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The non-linear neutral difference equation of fourth order is given by the form, 

∆2 (𝑑(𝑛)∆2(𝑦(𝑛) + 𝑞(𝑛)𝑦(𝑛 − 𝛼))) + 𝑟(𝑛)𝑦(𝑛 − 𝛼 + 1) = 0 

where {𝑑(𝑛)}, {𝑞(𝑛)}, and {𝑟(𝑛)} are positive sequences for 𝑛 ∈ ℕ is studied. Certain new 

criteria for oscillation of non-linear neutral difference equations for fourth order are developed. 

The results are applied in Single Input Single Output (SISO) and Multi Input Multi Output 

(MIMO) systems using Z-transformation. Examples are provided to prove the results. 

Keywords: Difference equations, oscillatory behaviour, SISO and MIMO system, Z-transform. 

 

INTRODUCTION 

The objective of the paper is to have a clear study of non-linear neutral difference equations of fourth order given 

by, 

∆2(𝑑(𝑛)∆2(𝑦(𝑛) + 𝑞(𝑛)𝑦(𝑛 − 𝛼) ) + 𝑟(𝑛)𝑦(𝑛 − 𝛼 + 1) = 0              (1) 

where {𝑑(𝑛)}, {𝑞(𝑛)}, and {𝑟(𝑛)} are positive sequences of real numbers, and 𝑑(𝑠) satisfies 

                                        ∑ (
1

𝑑(𝑠)
) = ∞

∞

𝑠=𝑛0

                                                       (2)  

for 𝑛 ∈ ℕ and 𝛼 ∈ ℕ. A non-trivial solution of (1) is said to be oscillatory if the terms of sequence {𝑦𝑛} are neither 

eventually positive nor eventually negative and non-oscillatory otherwise. The difference equations are used in 

economics, geometry, electrical networks, biology, etc., see for example [1-10]. In recent times, the difference 

equations have achieved popularity to study the control systems for continuous and discrete times relating to real 

life problems. The problems are complex to handle so the control system design SISO & MIMO models to produce 

appropriate output by reducing the complexity. However usage of SISO proved to be unsatisfactory to solve for 

multiple systems and hence the reach to multi-input multi-output systems was expanded. For describing the nature 

of real-life problems the input-output (i/o) model is used. In difference equations i/o is modelled in a more 

convenient and compact way by transforming the system from one representation into another. In recent times 

transformation has become a very powerful mathematical tool to solve many problems. The Z-transform is one of 

the transformations which are widely used in applied mathematics, economics, etc. In this paper, certain results for 

the oscillatory behaviour in neutral difference equations are developed and are used for constructing SISO & MIMO 

models by Z-transformation. This process provides a complete outline to study the dynamical behaviour for 

periodic progressions of time. In Single Input Single Output (SISO) and Multi Input Multi Output (MIMO) system 

an improved output process is delivered. This paper has been organised as: Methodologies are stated, Definitions 
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with preliminaries are detailed, some Results for oscillatory solutions of (1) are obtained, Examples are given, 

Mathematical Modelling of (1) by Z transform is shown, followed by conclusion and future work.   

OBJECTIVES 

The objective is to understand the concept of non-linear neutral difference equations and their applications. To 

study the oscillatory and non-oscillatory behaviour of fourth order difference equations in control systems using 

SISO & MIMO models.  

METHODS 

The oscillatory behaviour of fourth order neutral difference equations are studied using Riccati technique, 

summation averaging technique, method of summation by parts,  comparison and substitution methods. 

Experimental data or trial data can be evaluated by means of system identification or input-output techniques like 

eigen-system realization algorithm and least squares estimates. The method of Z transform is used for constructing 

models of control systems. 

RESULTS 

Control Systems:  

Definition: If 𝑋(𝑠) = 𝑋(𝑥0, 𝑥1, … , 𝑥𝑛) is the input, and 𝑌(𝑠) = (𝑦0, 𝑦1, … , 𝑦𝑛) is the output then the following 

equation is formulated.  

∑ 𝑋(𝑠 + 1)

𝑛−1

𝑠=0

− ∑ 𝑋(𝑠)

𝑛−1

𝑠=0

= 𝑌(𝑛) 

A control system is defined as a set of electronic or mechanical device which can regulate another device or another 

system using control loops. The most essential part of distribution and production in industries takes place in 

control systems. They play a vital role in various types of industries, automation technology and computerization. 

Control systems are of 2 types: closed and open loop system. A set with input-output (i/o) system in control system 

is irreducible if no variable other than zero exist, otherwise the system is said to be reducible. The system involves 

both SISO and MIMO models for gaining output. SISO models are simple process as single parameter is used while 

MIMO models have comprehensive solutions as they use multiple parameters, thus enhancing the accuracy in 

stability, efficiency and product quality. 

The SISO (Single Input Single Output) Model in Difference Equations: 

Classical control system limits itself to SISO model. Here mathematical tool used in SISO is Laplace transformation 

and primarily analysis is carried out in the frequency domain. Thus the stability, performance, steady-state and 

transient response of the system are attained, hence their usage in manufacturing and industrial processes are 

higher. But modern control system employs complex mathematics and so the SISO model is comparatively less 

used in the industries. The SISO technology can send or receive only one spatial stream at the same time. They are 

used by inverse Laplace transform in the time domain. Here (1) is called a recursive difference equation. In order to 

obtain the desired output, firstly the control process is discretized into a number of time-steps. When the initial 

states 𝑥𝑖 at time 𝑡𝑖  are identified, from (1) the control signals are determined. The signals are sent to the plant to get 

𝑦𝑖  at 𝑡𝑖. The same procedure continues in next time-step till the process gets completed.  

The MIMO (Multi-Input Multi-Output) Model in Difference Equations: 

The MIMO model is used in modern control system. The mathematical tool for the system is linear algebra and the 

analysis is carried out in time domain. They are used successfully in industries. However, it cannot be used in time-

varying systems because of the complexity and the controller designs tend to minor imprecisions in the system. The 

fourth order difference equations with delay terms play a vital role as they indicate the time delay between input 

and output in MIMO models. These terms have a great effect on response in time, stability and behaviour in 

system. Hence essential control is required for gaining accuracy in the models. The controllability and stability are 

determined when difference equations are introduced for the models. By developing fourth order difference 

equations, the effects over deviating responses of inputs, and external disturbance are evaluated. Here 

controllability emphases on system reaction involved in controlling inputs, while stability emphases on ability of 

https://www.techtarget.com/whatis/definition/control-loop
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the system which returns to equilibrium state after perturbations for gaining preferred outcome. The MIMO model 

has wireless technology which allows many receivers and transmitters for the transmission of data at a single time 

interval. The MIMO models supports all wireless products and hence in mobile communications, digital television 

(DTV), home networks, wireless local area networks (WLANs), etc., they are used. Similar to the SISO model, if 

mathematical model of controller is chosen at interval 𝑡𝑖, the control process can be operated. The same procedure 

is followed to gain the output thus having same control principle for both systems.  

The Z-Transform: Definition: Here {𝑤(𝑝)} be taken as a number sequence for  𝑤(𝑝) = 0. The Z transformation 

for the sequence is given by the series, 

𝑍(𝑤(𝑝)) = ∑ (
𝑤(𝑝)

𝑧𝑝
)

∞

𝑝=0

 

where Z is the transform variable.  

Modelling of control systems and methods to transform nonlinear difference equations into linear 

difference equations:  

The purpose of mathematical modelling for real world problem is to understand and solve the complexity of 

problems numerically.  There are several methods to solve any system and in this paper results on control systems 

are discussed. The control systems are concerned with the input-output values which can be determined by the 

difference equations. The equations are numerically solved and solutions are determined where each solution 

becomes a control signal. From the signals the output values can be established. In mathematics, analysis and 

algebra are the core conversion mathematical tool in difference and differential equations. To convert any non-

linear equation to linear equation various methods such as the reduction method, solving by chain rule, the 

logarithmic function, etc., are used. The z- transforms are then applied in linear equations.   

Results on Oscillatory behaviour of Difference Equations: 

Certain new oscillatory criteria for (1) are established. Beginning with some lemmas followed by theorems, the 

results are obtained. For every solution {𝑦(𝑛)} of (1) the respective sequence {𝑧(𝑛)} is given by the form,  

                        𝑧(𝑛) = 𝑦(𝑛) + 𝑞(𝑛)𝑦(𝑛 − 𝛼)      (3) 

Lemma 1: Assume {𝑦(𝑛)} be a non-negative solution of (1), then exist two cases for (1). Defining for 𝑧(𝑛) we have,   

(i) 𝑧(𝑛) > 0, ∆𝑧(𝑛) > 0, ∆2𝑧(𝑛) > 0 and ∆3𝑧(𝑛) > 0. 

(ii) 𝑧(𝑛) > 0, ∆𝑧(𝑛) < 0, ∆2𝑧(𝑛) > 0 and ∆3𝑧(𝑛) > 0 for 𝑛 ≥ 𝑛1 ∈ 𝑁 where 𝑛1 is large.  

Proof: Here {𝑦(𝑛)} is a non-negative solution for (1) with every 𝑛 ≥ 𝑛0. Here 𝑧(𝑛) > 𝑦(𝑛) > 0 and 

                    ∆2(𝑑(𝑛)∆2𝑧(𝑛)) = −𝑟(𝑛)𝑦(𝑛 − 𝛼 + 1) < 0                                       (4) 

Therefore 𝑝(𝑛)∆2𝑧(𝑛) is of one sign and decreasing. Here ∆3𝑧(𝑛) is also one sign and there are two cases, either 

∆3𝑧(𝑛) < 0 or ∆3𝑧(𝑛) > 0 for 𝑛 ≥ 𝑛1 by (4). For ∆3𝑧(𝑛) < 0, ∃ a constant 𝐷 > 0 such that 𝑝(𝑛)∆2𝑧(𝑛) ≤ −𝐷 < 0. 

Summing this inequality we get, ∆2𝑧(𝑛) ≤ ∆2𝑧(𝑛1) − 𝐷 ∑
1

𝑑(𝑠)

𝑛−1
𝑠=𝑛1

. If 𝑛 → ∞ with (2) we have ∆𝑧(𝑛) → −∞ then 

eventually ∆𝑧(𝑛) < 0. But ∆3𝑧(𝑛) < 0, ∆2𝑧(𝑛) < 0 and ∆𝑧(𝑛) < 0 hence 𝑧(𝑛) < 0 for every 𝑛 ≥ 𝑛1. This gives a 

contradiction for ∆3𝑧(𝑛) > 0 and the proof is completed.  

Lemma 2: Assume {𝑦(𝑛)} to be a non-negative solution of (1) and 𝑧(𝑛) satisfy condition (ii) of Lemma 1. Suppose,  

                                   ∑ ∑
1

𝑑(𝑛2)

∞

𝑛2=𝑛3

∑ ( ∑ 𝑟(𝑛)

∞

𝑛=𝑛1

)

∞

𝑛1=𝑛2

∞

𝑛3=𝑛4

= ∞                               (5) 

then lim
𝑛→∞

𝑦(𝑛) = lim
𝑛→∞

𝑧(𝑛) = 0. 
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Proof: Assume {𝑦(𝑛)} to be a non-negative solution of (1). As 𝑧(𝑛) > 0 and ∆𝑧(𝑛) < 0, then there exist a finite limit, 

lim
𝑛→∞

𝑧(𝑛) = 𝑘. To prove 𝑘 = 0 take 𝑘 > 0, also for 𝜀 > 0 there is 𝑘 + 𝜀 > 𝑧(𝑛) > 𝑘. For 0 < 𝜀 < 𝑙
(1−𝑞)

𝑞
 the following 

inequality is verified,  

𝑦(𝑛) = 𝑧(𝑛) − 𝑞(𝑛)𝑦(𝑛 − 𝛼) > 𝑙 − 𝑞𝑧(𝑛 − 𝛼) > 𝑙 − 𝑞(𝑙 + 𝜀) > 𝑘𝑧(𝑛) 

Here 𝑙 =
𝑘−𝑞(𝑘+𝜀)

(𝑘+𝜀)
> 0. With above inequality and (4) we get, 

∆2(𝑑(𝑛)∆2𝑧(𝑛)) ≤ −𝑟(𝑛)𝑙𝑧(𝑛 − 𝛼 + 1) 

Taking summation for above inequality from 𝑛1 → ∞ and if 𝑛 = 𝑡 we have, 

−∆(𝑑(𝑛1)∆2𝑧(𝑛1)) ≥ 𝑙 ∑ 𝑟(𝑡)𝑧(𝑡 − 𝛼 + 1)

∞

𝑡=𝑛1

 

Taking summation from 𝑛2 → ∞ we get,  

𝑑(𝑛2)∆2𝑧(𝑛2) ≥ 𝑙 ∑ ( ∑ 𝑟(𝑡)𝑧(𝑡 − 𝛼 + 1)

∞

𝑡=𝑛1

)

∞

𝑛1=𝑛2

 

∆2𝑧(𝑛2) ≥
𝑙

𝑑(𝑛2)
∑ ( ∑ 𝑟(𝑡)𝑧(𝑡 − 𝛼 + 1)

∞

𝑡=𝑛1

)

∞

𝑛1=𝑛2

 

when 𝑧(𝑛 − 𝛼 + 1) ≥ 𝑘, ∆2𝑧(𝑛2) ≥
𝑙𝑘

𝑑(𝑛2)
∑ (∑ 𝑟(𝑡)∞

𝑡=𝑛1
)∞

𝑛1=𝑛2
. Again taking summation 𝑛3 → ∞,  

−∆𝑧(𝑛3) ≥ 𝑙𝑘 ∑
1

𝑑(𝑛2)

∞

𝑛2=𝑛3

∑ ( ∑ 𝑟(𝑡)

∞

𝑡=𝑛1

)

∞

𝑛1=𝑛2

 

A final summation from 𝑛4 → ∞ yield, 

𝑧(𝑛4) ≥ 𝑘𝑙 ∑ ∑
1

𝑑(𝑛2)

∞

𝑛2=𝑛3

∑ ( ∑ 𝑟(𝑡)

∞

𝑛=𝑛1

)

∞

𝑛1=𝑛2

∞

𝑛3=𝑛4

 

which contradicts (5) and so 𝑘 = 0. Also from the inequality 0 < 𝑦(𝑛) ≤ 𝑧(𝑛) we see that lim
𝑛→∞

𝑦(𝑛) = 0 and the proof 

is completed.  

Lemma 3: Assume 𝑚(𝑛) > 0, ∆𝑚(𝑛) ≥ 0, ∆2𝑚(𝑛) ≥ 0, ∆3𝑚(𝑛) ≤ 0 for every 𝑛 ≥ 𝑛0and for every 𝑘 ∈ (0,1) ∃ 𝑁 ≥

𝑛0 ∋
𝑚(𝑛−𝛼)

𝑛−𝛼
≥

𝑘𝑚(𝑛)

𝑛
  for every 𝑛 ≥ 𝑁. 

Proof: By mean value theorem and the monotonicity property of {∆𝑚(𝑛)}, we obtain the following result  

𝑚(𝑛) − 𝑚(𝑛 − 𝛼) = ∑ ∆2𝑚(𝑠)𝛼

𝑛−1

𝑠=𝑛−𝛼

≤ ∆2𝑚(𝑛 − 𝛼) 

then 

𝑚(𝑛) − 𝑚(𝑛 − 𝛼) = ∑ ∆2𝑚(𝑠)𝛼

𝑛−1

𝑠=𝑛−𝜏

≤ ∆2𝑚(𝑛 − 𝛼)𝛼 

Or                                                                        
𝑚(𝑛)

𝑚(𝑛−𝛼)
≤ 1 + 𝛼

∆2𝑚(𝑛−𝛼)

𝑚(𝑛−𝛼)
                                                                 (4) 

And also, 𝑚(𝑛 − 𝛼) ≥ 𝑚(𝑛 − 𝛼) − 𝑚(𝑛0) ≥ ∆𝑚(𝑛 − 𝛼)(𝑛 − 𝛼 − 𝑛0) ≥ ∆2𝑚(𝑛 − 𝛼)(𝑛 − 𝛼 − 𝑛1). Hence 𝑘 𝜖 (0,1) and 

𝑁 ≥ 𝑛0 then,  
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𝑚(𝑛 − 𝛼)

∆2𝑚(𝑛 − 𝛼)𝛼
≥ 𝑙(𝑛 − 𝛼),     𝑛 ≥ 𝑁                                        (5) 

Combining (4) with (5), we obtain, 

𝑚(𝑛)

𝑚(𝑛 − 𝛼)
≤ 1 + 𝛼

1

𝑙(𝑛 − 𝛼)
≤

𝑛

𝑙(𝑛 − 𝛼)
 

 Thus proof is completed. 

Lemma 4: Let conditions of Theorem 1 hold with ∆𝑧(𝑛) ≥ 0 then, ∆4𝑧(𝑛) ≤ 0 over (𝑁, ∞). Then 
𝑧(𝑛+1)

∆2𝑧(𝑛)
≥

𝑛−𝑁

3
 for 

every 𝑛 > 𝑁.  

Proof: From Mean Value theorem for {∆3𝑧(𝑛)} we get,  

∆𝑧(𝑛) = ∆𝑧(𝑁) + ∑ ∆3𝑧(𝑠)

𝑛−1

𝑠=𝑁

≥ (𝑛 − 𝑁)∆2(∆𝑧(𝑠)) 

Taking summation from 𝑁 to 𝑛 − 1, we have, 

𝑧(𝑛 + 1) ≥ 𝑧(𝑛) ≥ 𝑧(𝑁) + ∑ ∆2(∆𝑧(𝑠))

𝑛−1

𝑠=𝑁

= 𝑧(𝑁) + (𝑛 − 𝑁)∆2𝑧(𝑛) − 2𝑧(𝑛 + 1) + 𝑧(𝑛) − 𝑧(𝑁) 

Hence, 
𝑧(𝑛+1)

∆2𝑧(𝑛)
≥

𝑛−𝑁

3
 for 𝑛 > 𝑁. Thus the proof is completed.  

Lemma 5: Let conditions of Theorem 1 hold with ∆𝑧(𝑛) ≥ 0, then ∆4𝑧(𝑛) ≤ 0 ∀ 𝑛 ≥ 𝑁, thus (𝑛 − 𝑁)
∆3𝑧(𝑛)

∆𝑧(𝑛)
≤ 1. 

Proof:  Consider the inequality,  

∆𝑧(𝑛) ≥ ∆2 ∑ ∆2𝑧(𝑠)

𝑛−1

𝑠=𝑁

≥ (𝑛 − 𝑁)∆3𝑧(𝑛) 

In order to the results of oscillation assume the following representations as 𝑛 → ∞,  

                    𝑄 = lim
 

𝑖𝑛𝑓
𝑛

∆𝑑(𝑛)
∑ 𝑄𝑘(𝑠)

∞

𝑠=𝑛

,   𝑅 = lim
 

𝑠𝑢𝑝
1

𝑛
∑

𝑠

∆𝑑(𝑠)
𝑄𝑘(𝑠)

∞

𝑠=𝑛

                      (6) 

where 𝑄(𝑘(𝑠)) = 𝑘(1 − 𝑞)𝑟(𝑠) (
𝑠−𝛼

𝑠
) (

𝑠−𝛼−𝑁

4
) and 𝑘 ∈ (0,1) chosen arbitrarily. Also to satisfy case (i) of Lemma 1 

define,   

                                                 𝑏(𝑛) = ∆𝑑(𝑛) (
∆2𝑧(𝑛)

∆𝑧(𝑛)
)                                                                   (7) 

and 

                               𝑟 = lim
𝑛→∞

inf 𝑛
𝑏(𝑠 + 1)

∆𝑑(𝑠 + 1)
 and 𝑇 = lim

𝑛→∞
sup 𝑛

𝑏(𝑠)

∆𝑑(𝑠)
                              (8) 

 

Theorem 1: Assume that condition of Lemma 3 holds and {𝑝(𝑛)} is nondecreasing. Let {𝑦(𝑛)} be a solution of (1). 

If  

                      𝑄 = lim
 

𝑖𝑛𝑓
𝑛

∆𝑑(𝑛)
∑ 𝑄𝑘(𝑠)

∞

𝑠=𝑛

> 1                                               (8.1) 

then {𝑦(𝑛)} is oscillatory or 𝑦(𝑛) → 0 as 𝑛 → ∞.  

Proof: If Lemma 3 holds then conditions (i) and (ii) of Lemma 1 eventually holds. Hence there exist 2 cases: 𝑄 =

∞, 𝑅 = ∞ and 𝑄 < ∞, 𝑅 < ∞.  
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Case I: Let {𝑦(𝑛)} be a non-negative solution of (1). Now to prove {𝑧(𝑛)}, if the contrary 𝑄 ≠ ∞, 𝑅 ≠ ∞ is assumed 

then 𝑄 and 𝑅 do not belong to (i) of Lemma. This is a contradiction for 𝑧(𝑛) satisfy (ii) of Lemma 1 for 𝑄 = ∞, 𝑅 =

∞. Thus from Lemma 2 we get lim
𝑛→∞

𝑦(𝑛) = 0.  

Case II: To prove  𝑄 < ∞ and 𝑅 < ∞ the following conditions are to be satisfied,  

𝑄 ≤ 𝑟 − 𝑟2 , 𝑄 + 𝑅 ≤ 1         (C 1) 

Assume 𝑧(𝑛) satisfies (i) of Lemma-1. With (1) and Lemma-2 the inequality becomes,   

𝑦(𝑛) = 𝑧(𝑛) − 𝑞(𝑛)𝑦(𝑛 − 𝛼) > 𝑧(𝑛) − 𝑞(𝑛)𝑧(𝑛 − 𝛼) ≥ (1 − 𝑞(𝑛))𝑧(𝑛) ≥ (1 − 𝑞)𝑧(𝑛) 

Using above inequality in (1) then,  

         ∆2(𝑑(𝑛)∆2𝑧(𝑛)) ≤ −𝑟(𝑛)(1 − 𝑞)𝑧(𝑛 − 𝛼 + 1) ≤ 0                (9) 

From Lemma 5 if  𝑤(𝑛) > 0  and (9) holds then 𝑤(𝑛) satisfy the following,   

          ∆𝑏(𝑛) =
∆ (∆(𝑑(𝑛)∆2𝑧(𝑛)))

∆𝑧(𝑛)
−

∆𝑑(𝑛 + 1)∆2𝑧(𝑛 + 1)

(∆𝑧(𝑛 + 1))
2 − ∆𝑑(𝑛)

∆2𝑧(𝑛)

∆𝑧(𝑛)
               (10) 

≤ −𝑟(𝑛)(1 − 𝑞)
𝑧(𝑛 − 𝛼 + 1)

∆𝑧(𝑛)
− 𝑏(𝑛 + 2) −

1

∆𝑑(𝑛 + 1)
(𝑏(𝑛 + 1))

2
 

For 𝑚(𝑛) = ∆𝑧(𝑛) of Lemma 3 and from (6) we get,  

1

∆2𝑧(𝑛)
≥

𝑘(𝑛 − 𝛼)

𝑛

1

∆2𝑧(𝑛 − 𝛼)
,    𝑁 ≤ 𝑛 

From (10),  

∆2𝑏(𝑛) ≤ −𝑘𝑟(𝑛) (
𝑛 − 𝛼

𝑛
) (1 − 𝑞)

𝑧(𝑛 − 𝛼 + 1)

∆𝑧(𝑛 − 𝛼)
− 𝑏(𝑛 + 2) −

1

∆𝑑(𝑛 + 1)
(𝑏(𝑛 + 1))

2
 

Using Lemma 4 for 
𝑧(𝑛+1)

∆2𝑧(𝑛)
≥

𝑛−𝑁

3
 then,  

   ∆𝑏(𝑛) + 𝑄(𝑘(𝑛)) + 𝑏(𝑛 + 2) +
1

∆𝑑(𝑛 + 1)
(𝑏(𝑛 + 1))

2
≤ 0                         (11) 

Since 𝑏(𝑛) > 0, then ∆2𝑏(𝑛) ≤ 0 hence from (11),  

−  ∆𝑏(𝑛) ≥
1

∆𝑑(𝑛 + 1)
(𝑏(𝑛 + 1))

2
+ 𝑏(𝑛 + 2) 

Summing last inequality,  

                                                𝑏(𝑛) ≤ 𝑏(𝑁) + ∑ 𝑏(𝑠 + 2)−1

𝑛−1

𝑠=𝑛

                                          (12) 

Using (2) in (12) and applying limit gives,   lim
𝑛→∞

 𝑏(𝑛) = 0. From Lemma 5 and 𝑤(𝑛) we get,  

0 ≤ 𝑟 ≤ 𝑇 ≤ 1      (13) 

To prove (C 1) holds then there exist 𝜀 > 0 and from 𝑄 and 𝑟 of Lemma 5, take 𝑛2 > 𝑁 such that 

1

∆𝑑(𝑛)
∑ 𝑄(𝑙(𝑠))

∞

𝑠=𝑛

≥ −𝜀 + 𝑄 and  
𝑏(𝑛 + 1)

∆𝑑(𝑛 + 1)
≥ −𝜀 + 𝑟 

for every 𝑛 ≥ 𝑛2. Summing (11) as  𝑛 → ∞ and using lim
𝑛→∞

𝑏(𝑛) = 0 then, 
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              𝑏(𝑛) ≥ ∑ 𝑄(𝑙(𝑠))

∞

𝑠=𝑛

+ ∑ (
∆𝑑(𝑠 + 1)𝑏(𝑠 + 2) + (𝑏(𝑠 + 1))

2

∆𝑑(𝑠 + 1)
)

∞

𝑠=𝑛

                   (14) 

We know that  ∆2𝑑(𝑛) > 0 hence, 

𝑏(𝑛) ≥ ∑ 𝑄(𝑙(𝑠))

∞

𝑠=𝑛

+ ∑ (
∆𝑑(𝑠 + 1)𝑏(𝑠 + 2)

∆𝑑(𝑠 + 1)
)

∞

𝑠=𝑛

+ ∑ (
(𝑏(𝑠 + 1))

2
(𝑠 + 1)∆𝑝(𝑠 + 1)

∆𝑑(𝑠 + 1)(𝑠 + 1)∆𝑑(𝑠 + 1)
)

∞

𝑠=𝑛

 

𝑏(𝑛) ≥ (𝑄 − 𝜀) + ∑
𝑏(𝑠 + 1)

∆𝑑(𝑠 + 1)
(

𝑏(𝑠 + 1)(𝑠 + 1)∆𝑑(𝑠 + 1)

(𝑠 + 1)∆𝑑(𝑠 + 1)
)

∞

𝑠=𝑛

+ ∑ (
𝑏(𝑠 + 2)(𝑠 + 1)∆𝑑(𝑠 + 1)

(𝑠 + 1)∆𝑑(𝑠 + 1)
)

∞

𝑠=𝑛

 

≥ (−𝜀 + 𝑄) + (−𝜀 + 𝑟)2 ∑ (
(𝑠 + 1)∆𝑑(𝑠 + 1)

𝑠 + 1
)

∞

𝑠=𝑛

+ ∑ 𝑏(𝑠 + 2)

∞

𝑠=𝑛

 

𝑛
𝑏(𝑛)

∆𝑑(𝑛)
≥ (−𝜀 + 𝑄) + (−𝜀 + 𝑟)2𝑛 ∑

∆𝑑(𝑠 + 1)

∆𝑑(𝑠)
+ 𝑛

𝑏(𝑠 + 2)

∆𝑑(𝑠)

∞

𝑠=𝑛

 

With (1), 

                                        𝑛
𝑏(𝑛)

∆𝑑(𝑛)
≥ (−𝜀 + 𝑄) + (−𝜀 + 𝑟)2                                              (15) 

Taking lim 𝑖𝑛𝑓 on both sides as 𝑛 → ∞ we obtain get, lim
𝑛→∞

𝑖𝑛𝑓 𝑛
𝑏(𝑛)

∆𝑑(𝑛)
≥ (−𝜀 + 𝑄) + (−𝜀 + 𝑟)2. By repeating the same 

we have, 𝑟 ≥ (−𝜀 + 𝑄) + (−𝜀 + 𝑟)2. Here ε > 0 is arbitrarily small then from 𝑟 ≥ 𝑄 + 𝑟2 the following result is 

obtained. 

                                                              𝑄 ≤ 𝑟 − 𝑟2                                                       (16) 

Thus the inequality of (C 1) is proved. Now to prove the second inequality multiply (11) by 
𝑛

∆𝑑(𝑛)
. Taking summation 

from 𝑛2to ∞  we get,  

∑
𝑠

∆𝑑(𝑠)
∆𝑏(𝑠)

∞

𝑠=𝑛2

≤ − ∑
𝑠

∆𝑑(𝑠)
𝑄(𝑘(𝑠))

∞

𝑠=𝑛2

− ∑
𝑠

∆𝑑(𝑠)
(𝑏(𝑠 + 2) +

(𝑏(𝑠 + 1))
2

∆𝑑(𝑠 + 1)
)

∞

𝑠=𝑛2

 

By summation by parts, we obtain 

𝑛𝑏(𝑛)

∆𝑑(𝑛)
≤

𝑛2𝑏(𝑛2)

∆𝑑(𝑛2)
− ∑

𝑠

∆𝑑(𝑠)
𝑄(𝑘(𝑠))

∞

𝑠=𝑛2

− ∑
𝑠

∆𝑑(𝑠)
(𝑏(𝑠 + 2) +

(𝑏(𝑠 + 1))
2

∆𝑑(𝑠 + 1)
)

∞

𝑠=𝑛2

+ ∑
∆(𝑠)

∆𝑑(𝑠)
𝑏(𝑠 + 1)

∞

𝑠=𝑛2

 

As ∆𝑑(𝑛) > 0 then,  
∆(𝑠)

∆𝑑(𝑠)
=

∆2(𝑠)

∆𝑑(𝑠+1)
−

∆(𝑠)∆𝑑(𝑠)

∆𝑑(𝑠+1)
≤

(𝑠+1)

∆𝑑(𝑠+1)
. Therefore,  

𝑛𝑏(𝑛)

∆𝑑(𝑛)
≤

𝑛2𝑏(𝑛2)

∆𝑑(𝑛2)
− ∑

𝑠

∆𝑑(𝑠)
𝑄(𝑘(𝑠))

∞

𝑠=𝑛2

+ ∑ [
(𝑠 + 1)

∆𝑑(𝑠 + 1)
𝑏(𝑠 + 1) −

(𝑠)𝑏(𝑠 + 2)

∆𝑑(𝑠)
−

(𝑠)(𝑏(𝑠 + 1))
2

∆𝑑(𝑠)∆𝑑(𝑠 + 1)
]

∞

𝑠=𝑛2

 

𝑛𝑏(𝑛)

∆𝑑(𝑛)
≤

𝑛2𝑏(𝑛2)

∆𝑑(𝑛2)
− ∑

𝑠

∆𝑑(𝑠)
𝑄(𝑘(𝑠))

∞

𝑠=𝑛2

+ ∑ [
(𝑠 + 1)

∆𝑑(𝑠 + 1)
𝑤(𝑠 + 1) −

(𝑠)(𝑏(𝑠 + 1))
2

∆𝑑(𝑠)∆𝑑(𝑠 + 1)
−

(𝑠)𝑏(𝑠 + 2)

∆𝑑(𝑠)
]

∞

𝑠=𝑛2

 

By means of the inequality,  

𝑢𝐴 −
𝐷

𝐶
(

𝐴2

𝐶 + 1
− 𝐵) ≤

𝑢

𝐷
(𝐶 + 1) 

where 𝑢 =
(𝑠+1)

∆𝑑(𝑠+1)
, 𝐴 = 𝑏(𝑠 + 1), 𝐵 = 𝑏(𝑠 + 2), 𝐶 = ∆𝑝(𝑠 + 1), 𝐶 = ∆𝑝(𝑠), 𝐷 = 𝑆 we get the following, 
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𝑛𝑏(𝑛)

∆𝑑(𝑛)
≤

𝑛2𝑏(𝑛2)

∆𝑑(𝑛2)
− ∑

𝑠

∆𝑑(𝑠)
𝑄(𝑘(𝑠))

∞

𝑠=𝑛2

+ ∑ (
𝑠 + 1

𝑠
)

∞

𝑠=𝑛2

 

It follows that  

𝑛𝑏(𝑛)

∆𝑑(𝑛)
≤

𝑛2𝑏(𝑛2)

∆𝑑(𝑛2)
−

1

𝑛
∑

𝑠

∆𝑑(𝑠)
𝑄(𝑘(𝑠))

∞

𝑠=𝑛2

+
1

𝑛
∑ (

𝑠 + 1

𝑠
)

∞

𝑠=𝑛2

  

Using lim sup  from  𝑛 to ∞  then, 𝑇 + 𝑅 ≤ 1. From (13) and (16), 

 𝑄 ≤ −𝑟2 + 𝑟 ≤ 𝑇 ≤ 1 − 𝑅 

Therefore the second inequality of (C 1) is also proved and thus both the cases are satisfied. Here case I hold but the 

result obtained from case II gives a contradiction to (8.1). Thus the proof is completed.  

Theorem 2: Assume the condition of Lemma 2 holds. Let {𝑑(𝑛)} be increasing, {𝑦(𝑛)} be a solution of (1). If  

                                                                                  𝑄 + 𝑅 > 1                                                         (17) 

then {𝑦(𝑛)} either oscillate or satisfy the condition lim
𝑛→∞

𝑦(𝑛) = 0.  

Proof: Assume {𝑑(𝑛)} to be a non-oscillatory solution in (1). If case I for Theorem 1 hold, 𝑧(𝑛) do not satisfy case 

(i) for Lemma 1. It is known that 𝑧(𝑛) eventually satisfies case (ii) of Lemma 1 which is similar to proof for case I in 

Theorem 1 hence lim
𝑛→∞

𝑦(𝑛) = 0 by Lemma 2. Without loss of generality case II of Theorem 1 is assumed and then 

the same result, lim
𝑛→∞

𝑦(𝑛) = 0 by Lemma 2 is achieved. If 𝑄 and 𝑅 satisfy the inequality,  

𝑄 + 𝑅 ≤ 1 

which yield a contradiction to (17). Thus the proof is completed.  

Examples: The examples demonstrate the main results.  

Example 1: The difference equation of the following form is considered 

∆2(𝑛∆2(𝑦(𝑛 + 1))) =
(−1)𝑛5

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)
[38𝑦𝑛

5 + 26𝑦𝑛
4 + 153𝑦𝑛

3 + 122𝑦𝑛
2 + 38𝑦𝑛 + 4] 

Thus every condition of Theorem 1 is satisfied. Here {𝑦𝑛} = {
1

𝑛
} is one such solution and every solution is oscillatory.  

Example 2: The nonlinear difference equation of the following form is considered    

(𝑤(𝑝 + 1))
2

− 5(𝑤(𝑝 + 1))𝑤𝑝 − 6𝑤𝑝2 = 0  (𝐸 1) 

The Z transform converts nonlinear difference equations to linear difference equations. Hence take  

𝑢 =
𝑤(𝑝+1)

𝑤𝑝
     (𝐸 2) 

Substituting in (E1) implies 𝑢2 − 5𝑢 − 6 = 0,  

𝑢 = 6   (E3)  Or  𝑢 = −1  (𝐸 4) 

By (E3) and (E4) in (E2) implies,  

6 =
𝑤(𝑝 + 1)

𝑤𝑝

            (or)          − 1 =
𝑤(𝑝 + 1)

𝑤𝑝

 

This implies,  

𝑤(𝑝 + 1) − 6𝑤(𝑝) = 0  (𝐸 5) Or  𝑤(𝑝 + 1) + 𝑤(𝑝) = 0  (𝐸6) 

Here (E5) and (E6) become linear equations. Now taking Z-transform for (𝐸 5), we get,   

𝑍{𝑤(𝑝 + 1)} − 6𝑍{𝑤(𝑝)} = 0 
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where 𝑤0 = 1, then  

𝑧𝑍{𝑤(𝑝)} − 𝑧𝑤0 − 6𝑍{𝑤(𝑝)} = 0 

This implies Z{𝑤(𝑝)}(𝑧 − 6) = 𝑧 which gives {𝑤(𝑝)} =
𝑧

𝑧(𝑧−6)
 , thus 𝑤(𝑝) = 6𝑝. Similarly, −1 =

𝑤(𝑝+1)

𝑤(𝑝)
 gives 𝑤(𝑝 +

1) + 𝑤(𝑝) = 0 then 

𝑍{𝑤(𝑝 + 1)} + 𝑍{𝑤(𝑝)} = 0    (E7) 

Taking Z-transforms for (𝐸7),  𝑧𝑍{𝑤(𝑝)} − 𝑧𝑤0 + 𝑍{𝑤(𝑝)} = 0 implies {𝑤(𝑝)} =
𝑧

𝑧(𝑧+1)
 thus obtain the result, 𝑤(𝑝) =

(−1)𝑝. 

Mathematical Modelling of Difference Equations in Control Systems with Z-transform:  

The mathematical modelling plays a vital role in resolving the existing problems. Any system can be represented 

mathematically and with existing mathematical tool the necessary conditions and solutions can be determined. The 

main purpose of this mathematical modelling is to convert a non-linear system to a linear system of equations. 

Numerical analysis, computational methods, iterations, etc., can solve the problem numerically. In this paper, the Z 

transformation is used for converting difference equations from non-linear form to linear form and also for solving 

the linear problems numerically. Commonly, the SISO models are linear system of equations from which the roots 

for characteristic equations should not be non-distinct. In terms of MIMO models both non-linear and linear 

system of equations are used from which the control signals are explicitly expressed. For a linear system, the 

solution  

𝑦(𝑛) = {
 1    for n ≥ 0
 0    for n < 0

 

is called as a unit step of difference equations. Here the solution 𝑦(𝑛) is called as discrete functions or as control 

signals. For example if 𝑦(𝑛) = (
1

2
)

𝑛

 then control signal oscillate for sequence, 𝑦(𝑛) = 𝑥(𝑛 + 1) − 𝑥(𝑛) and 𝑦(𝑛) =

𝑥(𝑛) − 𝑥(𝑛 − 1) is shown.   

CONCLUSION  

In this paper, modelling of difference equations for SISO and MIMO systems provides an understanding on 

technical approaches. The control system is studied and its types were discussed with examples. New conditions 

and criteria for oscillation of difference equations by Z-transform for SISO and MIMO models are established. The 

methodology to transform difference equations of nonlinear form into linear form is analysed. The procedures to 

apply Z-transforms for linear difference equations are shown with example.  

FUTURE WORK 

The future work is to study the properties such as stability, bifurcations, etc., for SISO and MIMO models of control 

systems using algorithms using higher order difference equations. Also to extend the work for refining models, 

integrate advance techniques and control strategies, thus applying them to large scale and complex systems of real 

life application. These works enhance the understanding and importance of difference equations and their 

applications in SISO and MIMO systems which eventually lead to efficient solutions of real-world problems. 
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