20 male swimmers aged between 20 and 50. The 

players performed four standing postural control tasks of varying difficulty  [18]. This study employs functional and 

behavioral tests that aim to assess accurately the extent of balance impairment. This implies that the practice of karate 

may have potential benefits as a pre-habilitation strategy that potentially contributes to the mitigation of age-related 

deterioration in balance control. The results emphasize the particularity of exercise training principles and the 

potential of karate as a means of pre-habilitation in mitigating age-related deteriorations in balance control. The 

authors in [19] have proposed a three-dimensional arm GUI to illustrate the Choku-zuki punches, considered basic 

karate punches. The participants can practice these punches using wireless communication technology, which 

facilitates the instantaneous monitoring and analysis of the rotational motion and fluctuating angular velocity of 

punches. The 3D image produced is subjected to a comparative analysis alongside a precise reference and a consistent 

punching pattern obtained from karate masters. This allows the participants to receive real-time feedback on their 

punching technique and make necessary adjustments. The accuracy of the proposed system is evaluated by 

conducting different tests on a sample of 10 female and male karate practitioners against 10 male and female newbies. 

Nevertheless, various problems arise for inexperienced individuals regarding manipulating their hands, specifically 

concerning rotation and fluctuations in angular velocity, which need more investigation. In [20], the authors aimed 

to study the application of linear acceleration sensors in the automatic recognition of punches in the context of karate. 

The acceleration of different karate punches is analyzed through the use of IMUs fixed to the wrists of athletes. 

Significant features are extracted, and convolutional neural network approaches are used to calculate the punches' 

statistical characteristics. In addition, the study incorporated the inclusion of movement devoid of punches as a 

measurable variable. The proposed model has evidenced an accuracy of 96% for the five punch categories tested, 

indicating its effectiveness in accurately calculating the punches' statistical characteristics.  
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Figure 1. The block diagram of the proposed karate skills HAR method. 

 

III. THE PROPOSED METHOD 

A. Overview  

Error! Reference source not found., illustrates the overall proposed methodology for this work. A specific 

dataset containing four karate skills was used to collect and process data for karate sport. Algorithm 1 was proposed 

for data processing purposes to ensure consistent data size during model training. The normalized data were then 

subjected to feature extraction by storing the data of each file after normalization as a row. A set of ML models were 

trained on the pre-processed dataset and evaluated. Finally, accuracy, precision, recall, and F1-score evaluation 

metrics were computed using the micro average to validate the model's performance. 

B. The proposed dataset  

We utilized an open-source dataset related to karate sports (Fathalla et al., 2023) The goal of the suggested system 

was recording and evaluating professional skills of the karate trainees on four karate skills in different skill levels: 

Gedan Barai, Oi-zuki, Jodan Age–uke and Soto–uke executed by 3-4 players. Initially, a dataset was collected based 

on three axes X, Y, Z, including 17 sensors Accelerometer and gyroscope placements spanning various body parts: 

the hip, legs, feet, shoulders, arms, hands, head, and spine. Information from these IMU sensors was interpreted 

using Axis Neuron software that was used to establish the motion position and direction of movement; thus, this 

enabled the monitoring of the movement and recording of performance in a calc file 178 files for four activities in 

total. After that, biomechanical analysis was performed with the BoB software method, where joint angles were 

extracted from the IMUs sensors. It focuses on 14 specific body joints, including the ankles, knees, hips, wrists, 

elbows, shoulders, lumbar, and neck areas, each described by three distinct joint angles across enumerated locations. 

Furthermore. Figure 2 shows the raw sensor data readings from an IMU sensor placed on the spinal region as the 

player performed the Gedan Barai exercise, while Figure 3 displays the data represented in body joint angles. In 

summary, it is worth noting that the first dataset was based on the readings of the accelerometer and gyroscope axes, 

while the second was based on body joint angles between bones. Furthermore, Table 1, Figure 2, and Figure 3 

emphasize the difficulty of the prediction in accelerometer-gyroscope axis reading compared to the body joint angles 

dataset. 

Algorithm 1. Data Normalization 

Input:  

      min_readings: the minimum number of readings required  

      readings_per_ file: the current number of readings per file  

1:  while readings_per_ f ile > min_readings do  

2:      readings_to_drop ← readings_per_ f ile − min_readings  

3:      if readings_to_drop > 0 then  

4:             interval_size ← readings_per_ f ile/readings_to_drop  
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5:             indices_to_drop ← [ ]  

6:             item ← interval_Size/2  

7:             for iteration = 1, 2, . . . , readings_to_drop do  

8:                  indices_to_drop[iteration] ← item  

9:                  item+ ← interval_Size  

10:           end for  

11:           for i = length(indices_to_drop) down to 1 do  

12:                remove element at index indices_to_drop[i] from readings_list  

13:           end for  

14:    end if  

15: end while 

 

 

C. The proposed system 

The dataset used in the study consists of 178 performances: raw sensor readings or the body joint angles. The number 

of performances for each activity varies, with 53 performances gathered by four players in Gedan Barai, 49 

performances gathered by four players in Oi-zuki, 39 performances gathered by three players in Age-uke, and 37 

performances gathered by three players in Soto-uke. This observation can be made because of the varying number of 

rows of each dataset file due to the start and end variation of the timestamp of the activity for each participant. This 

simply means each participant takes a different time to perform the same exercise, such as taking 1.5 seconds 

compared to another person taking 1.4 seconds to complete it. These discrepancies in timings further lead to 

differences in the number of rows of each file, which might affect the precision of the model. So, more preprocessing 

techniques are needed to make the time intervals uniform so that the data will be consistent and reliable. Thus, we 

propose Algorithm 1 with two inputs, namely, 1) the minimum number of readings required and 2) the current 

number of readings per file. In general, Algorithm 1 removes extra readings from each file in a dataset to have the 

same number of readings in each file for better accuracy in ML models that will be trained on this data. In Algorithm 

1 line 1 checks if the current number of readings per file is greater than or equal to the minimum required readings. 

If the check result is true, line 2 calculates the number of readings to drop, which is the difference between the current 

number of readings per file and the minimum required readings. Lines 3 to 13 start by checking if the number of 

readings to drop is greater than zero, Algorithm 1calculates the interval size, which represents the number of divided 

intervals for each file. Then, Algorithm 1 instantiates an empty list called indices to drop. It instantiates the variable 

item as half the interval size. Lines 7 - 10 contain a for loop that iterates the number of readings to drop. On each 

iteration, Algorithm 1 appends the current value of the item to indices to drop and increments it by the interval size. 

Finally, lines 11-13 represent another loop cycling through the indices to drop readings in reverse order. Each iteration 

removes the corresponding element from the readings list. 

Table 1. The mean, standard deviation (STD), maximum, and minimum readings for body joint angles, including 

right shoulder (INT/EXT) angles, left leg (INT/EXT) angles, and spinal (front/back) angles, along with raw x-axis 

readings from the right shoulder, left leg, and spinal regions. 

Activity IMUs 

Placement 
Body Joint Angles (◦) Accel Axis 

Readings(M/s2) 

Mean STD Max Min Mean STD Max Min 

Gedan-

Barai 

Right Shoulder -18.69 16.46 17.29 -51.84 0.72 1.21 5.90 -5.42 

Left Leg -0.97 1.38 1.596 -5.815 -0.36 1.03 2.80 -7.37 

Spine 11.07 11.43 33.20 -1.166 -0.05 0.65 2.29 -2.44 

Oi-zuki Right Shoulder -22.46 20.54 6.546 -

63.94 

0.67 0.72 2.96 -3.97 

Left Leg 3.77 2.66 8.620 -1.57 -0.35 0.75 1.89 -2.49 

Spine 11.33 11.81 33.33 -3.21 0.19 0.61 2.66 -2.08 

Soto-uke Right Shoulder -3.98 8.82 7.65 -

26.29 

0.68 0.75 3.35 -1.18 

Left Leg -3.98 4.92 2.96 - -0.44 0.87 2.15 -4.03 
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9.688 

Spine 22.98 8.56 39.46 13.04 0.15 0.74 3.09 -1.79 

Age-uke Right Shoulder -46.04 34.55 4.99 -

84.86 

0.75 0.56 2.25 -0.89 

Left Leg -5.56 4.75 2.99 -12.84 -0.45 0.95 2.64 -2.92 

Spine 20.71 8.50 37.59 10.45 0.19 0.75 3.73 -2.47 

 

IV. RESULTS 

A. Experiment using unnormalized data 

We want to find out the relative accuracy of two datasets-one based on the raw sensor data and the other on the body 

joint angles data-within an unnormalized scale. Then at the beginning, Pandas library was used to read each file and 

store the contents of it as a row. Owing to the fact that there was a difference in file sizes, we treated missing values 

by dropping them. So reducing the size of the overall dataset might impact model performance. We then split our 

data into 80% (142 sub-samples) to train our models and the remaining 20% (36 sub-samples) for testing. 

Afterwards, we tried several ML algorithms to train and evaluate our models. For the raw sensor readings, the K-NN 

algorithm showed a training accuracy of 95.77% and a testing accuracy of 91.66%, while in SVM, it showed a perfect 

training accuracy of 100% with a testing accuracy of 91.66%. DT showed a training accuracy of 99.29% with a testing 

accuracy of 80.55%. At last, the RF algorithm provided a training accuracy of 100% and a test accuracy of 91.66%. 

Besides, for  the body joint angle, the K-NN algorithm provided 96.47% for training and 91.6% for testing. Then, the 

training and test accuracy for the SVM algorithm is 100% and 97.22%, respectively. The DT algorithm showed a 

training accuracy of 100% and testing accuracy of 97.2%, while the RF algorithm perfectly reached an accuracy of 

100% for both training and testing. 

B. Experiment using normalized data 

We aim to evaluate the performance of our model by normalizing two datasets to address discrepancies in file sizes. 

In this, algorithm 1 is used to standardize all data files to a consistent format, reducing data loss; after that, we chose 

80% for training and used the rest of the data as testing data. Employing ML algorithms, we assessed our model’s 

performance on raw sensor readings and body joint angles datasets. Using the raw sensor readings dataset, the K-

NN algorithm achieved 95.77% for training accuracy versus 86.11% for test accuracy. Correspondingly, for SVM, 

perfect training accuracy, 100%, and a test accuracy of 94.44%. In the same direction, the DT algorithm had a perfect 

fit training accuracy of 99.29% and a test accuracy of 100%. Similarly, RF algorithms were also able to achieve perfect 

classification accuracy for both training and test sets, scoring 100% on both. In the body joint angles dataset, the K-

NN algorithm reached a training accuracy of 97.81% and a testing accuracy of 94.28%. the SVM, DT, and RF reached  

100% for training and testing accuracy.  In summary, the results show that our normalization algorithm significantly 

 

 

Figure 2. spine reading over time along three accele- 
motere axis readings. 

Figure 1. spine reading over time along three of body 
joint angles. 
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improves performance in the raw sensors and the body joint angles datasets. Also, decreasing over-fitting problem. 

Some of our models, such as RF, reached 100 accuracy, which is rarely seen in machine learning. However, we are 

not alone in this result; Hao Wu et al. [21] also reported 100% accuracy on a different HAR dataset for non-sport 

applications. 

Table 2. Proposed models’ performance through 10-fold cross-validation using a normalized sensor’s axis reading 

dataset. 

Classifier Accuracy Precision Recall F1-score 

KNN 94.93% ± 3.90% 95.82% ± 3.49% 94.93% ± 3.90% 94.93% ± 3.93% 

SVM 89.87% ± 7.02% 93.01% ± 4.84% 89.87% ± 7.02% 89.77% ± 7.28% 

DT 95.98% ± 4.56% 96.89% ± 3.40% 95.98% ± 4.56% 95.88% ± 4.71% 

RF 98.86% ± 2.29% 99.11% ± 1.77% 98.86% ± 2.29% 98.88% ± 2.25% 

 

Table 3. Models’ performance through 10-fold cross-validation using a normalized body joint angle. 

Classifier Accuracy Precision Recall F1-score 

KNN 96.57% ± 3.75% 97.50% ± 2.58% 96.57% ± 3.75% 96.55% ± 3.83% 

SVM 97.06% ± 2.94% 97.72% ± 2.30% 97.06 %± 2.94% 97.09% ± 2.91% 

DT 98.86%± 2.29% 99.07% ± 1.86% 98.86% ± 2.29 98.84% ± 2.32% 

RF 100.00% ± 0.00% 100.00% ± 0.00% 100.00% ± 0.00 % 100.00% ± 0.00% 

V. DISCUSSION 

 

To validate the performance of proposed ML models, we have applied a validation method called k-fold cross-

validation. The validation method is a statistical approach used to estimate the performance or accuracy of ML 

models. K-fold cross-validation is one of the strategies used to improve upon the holdout method. Predefined 

numbers of folds or partitions divide this data and carry on separate analysis in each fold. The last step is the 

computation of the mean and the standard deviation of the estimated total error. Table 2 and Table 3 presents the 

variation in performances of raw sensors and the body joint angles datasets using a proposed models with 10-fold 

cross validation technique. Although the model underwent several trainings and evaluations with different folds 

acting as the validation sets and the rest as training sets, Table 3 shows that the body joint angle dataset is a lot better 

in terms of accuracy for SVM algorithms. For KNN, DT, there existed a moderate amount of improvement whereas 

for the RF model, very slight improvement compared to that of the raw sensor dataset. Note that the highest average 

standard deviation of the body joint angle dataset does not exceed 0.0375, whereas in the raw sensor dataset this 

value is as high as 0.0702. This may indicate that accuracy measures in the body joint angle dataset are less varied 

compared to those of the raw sensor dataset and point to the higher consistency of model performance. 

Figure 3 and Figure 5  present a heatmap visualization of the Gedan Barai activity for a single player, illustrating the 

correlation between sensors and joints on the shoulder, spine, and foot in both the raw sensor data and the angle 

dataset. In comparison to  Figure 3, which depicts the raw sensor data, Figure 5  shows more distinct color variations. 

This is due to the correlation values in heatmap Figure 3 being closer to zero, indicating weak relations, while heatmap  

Figure 5 displays correlations near +1 or -1, signifying stronger connections between joints in the body joint angle 

dataset. 

This superiority can be reasoned with the fact that body joint data gives unique readings for each activity, hence 

making it much easier for any model to predict activities as compared to axis data shown in Additionally, in Table 1 

the angle data displays a notable distinction, with readings showing a more pronounced variation compared to the 

data from raw sensors. This variability enhances the accuracy of exercises performed using angle data. In a summary, 

the normalized body joint angles deliver high accuracy across all models. In contrast, the raw sensor data achieves 

high accuracy in certain models, with KNN showing the lowest accuracy at 86.11%. 
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VI. CONCLUSION 

This paper addresses karate skill recognition from IMU data as a HAR problem, focusing on four main activities: 

Gedan Barai, Oi-zuki, Jodan Age-uke, and Soto–uke based on a dataset from the literature. We developed a 

normalization algorithm and compared two datasets: raw sensor data from 17 body-placed sensors and derived body 

joint angles for 14 specific joints. Four basic ML models evaluated performance using a non-sliding window 

technique. Our normalization algorithm improved results in both datasets by reducing overfitting. Body joint angles 

consistently outperformed raw sensor data, as confirmed by 10-fold cross-validation (average standard deviations: 

0.0375 vs 0.0702). This study advances the development of a robust coaching assistant for karate analysis across skill 

levels and an intelligent arbitration system, potentially reducing costs and eliminating the need for human referees. 

Future research will explore advanced ML and deep learning models, expand the range of karate skills analyzed, and 

extend the methodology to other combat sports, broadening the application of this HAR approach. 
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