
Journal of Information Systems Engineering and Management

2025, 10(15s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Enhancing Sustainable Farming Practices through FPGA

Technology

K. Suganthi1, Manikandan AVM2, B. Vishwanath Reddy3, S. Karun Kumar4

1,2,3,4Department of ECE, SRM Institute of Science and Technology, Kattankulathur, India.
1suganthk@srmist.edu.in, 2manikanm@srmist.edu.in, 3br5640@srmist.edu.in, 4ks5945@srmist.edu.in

ARTICLE INFO ABSTRACT

Received: 02 Dec 2024

Revised: 25 Jan 2025

Accepted: 02 Feb 2025

Sustainable farming is essential to address the increasing demand for food while minimizing

environmental impact. Field-Programmable Gate Arrays (FPGAs) provide a powerful and

energy-efficient platform for real-time processing, which can be leveraged to optimize various

aspects of agricultural management. This paper focuses on the use of FPGA technology to

enhance real-time monitoring and control systems for irrigation, ensuring that crops receive

optimal water levels based on current soil moisture conditions. By interfacing with soil moisture

sensors, FPGA systems can collect data and immediately adjust irrigation schedules, preventing

over-watering and conserving water resources. The low-power consumption and high-speed

processing capabilities of FPGAs make them ideal for continuously monitoring moisture levels

and activating irrigation systems as needed. Additionally, FPGA-based systems provide the

flexibility to easily adjust to varying environmental conditions and crop types, making them

highly adaptable for different farming scenarios. The implementation of FPGA in these areas

promotes more precise and efficient water usage, contributing to the overall sustainability of

farming operations by reducing water waste and maintaining soil health.

Keywords: sustainable farming, FPGA, real-time monitoring, irrigation systems, soil moisture

sensors, water conservation, adaptive algorithms, energy efficiency, scalability, dynamic

agricultural environments.

1. INTRODUCTION

Sustainable farming practices are essential in today’s world due to the increasing demands for food and the escalating

environmental impact of traditional agriculture. Water scarcity and high energy consumption in farming are critical

issues that need to be addressed to ensure long-term agricultural productivity while minimizing environmental

damage. Traditional irrigation systems are often inefficient, leading to water overuse and increased energy demands.

Inefficient resource management not only increases operational costs but also exacerbates environmental concerns

such as groundwater depletion and carbon emissions from energy-intensive operations platforms. In light of these

challenges, there is a pressing need for smarter, more efficient irrigation management systems [1], [2]. While modern

irrigation systems equipped with sensors and controllers have shown promise, they often rely on microcontrollers or

general-purpose processors that are limited in terms of real-time data processing, scalability, and power efficiency.

These systems typically operate with fixed schedules, regardless of real-time environmental conditions, leading to

suboptimal water usage [3], [4].

Field Programmable Gate Arrays (FPGAs) are a powerful alternative to traditional processing systems, offering

advantages such as parallel processing, low power consumption, and real-time reconfigurability. These features make

FPGAs an ideal platform for developing an intelligent irrigation system that can process environmental data in real

time and adapt irrigation patterns accordingly. Unlike fixed-function processors, FPGAs can be reprogrammed on-

site to accommodate new algorithms or respond to changing requirements, making them particularly suitable for

dynamic agricultural environments [3], [5], [6], [7].

mailto:suganthk@srmist.edu.in
mailto:manikanm@srmist.edu.in
mailto:br5640@srmist.edu.in
mailto:ks5945@srmist.edu.in

177

J INFORM SYSTEMS ENG, 10(15s)

2. OBJECTIVES

The objective of this research is to design and implement an FPGA-based irrigation system that optimizes water usage

while minimizing energy consumption. The proposed system will collect real-time environmental data, process it

using adaptive algorithms, and control irrigation mechanisms based on crop needs and external weather conditions.

By doing so, the system aims to reduce waste and promote sustainable agricultural practices.

A key element in regulating the movement of water and heat energy through evaporation and plant transpiration

between the earth’s surface and the atmosphere is soil moisture. Therefore, the creation of precipitation and the

evolution of weather patterns are significantly influenced by soil moisture. Therefore, controlling the beneficial

amount of water for the soil will be made easier by using a specific soil sensor and integrating it with FPGA and

Verilog code [8], [9], [10]. Small-scale integrated (SSI) circuits originated from early integrated circuits created in

the 1960s, which had under 100 transistors per chip. Over the decades, the number of transistors on chips increased

dramatically, reaching up to 1 billion today. This exponential growth in digital logic capacity posed challenges for

designers, prompting the development of field programmable gate arrays (FPGAs) in the mid-1980s. FPGAs use

RAM-based lookup tables instead of traditional AND-OR gates and consist of customizable logic blocks (CLBs) and

I/O blocks. As digital circuit design evolved, particularly in the late 1980s and early 1990s, traditional design

techniques became less viable. Today, computer-aided design and Hardware Description Languages (HDLs), such as

VHDL, are essential for developing digital circuits, allowing for early error correction and easier debugging, especially

for large systems [7], [11], [12].

3. DESIGN STRATEGIES

Figure 1 illustrates the basic model design strategy in a flow chart format. The process begins at the algorithmic level,

which is comparable to conditional statements such as “if,” “case,” and loop statements commonly found in C code.

Next, it moves to the Register Transfer Level (RTL), where registers are connected through Boolean equations. From

there, the design progresses to the gate level, where components are linked using gates like AND and NOR. Finally,

the process reaches the switch level, where MOS transistors are integrated into the gates and function as switches [5].

Fig.1 - Flow chart for FPGA design

The design flow of a Field-Programmable Gate Array (FPGA) involves several key steps from the initial project

conception to final testing. It starts with the specification phase, where system requirements are gathered and

documented. Stakeholders define the objectives and functionalities of the FPGA, ensuring that the final product

meets user needs and expectations. This foundational phase is critical for guiding the subsequent design efforts [13],

[14].

178

J INFORM SYSTEMS ENG, 10(15s)

The next step involves defining the Finite State Machine (FSM), which models the system's operational flow as a state

machine. This abstraction helps designers understand how the FPGA transitions between states based on different

inputs, simplifying decision-making and aiding in debugging. Once the FSM is established, the design moves to the

coding phase, where the specifications and FSM are translated into Verilog, detailing the FPGA's functionality.

Attention to detail is crucial during coding, as errors can carry through the development process. [13].

After the Verilog code is written, it undergoes simulation to verify its correctness. Simulation tools assess the code's

behavior under various input conditions, allowing designers to identify and fix issues before moving to the synthesis

stage. During synthesis, the high-level Verilog code is transformed into a gate-level representation, resulting in a

netlist that details the logic gates and interconnections needed for FPGA implementation. This step is essential for

bridging high-level design and low-level hardware. Following synthesis, the netlist is placed and routed onto the

FPGA fabric. This implementation process maps the design to the FPGA’s physical resources, directly affecting the

performance and efficiency of the final hardware implementation [14].

After successfully placing and routing the design, a bitstream file is generated, containing the configuration data

needed to program the FPGA. This moment is pivotal as it marks the completion of the logical design and prepares

for hardware programming. The bitstream is then loaded onto the FPGA, which configures it to perform tasks in real-

time. Following programming, the design undergoes hardware testing to ensure it functions correctly under real-

world conditions. If issues arise, the design enters the debug and optimize phase, where engineers diagnose problems

and implement corrections, which may involve revisiting earlier stages. Once functioning properly, optimizations can

enhance performance and efficiency, highlighting the need for flexibility in the development process [7].

4. METHODS

4.1. Irrigation control

In the context of our project, "Enhancing Sustainable Practices through FPGA Technology," effective irrigation

control is paramount for optimizing water usage. This section delineates the methodologies implemented within the

irrigation control system, detailing input-output mechanisms, interval time calculations, motor control logic, and

LED dimming through Pulse Width Modulation. Figure 2 illustrates these processes in a flowchart format, providing

a comprehensive overview of the system's architecture and functionality. By integrating these techniques, we aim to

foster sustainable agricultural practices through precise and efficient irrigation management.

4.1.1. Inputs and Outputs Overview

This system takes several inputs and produces outputs that control hardware components like a motor and LEDs.

The inputs include an array of switches (`SW[17:0]`) and a clock signal (`CLOCK_50`). The switches are used to

configure the irrigation system. Specifically, `SW[5:0]` selects the time interval (in hours) between motor

activations, which is essential for controlling irrigation cycles. Other switches, such as `SW[17:14]` and `SW[13:11]`,

adjust the brightness of red and blue LEDs using Pulse Width Modulation (PWM). The output ports include

`GPIO[20:0]` to control LEDs and the irrigation motor, and `HEX0` and `HEX1`, which display the selected time

interval on seven-segment displays.

4.1.2. Interval Time Calculation (The `lim` Register)

The system uses the ̀ lim` register to store the interval time, which determines when the irrigation motor should turn

on. The value of `lim` is selected based on the hour chosen by `SW[5:0]`. This design uses a formula to calculate the

interval time for each hour: `d99999999 + ((d149999999 / 24) * hour)’. The formula accounts for the base interval

and adds time depending on the selected hour. For example, when `SW[5:0]` represents 1 hour, the interval is

`106249999`; for 24 hours, it is `249999998`. This calculation ensures that the irrigation motor turns on after a

specific delay.

179

J INFORM SYSTEMS ENG, 10(15s)

Fig.2 - Irrigation control mechanisms

4.1.3. Seven-Segment Display for Time Intervals

Two seven-segment displays (`HEX0` and `HEX1`) are used to show the current irrigation interval. The

`SevenSegmentDecoder` modules convert the switch input (`SW[5:0]`) into a format that the displays can represent.

`HEX0` shows the lower 4 bits (`SW[3:0]`), while `HEX1` shows the upper 2 bits (`SW[5:4]`). This allows the user

to visually verify the selected irrigation hour on the displays.

4.1.4. Motor Control Logic

The motor is controlled using the `stay_on` module, which keeps the motor on for a defined period based on the

calculated interval stored in `lim`. This module uses the system clock (`CLOCK_50`) to count down from the value

stored in `lim`. When the countdown reaches zero, the motor turns on for a short duration (2 seconds, as indicated

by the `stay_on` input being set to `28’d99999999`). After the motor has been on for the required time, it turns off

until the next interval. If the reset signal (`SW[7]`) is activated, the countdown is reset immediately.

4.1.5. LED Dimming Using PWM

The system controls the brightness of red and blue LEDs using Pulse Width Modulation (PWM). Two `LED_PWM`

modules handle this: one for the red LED (`GPIO[1]`) and another for the blue LED (`GPIO[0]`). Each PWM module

takes a portion of the switch inputs to determine the duty cycle. For example, the red LED uses inputs from `SW[17]`

and `SW[13:11]`, while the blue LED uses inputs from `SW[17:14]`. The PWM duty cycle controls how much time

the LED remains on during each cycle, effectively dimming or brightening the LEDs depending on the switch settings.

4.2. Soil Moisture Monitoring

The soil_moisture_monitor module is a crucial component of an automated irrigation system that intelligently

controls a water pump based on the soil moisture levels detected by a sensor. The design focuses on ensuring that the

soil remains within a desired moisture range, promoting healthy plant growth while conserving water [8], [9], [11],

[15].

4.2.1. Inputs and Outputs

The module has several key inputs and outputs that facilitate its operation. The clock input (`clk`) serves as the timing

mechanism, enabling the module to execute state transitions and logic operations synchronously. The reset input

180

J INFORM SYSTEMS ENG, 10(15s)

(`reset`) allows the system to return to a known starting condition, ensuring reliability and predictability in

operation. The moisture level input (`moisture_level`) is a 10-bit digital value representing the current moisture level

in the soil, as measured by an Analog-to-Digital Converter (ADC) connected to the soil moisture sensor. This ADC

value provides a quantifiable measure of how wet or dry the soil is, allowing the system to make informed decisions

about irrigation. The output signal (`water_pump`) is a digital control signal that directly activates or deactivates the

water pump. When the signal is set to `1`, the pump is turned on to irrigate the soil; when it is set to `0`, the pump

is turned off, ceasing irrigation [16].

4.2.2. Moisture Thresholds

To effectively manage irrigation, the module employs two predefined moisture thresholds: `DRY_THRESHOLD`

and `WET_THRESHOLD`. The `DRY_THRESHOLD` indicates the moisture level below which the soil is

considered dry and in need of watering. Conversely, the `WET_THRESHOLD` signifies the moisture level above

which the soil is deemed sufficiently wet, at which point the irrigation should stop. These thresholds are crucial for

preventing overwatering, which can lead to root rot and other plant health issues, while also ensuring that the soil

does not become too dry, which can stress plants and hinder growth. The thresholds can be adjusted according to

specific soil and plant requirements, making the module versatile for different agricultural contexts.

4.2.3. Finite State Machine (FSM)

The `soil_moisture_monitor` module's core features a finite state machine (FSM), as shown in Figure 3, comprising

two states: DRY (noted as `1'b0`) and WET (noted as `1'b1`). This FSM governs the behavior of the water pump

based on the moisture levels detected. In the DRY state, the system recognizes that the soil is too dry; therefore, it

activates the water pump by setting the `water_pump` output to `1`. This action initiates the irrigation process to

bring moisture back into the soil. The system continually monitors the moisture level, and if it detects that the level

exceeds the `WET_THRESHOLD`, it transitions to the WET state, turning off the pump by setting `water_pump`

to `0`. This prevents excess watering and promotes water conservation.

Fig.3 - FSM for soil moisture monitoring

Conversely, if the system finds itself in the WET state and the moisture level subsequently drops below the

`DRY_THRESHOLD`, it transitions back to the DRY state, reactivating the pump to ensure the soil receives the

necessary water. This continuous feedback loop allows the system to respond dynamically to changing soil moisture

conditions. The transition logic is implemented using a combination of sequential and combinational logic. The FSM

updates its state based on the current moisture readings on the rising edge of the clock signal, ensuring timely and

efficient responses to environmental conditions [17].

4.2.4. State Transition Logic

The state transition logic is structured to guarantee that the system behaves predictably under various scenarios. On

receiving a reset signal, the FSM initializes to the DRY state, which is critical for ensuring that the irrigation process

181

J INFORM SYSTEMS ENG, 10(15s)

begins immediately after a reset, regardless of the previous state. This feature is particularly important in automated

systems where unexpected resets may occur due to power outages or system reboots.

The combination of the moisture level input, thresholds, and FSM allows the `soil_moisture_monitor` module to

function effectively as an irrigation controller. By integrating this module into an overall irrigation system, farmers

and gardeners can ensure that their plants receive the right amount of water when they need it, optimizing growth

and resource usage. This intelligent automation reduces the labor required for manual irrigation and helps maintain

optimal soil conditions, contributing to sustainable agricultural practices [10], [18], [19].

5. RESULTS AND DISCUSSION

5.1. Irrigation Control System

In modern agricultural practices, efficient water management is crucial for sustainable farming. The irrigation control

system presented herein continuously monitors soil moisture levels to optimize water usage through precise

actuation of a water pump based on predefined threshold values, contributing to sustainable farming practices.

Utilizing a 10-bit digital signal from a soil moisture sensor, the system incorporates comparator blocks to assess

moisture levels and make informed state transitions. The underlying RTL schematic, depicted in Figure 4, illustrates

the control logic governing these processes, including the use of multiplexers for decision-making. Furthermore, the

simulation results in Figure 5 showcase the system's response to varying soil moisture conditions, validating its

effectiveness in activating and deactivating the water pump as needed. This innovative approach not only conserves

water but also enhances crop yield by ensuring adequate soil moisture at all times.

Fig. 4 - RTL for irrigation control

Fig. 5 - System's response to varying soil moisture conditions

The input moisture_level[9:0] represents a 10-bit digital signal corresponding to the soil moisture sensor's reading.

This value is compared against preset threshold values using comparator blocks such as RTL_LT (less than) and

RTL_GT (greater than), which determine whether the moisture level is below or above the thresholds. The

comparators drive the state transitions within the system, with the next_state signals determining the control flow

based on moisture conditions. The design uses multiplexer (RTL_MUX) blocks to select the next state of the control

logic. These MUXes decide the operation of the water pump based on the current state of the soil moisture. The

state_reg block stores the current state of the system, ensuring that the system remembers the previous state and can

transition appropriately. This enables the system to effectively decide when to turn the water pump on or off.

182

J INFORM SYSTEMS ENG, 10(15s)

The water_pump_i signal, which controls the water pump, is ultimately determined by the moisture level inputs and

the system state. The output from the MUXes drives the final output water_pump, activating the irrigation system

when soil moisture falls below the predefined threshold, and deactivating it once sufficient moisture is detected.

Fig. 6 - Schematic diagram for soil moisture monitoring

The schematic outlined in Figure 6 presents a modular approach to control logic in precision farming, focusing on

real-time monitoring of moisture levels to optimize automated irrigation and minimize water waste. This RTL-level

design is efficient, scalable, and compatible with multiple sensors, enhancing complex irrigation management

systems. Using FPGAs allows for real-time processing, ideal for time-sensitive agricultural operations. The

asynchronous register block (RTL_REG_ASYNC) ensures reliable state transitions, improving robustness in

changing environmental conditions. Overall, this design integrates technology with agriculture, providing an efficient

and adaptable solution for better water management in farming.

.

Fig. 7 - Simulation result for soil moisture monitoring

The soil moisture monitoring and irrigation control system was successfully implemented using the PYNQ-Z2 FPGA

board, as shown in Figure 8. This Xilinx-based platform features the Zynq-7000 SoC, which integrates a dual-core

ARM Cortex-A9 processor with FPGA fabric. The design was described using Verilog, synthesized, and programmed

onto the PYNQ-Z2 board. The hardware implementation includes a finite state machine (FSM) to control the states

of the system—whether to activate or deactivate the water pump—based on real-time soil conditions [8], [20], [21],

[22]. After synthesis, the system showed low resource utilization on the FPGA fabric, with minimal usage of LUTs,

flip-flops, and I/O blocks. The implementation is highly resource-efficient, leaving ample space for future system

expansion, such as integrating additional sensors or more complex control logic. Furthermore, the use of the PYNQ-

Z2 board allows for a Python-based overlay in future work, enabling quick prototyping and higher-level software

integration.

Fig. 8 – The PYNQ-Z2 FPGA board showing the soil moisture sensor status and the motor signal

183

J INFORM SYSTEMS ENG, 10(15s)

5.2. FPGA Resource Utilization for Sustainable Farming Application

In the design flow of our FPGA-based sustainable farming system, efficient resource utilization is critical for achieving

the desired performance while minimizing power consumption and hardware complexity. The post-synthesis FPGA

utilization reports highlight key aspects of this efficiency, particularly in terms of logic resource usage, input/output

(I/O) interface, and clock distribution.

In the post-synthesis report (Figure 9), the Look-Up Table (LUT) and flip-flop (FF) utilization is just 1%, indicating

highly efficient core logic for sensor data processing, irrigation control, and decision-making. The system relies on

simple, optimized operations suited for FPGA architecture. The I/O utilization, as shown in Table 1, is relatively high

at 23%, reflecting significant interaction with external devices like moisture and temperature sensors, which is typical

in precision agriculture. BUFG (Global Buffers) utilization is moderate at 3%, supporting synchronized timing

without excessive resource demands. In the subsequent report (Figure 10), I/O utilization drops to 4%, while LUT,

FF, and BUFG usage remain constant. This decline suggests design optimizations that reduce external connections,

enhancing resource efficiency while keeping core functionality intact. Overall, low LUT and FF utilization, along with

moderate BUFG use, demonstrates that the system is well-optimized for sustainable farming needs. It efficiently

manages real-time data from sensors, controls irrigation, and minimizes power and resource demands, showcasing

the flexibility of FPGA-based systems in precision agriculture.

Fig. 9 - Utilization graph of FPGA (PYNQ-Z2): irrigation control

Fig. 10 - Utilization graph of FPGA (PYNQ-Z2): soil moisture monitoring

Table 1 – Post-synthesis report

Parameter (PYNQ-Z2) Spartan-6 Cyclone V

FPGA Platform
PYNQ-Z2

(Zynq-7000)
Spartan-6 Cyclone V

Clock Frequency 100 MHz 75 MHz 85 MHz

Power

Consumption
1.2 W 1.3 W 1.5 W

Response Delay <1 μs 2 μs 1.5 μs

LUT Utilization 1% 10% 12%

Flip-Flop

Utilization
1% 8% 9%

I/O Utilization 23% 30% 28%

Max Frequency

(Fmax)
95 MHz 65 MHz 80 MHz

184

J INFORM SYSTEMS ENG, 10(15s)

This resource-efficient FPGA design presents a promising approach for sustainable farming, enabling real-time

environmental monitoring and control with minimal hardware complexity. The findings from these synthesis reports

underline the effectiveness of the design and its potential for scaling up to larger, more complex farming operations

without significant increases in hardware resource consumption.

6. CONCLUSION

The use of FPGA-based systems in sustainable farming presents a powerful solution for addressing the increasing

demands of precision agriculture while conserving critical resources like water and energy. This paper demonstrates

the design and implementation of a soil moisture monitoring and automated irrigation system using an FPGA,

emphasizing efficient resource utilization, real-time processing, and scalability. The low logic utilization observed in

post-synthesis reports, combined with the flexibility of the FPGA, makes this approach ideal for applications that

require responsive and adaptive control over environmental factors such as soil moisture. By leveraging the inherent

parallelism and reconfigurability of FPGAs, the system effectively manages sensor data and actuates irrigation

systems with minimal delay, ensuring optimal crop hydration while reducing water waste. Additionally, the modular

design can be easily expanded to incorporate multiple sensors or extended control mechanisms, making it a versatile

solution for various agricultural settings.

The results show that the PYNQ-Z2 FPGA board provides a robust and efficient platform for implementing real-time

soil moisture monitoring and irrigation control. This FPGA technology offers significant benefits in sustainable

farming applications, including energy efficiency, high-performance computing, adaptability to different crops or

conditions, and the ability to optimize resource usage. As the need for more efficient and scalable farming systems

grows, FPGA-based designs hold great potential for enhancing productivity and sustainability in agriculture,

contributing to more resilient and environmentally friendly farming practices.

ACKNOWLEDGEMENTS

We would like to express our sincere gratitude to the management of SRM Institute of Science and Technology,

Kattankulathur campus, for providing the necessary research facilities that made this study possible. We also extend

our heartfelt thanks to the Department of ECE for their constant moral support and motivation throughout this

research. Their guidance and encouragement have been invaluable in the completion of this work.

REFERENCES

[1] A. Mitra et al., “Smart Agriculture: A Comprehensive Overview,” SN Comput. Sci., vol. 5, no. 8, p. 969, Oct.

2024, doi: 10.1007/s42979-024-03319-w.

[2] M. Dhanaraju, P. Chenniappan, K. Ramalingam, S. Pazhanivelan, and R. Kaliaperumal, “Smart Farming:

Internet of Things (IoT)-Based Sustainable Agriculture,” Agriculture, vol. 12, no. 10, p. 1745, Oct. 2022, doi:

10.3390/agriculture12101745.

[3] M. A. Cusi Huarancca, L. C. León Huarache, R. Cristobal Holguino, and R. R. Sulla Torres, “Design and

Development of an Integrated Monitoring and Automated Irrigation System with IoT Technologies for

Sustainable Agriculture in Arequipa, Peru,” Int. J. Electr. Electron. Eng., vol. 11, no. 6, pp. 31–40, Jun. 2024,

doi: 10.14445/23488379/IJEEE-V11I6P104.

[4] S. D. Alwis, Z. Hou, Y. Zhang, M. H. Na, B. Ofoghi, and A. Sajjanhar, “A survey on smart farming data,

applications and techniques,” Comput. Ind., vol. 138, p. 103624, Jun. 2022, doi:

10.1016/j.compind.2022.103624.

[5] Z. Lai and Y. Dai, “An Irrigation Control System Based on an FPGA,” in 2012 Second International Conference

on Instrumentation, Measurement, Computer, Communication and Control, Harbin City, Heilongjiang,

China: IEEE, Dec. 2012, pp. 159–163. doi: 10.1109/IMCCC.2012.44.

[6] S. R. Patil, N. S. Joshi, R. K. Kamat, and P. K. Gaikwad, “Design of Field Programmable Gate Array-based Soil

Moisture Monitoring System for Precision-Agriculture,” vol. 12, no. 0898, 2021.

[7] M. Vivekanandan and S. Kanaga Suba Raja, “Virtex-II Pro FPGA Based Smart Agricultural System,” Wirel.

Pers. Commun., vol. 125, no. 1, pp. 119–141, Jul. 2022, doi: 10.1007/s11277-022-09544-x.

[8] M. I. Husni, M. K. Hussein, M. S. B. Zainal, A. B. Hamzah, D. B. M. Nor, and H. B. M. Poad, “Soil Moisture

Monitoring Using Field Programmable Gate Array,” Indones. J. Electr. Eng. Comput. Sci., vol. 11, no. 1, p. 169,

Jul. 2018, doi: 10.11591/ijeecs.v11.i1.pp169-174.

185

J INFORM SYSTEMS ENG, 10(15s)

[9] A. Oukaira, A. Z. Benelhaouare, E. Kengne, and A. Lakhssassi, “FPGA-Embedded Smart Monitoring System for

Irrigation Decisions Based on Soil Moisture and Temperature Sensors,” Agronomy, vol. 11, no. 9, p. 1881, Sep.

2021, doi: 10.3390/agronomy11091881.

[10] S. S. Shinde, J. M. Yewale, V. Ali, and S. M. Mahamuni, “FPGA based wireless communication system plant

monitoring using FPGA,” in 2017 International Conference on Communication and Signal Processing

(ICCSP), Chennai: IEEE, Apr. 2017, pp. 2188–2191. doi: 10.1109/ICCSP.2017.8286798.

[11] T. Kavya, A. B, and R. K. Megalingam, “A Verilog-based Design for Real-Time Data Processing and Control in

Agricultural Fields using FPGAs,” in 2024 12th International Conference on Internet of Everything,

Microwave, Embedded, Communication and Networks (IEMECON), Jaipur, India: IEEE, Oct. 2024, pp. 1–6.

doi: 10.1109/IEMECON62401.2024.10846579.

[12] A. Muharemović, D. Jokić, M. Simeunović, and H. Hanjalić, “FPGA Technologies for Smart and Sustainable

Agriculture: A Comprehensive Overview,” in 2023 12th Mediterranean Conference on Embedded Computing

(MECO), Budva, Montenegro: IEEE, Jun. 2023, pp. 1–5. doi: 10.1109/MECO58584.2023.10155051.

[13] P. A. Simpson, FPGA Design: Best Practices for Team-based Reuse. Cham: Springer International Publishing,

2015. doi: 10.1007/978-3-319-17924-7.

[14] U. Farooq, Z. Marrakchi, and H. Mehrez, “FPGA Architectures: An Overview,” in Tree-based Heterogeneous

FPGA Architectures, New York, NY: Springer New York, 2012, pp. 7–48. doi: 10.1007/978-1-4614-3594-5_2.

[15] K. Lakshmisudha, S. Hegde, N. Kale, and S. Iyer, “Smart Precision based Agriculture using Sensors,” Int. J.

Comput. Appl., vol. 146, no. 11, pp. 36–38, Jul. 2016, doi: 10.5120/ijca2016910916.

[16] Tarun. Vedulla, Y. M. Reddy, A. Kalyan, and R. Jenila, “VLSI Architecture for Smart and Precision Agriculture

Using Sensors,” Int. J. Adv. Sci. Comput. Eng., vol. 3, no. 1, pp. 18–27, Jun. 2021, doi: 10.62527/ijasce.3.1.32.

[17] S. S. Mathurkar, N. R. Patel, R. B. Lanjewar, and R. S. Somkuwar, “Smart sensors based monitoring system for

agriculture using field programmable gate array,” in 2014 International Conference on Circuits, Power and

Computing Technologies [ICCPCT-2014], Nagercoil, Tamil Nadu, India: IEEE, Mar. 2014, pp. 339–344. doi:

10.1109/ICCPCT.2014.7054914.

[18] Y. Gharde, P. K. Singh, R. P. Dubey, and P. K. Gupta, “Assessment of yield and economic losses in agriculture

due to weeds in India,” Crop Prot., vol. 107, pp. 12–18, May 2018, doi: 10.1016/j.cropro.2018.01.007.

[19] A. Saddik, R. Latif, and A. El Ouardi, “Low-Power FPGA Architecture Based Monitoring Applications in

Precision Agriculture,” J. Low Power Electron. Appl., vol. 11, no. 4, p. 39, Sep. 2021, doi:

10.3390/jlpea11040039.

[20] S. R. Prathibha, A. Hongal, and M. P. Jyothi, “IOT Based Monitoring System in Smart Agriculture,” in 2017

International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT),

Bangalore, India: IEEE, Mar. 2017, pp. 81–84. doi: 10.1109/ICRAECT.2017.52.

[21] A. K. Singh, “Smart Farming: Applications of IoT in Agriculture,” in Handbook of Smart Materials,

Technologies, and Devices, C. M. Hussain and P. Di Sia, Eds., Cham: Springer International Publishing, 2022,

pp. 1655–1687. doi: 10.1007/978-3-030-84205-5_114.

[22] V. K. Quy et al., “IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges,” Appl. Sci., vol.

12, no. 7, p. 3396, Mar. 2022, doi: 10.3390/app12073396.

