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Sustainable farming is essential to address the increasing demand for food while minimizing 

environmental impact. Field-Programmable Gate Arrays (FPGAs) provide a powerful and 

energy-efficient platform for real-time processing, which can be leveraged to optimize various 

aspects of agricultural management. This paper focuses on the use of FPGA technology to 

enhance real-time monitoring and control systems for irrigation, ensuring that crops receive 

optimal water levels based on current soil moisture conditions. By interfacing with soil moisture 

sensors, FPGA systems can collect data and immediately adjust irrigation schedules, preventing 

over-watering and conserving water resources. The low-power consumption and high-speed 

processing capabilities of FPGAs make them ideal for continuously monitoring moisture levels 

and activating irrigation systems as needed. Additionally, FPGA-based systems provide the 

flexibility to easily adjust to varying environmental conditions and crop types, making them 

highly adaptable for different farming scenarios. The implementation of FPGA in these areas 

promotes more precise and efficient water usage, contributing to the overall sustainability of 

farming operations by reducing water waste and maintaining soil health. 

Keywords: sustainable farming, FPGA, real-time monitoring, irrigation systems, soil moisture 

sensors, water conservation, adaptive algorithms, energy efficiency, scalability, dynamic 

agricultural environments. 

 

1.  INTRODUCTION 

Sustainable farming practices are essential in today’s world due to the increasing demands for food and the escalating 

environmental impact of traditional agriculture. Water scarcity and high energy consumption in farming are critical 

issues that need to be addressed to ensure long-term agricultural productivity while minimizing environmental 

damage. Traditional irrigation systems are often inefficient, leading to water overuse and increased energy demands. 

Inefficient resource management not only increases operational costs but also exacerbates environmental concerns 

such as groundwater depletion and carbon emissions from energy-intensive operations platforms. In light of these 

challenges, there is a pressing need for smarter, more efficient irrigation management systems [1], [2]. While modern 

irrigation systems equipped with sensors and controllers have shown promise, they often rely on microcontrollers or 

general-purpose processors that are limited in terms of real-time data processing, scalability, and power efficiency. 

These systems typically operate with fixed schedules, regardless of real-time environmental conditions, leading to 

suboptimal water usage [3], [4]. 

Field Programmable Gate Arrays (FPGAs) are a powerful alternative to traditional processing systems, offering 

advantages such as parallel processing, low power consumption, and real-time reconfigurability. These features make 

FPGAs an ideal platform for developing an intelligent irrigation system that can process environmental data in real 

time and adapt irrigation patterns accordingly. Unlike fixed-function processors, FPGAs can be reprogrammed on-

site to accommodate new algorithms or respond to changing requirements, making them particularly suitable for 

dynamic agricultural environments [3], [5], [6], [7]. 
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2.  OBJECTIVES 

The objective of this research is to design and implement an FPGA-based irrigation system that optimizes water usage 

while minimizing energy consumption. The proposed system will collect real-time environmental data, process it 

using adaptive algorithms, and control irrigation mechanisms based on crop needs and external weather conditions. 

By doing so, the system aims to reduce waste and promote sustainable agricultural practices. 

A key element in regulating the movement of water and heat energy through evaporation and plant transpiration 

between the earth’s surface and the atmosphere is soil moisture. Therefore, the creation of precipitation and the 

evolution of weather patterns are significantly influenced by soil moisture. Therefore, controlling the beneficial 

amount of water for the soil will be made easier by using a specific soil sensor and integrating it with FPGA and 

Verilog code [8], [9], [10]. Small-scale integrated (SSI) circuits originated from early integrated circuits created in 

the 1960s, which had under 100 transistors per chip. Over the decades, the number of transistors on chips increased 

dramatically, reaching up to 1 billion today. This exponential growth in digital logic capacity posed challenges for 

designers, prompting the development of field programmable gate arrays (FPGAs) in the mid-1980s. FPGAs use 

RAM-based lookup tables instead of traditional AND-OR gates and consist of customizable logic blocks (CLBs) and 

I/O blocks. As digital circuit design evolved, particularly in the late 1980s and early 1990s, traditional design 

techniques became less viable. Today, computer-aided design and Hardware Description Languages (HDLs), such as 

VHDL, are essential for developing digital circuits, allowing for early error correction and easier debugging, especially 

for large systems [7], [11], [12].  

3.  DESIGN STRATEGIES 

Figure 1 illustrates the basic model design strategy in a flow chart format. The process begins at the algorithmic level, 

which is comparable to conditional statements such as “if,” “case,” and loop statements commonly found in C code. 

Next, it moves to the Register Transfer Level (RTL), where registers are connected through Boolean equations. From 

there, the design progresses to the gate level, where components are linked using gates like AND and NOR. Finally, 

the process reaches the switch level, where MOS transistors are integrated into the gates and function as switches [5]. 

 

Fig.1 - Flow chart for FPGA design 

The design flow of a Field-Programmable Gate Array (FPGA) involves several key steps from the initial project 

conception to final testing. It starts with the specification phase, where system requirements are gathered and 

documented. Stakeholders define the objectives and functionalities of the FPGA, ensuring that the final product 

meets user needs and expectations. This foundational phase is critical for guiding the subsequent design efforts [13], 

[14]. 



178  
 

 

 

J INFORM SYSTEMS ENG, 10(15s) 

The next step involves defining the Finite State Machine (FSM), which models the system's operational flow as a state 

machine. This abstraction helps designers understand how the FPGA transitions between states based on different 

inputs, simplifying decision-making and aiding in debugging. Once the FSM is established, the design moves to the 

coding phase, where the specifications and FSM are translated into Verilog, detailing the FPGA's functionality. 

Attention to detail is crucial during coding, as errors can carry through the development process. [13]. 

After the Verilog code is written, it undergoes simulation to verify its correctness. Simulation tools assess the code's 

behavior under various input conditions, allowing designers to identify and fix issues before moving to the synthesis 

stage. During synthesis, the high-level Verilog code is transformed into a gate-level representation, resulting in a 

netlist that details the logic gates and interconnections needed for FPGA implementation. This step is essential for 

bridging high-level design and low-level hardware. Following synthesis, the netlist is placed and routed onto the 

FPGA fabric. This implementation process maps the design to the FPGA’s physical resources, directly affecting the 

performance and efficiency of the final hardware implementation [14]. 

After successfully placing and routing the design, a bitstream file is generated, containing the configuration data 

needed to program the FPGA. This moment is pivotal as it marks the completion of the logical design and prepares 

for hardware programming. The bitstream is then loaded onto the FPGA, which configures it to perform tasks in real-

time. Following programming, the design undergoes hardware testing to ensure it functions correctly under real-

world conditions. If issues arise, the design enters the debug and optimize phase, where engineers diagnose problems 

and implement corrections, which may involve revisiting earlier stages. Once functioning properly, optimizations can 

enhance performance and efficiency, highlighting the need for flexibility in the development process [7]. 

4.  METHODS 

4.1.  Irrigation control 

In the context of our project, "Enhancing Sustainable Practices through FPGA Technology," effective irrigation 

control is paramount for optimizing water usage. This section delineates the methodologies implemented within the 

irrigation control system, detailing input-output mechanisms, interval time calculations, motor control logic, and 

LED dimming through Pulse Width Modulation. Figure 2 illustrates these processes in a flowchart format, providing 

a comprehensive overview of the system's architecture and functionality. By integrating these techniques, we aim to 

foster sustainable agricultural practices through precise and efficient irrigation management. 

4.1.1.  Inputs and Outputs Overview 

This system takes several inputs and produces outputs that control hardware components like a motor and LEDs. 

The inputs include an array of switches (`SW[17:0]`) and a clock signal (`CLOCK_50`). The switches are used to 

configure the irrigation system. Specifically, `SW[5:0]` selects the time interval (in hours) between motor 

activations, which is essential for controlling irrigation cycles. Other switches, such as `SW[17:14]` and `SW[13:11]`, 

adjust the brightness of red and blue LEDs using Pulse Width Modulation (PWM). The output ports include 

`GPIO[20:0]` to control LEDs and the irrigation motor, and `HEX0` and `HEX1`, which display the selected time 

interval on seven-segment displays. 

4.1.2.  Interval Time Calculation (The `lim` Register) 

The system uses the ̀ lim` register to store the interval time, which determines when the irrigation motor should turn 

on. The value of `lim` is selected based on the hour chosen by `SW[5:0]`. This design uses a formula to calculate the 

interval time for each hour: `d99999999 + ((d149999999 / 24) * hour)’. The formula accounts for the base interval 

and adds time depending on the selected hour. For example, when `SW[5:0]` represents 1 hour, the interval is 

`106249999`; for 24 hours, it is `249999998`. This calculation ensures that the irrigation motor turns on after a 

specific delay. 
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Fig.2 - Irrigation control mechanisms 

4.1.3.  Seven-Segment Display for Time Intervals 

Two seven-segment displays (`HEX0` and `HEX1`) are used to show the current irrigation interval. The 

`SevenSegmentDecoder` modules convert the switch input (`SW[5:0]`) into a format that the displays can represent. 

`HEX0` shows the lower 4 bits (`SW[3:0]`), while `HEX1` shows the upper 2 bits (`SW[5:4]`). This allows the user 

to visually verify the selected irrigation hour on the displays. 

4.1.4.  Motor Control Logic 

The motor is controlled using the `stay_on` module, which keeps the motor on for a defined period based on the 

calculated interval stored in `lim`. This module uses the system clock (`CLOCK_50`) to count down from the value 

stored in `lim`. When the countdown reaches zero, the motor turns on for a short duration (2 seconds, as indicated 

by the `stay_on` input being set to `28’d99999999`). After the motor has been on for the required time, it turns off 

until the next interval. If the reset signal (`SW[7]`) is activated, the countdown is reset immediately. 

4.1.5.  LED Dimming Using PWM 

The system controls the brightness of red and blue LEDs using Pulse Width Modulation (PWM). Two `LED_PWM` 

modules handle this: one for the red LED (`GPIO[1]`) and another for the blue LED (`GPIO[0]`). Each PWM module 

takes a portion of the switch inputs to determine the duty cycle. For example, the red LED uses inputs from `SW[17]` 

and `SW[13:11]`, while the blue LED uses inputs from `SW[17:14]`. The PWM duty cycle controls how much time 

the LED remains on during each cycle, effectively dimming or brightening the LEDs depending on the switch settings. 

4.2.  Soil Moisture Monitoring 

The soil_moisture_monitor module is a crucial component of an automated irrigation system that intelligently 

controls a water pump based on the soil moisture levels detected by a sensor. The design focuses on ensuring that the 

soil remains within a desired moisture range, promoting healthy plant growth while conserving water [8], [9], [11], 

[15].  

4.2.1.  Inputs and Outputs 

The module has several key inputs and outputs that facilitate its operation. The clock input (`clk`) serves as the timing 

mechanism, enabling the module to execute state transitions and logic operations synchronously. The reset input 
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(`reset`) allows the system to return to a known starting condition, ensuring reliability and predictability in 

operation. The moisture level input (`moisture_level`) is a 10-bit digital value representing the current moisture level 

in the soil, as measured by an Analog-to-Digital Converter (ADC) connected to the soil moisture sensor. This ADC 

value provides a quantifiable measure of how wet or dry the soil is, allowing the system to make informed decisions 

about irrigation. The output signal (`water_pump`) is a digital control signal that directly activates or deactivates the 

water pump. When the signal is set to `1`, the pump is turned on to irrigate the soil; when it is set to `0`, the pump 

is turned off, ceasing irrigation [16]. 

4.2.2.  Moisture Thresholds 

To effectively manage irrigation, the module employs two predefined moisture thresholds: `DRY_THRESHOLD` 

and `WET_THRESHOLD`. The `DRY_THRESHOLD` indicates the moisture level below which the soil is 

considered dry and in need of watering. Conversely, the `WET_THRESHOLD` signifies the moisture level above 

which the soil is deemed sufficiently wet, at which point the irrigation should stop. These thresholds are crucial for 

preventing overwatering, which can lead to root rot and other plant health issues, while also ensuring that the soil 

does not become too dry, which can stress plants and hinder growth. The thresholds can be adjusted according to 

specific soil and plant requirements, making the module versatile for different agricultural contexts. 

4.2.3.  Finite State Machine (FSM) 

The `soil_moisture_monitor` module's core features a finite state machine (FSM), as shown in Figure 3, comprising 

two states: DRY (noted as `1'b0`) and WET (noted as `1'b1`). This FSM governs the behavior of the water pump 

based on the moisture levels detected. In the DRY state, the system recognizes that the soil is too dry; therefore, it 

activates the water pump by setting the `water_pump` output to `1`. This action initiates the irrigation process to 

bring moisture back into the soil. The system continually monitors the moisture level, and if it detects that the level 

exceeds the `WET_THRESHOLD`, it transitions to the WET state, turning off the pump by setting `water_pump` 

to `0`. This prevents excess watering and promotes water conservation. 

 

Fig.3 - FSM for soil moisture monitoring 

Conversely, if the system finds itself in the WET state and the moisture level subsequently drops below the 

`DRY_THRESHOLD`, it transitions back to the DRY state, reactivating the pump to ensure the soil receives the 

necessary water. This continuous feedback loop allows the system to respond dynamically to changing soil moisture 

conditions. The transition logic is implemented using a combination of sequential and combinational logic. The FSM 

updates its state based on the current moisture readings on the rising edge of the clock signal, ensuring timely and 

efficient responses to environmental conditions [17]. 

4.2.4.  State Transition Logic 

The state transition logic is structured to guarantee that the system behaves predictably under various scenarios. On 

receiving a reset signal, the FSM initializes to the DRY state, which is critical for ensuring that the irrigation process 
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begins immediately after a reset, regardless of the previous state. This feature is particularly important in automated 

systems where unexpected resets may occur due to power outages or system reboots. 

The combination of the moisture level input, thresholds, and FSM allows the `soil_moisture_monitor` module to 

function effectively as an irrigation controller. By integrating this module into an overall irrigation system, farmers 

and gardeners can ensure that their plants receive the right amount of water when they need it, optimizing growth 

and resource usage. This intelligent automation reduces the labor required for manual irrigation and helps maintain 

optimal soil conditions, contributing to sustainable agricultural practices [10], [18], [19]. 

5.  RESULTS AND DISCUSSION 

5.1.  Irrigation Control System 

In modern agricultural practices, efficient water management is crucial for sustainable farming. The irrigation control 

system presented herein continuously monitors soil moisture levels to optimize water usage through precise 

actuation of a water pump based on predefined threshold values, contributing to sustainable farming practices. 

Utilizing a 10-bit digital signal from a soil moisture sensor, the system incorporates comparator blocks to assess 

moisture levels and make informed state transitions. The underlying RTL schematic, depicted in Figure 4, illustrates 

the control logic governing these processes, including the use of multiplexers for decision-making. Furthermore, the 

simulation results in Figure 5 showcase the system's response to varying soil moisture conditions, validating its 

effectiveness in activating and deactivating the water pump as needed. This innovative approach not only conserves 

water but also enhances crop yield by ensuring adequate soil moisture at all times. 

 

Fig. 4 - RTL for irrigation control 

 

Fig. 5 - System's response to varying soil moisture conditions 

The input moisture_level[9:0] represents a 10-bit digital signal corresponding to the soil moisture sensor's reading. 

This value is compared against preset threshold values using comparator blocks such as RTL_LT (less than) and 

RTL_GT (greater than), which determine whether the moisture level is below or above the thresholds. The 

comparators drive the state transitions within the system, with the next_state signals determining the control flow 

based on moisture conditions. The design uses multiplexer (RTL_MUX) blocks to select the next state of the control 

logic. These MUXes decide the operation of the water pump based on the current state of the soil moisture. The 

state_reg block stores the current state of the system, ensuring that the system remembers the previous state and can 

transition appropriately. This enables the system to effectively decide when to turn the water pump on or off. 
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The water_pump_i signal, which controls the water pump, is ultimately determined by the moisture level inputs and 

the system state. The output from the MUXes drives the final output water_pump, activating the irrigation system 

when soil moisture falls below the predefined threshold, and deactivating it once sufficient moisture is detected. 

 

Fig. 6 - Schematic diagram for soil moisture monitoring 

The schematic outlined in Figure 6 presents a modular approach to control logic in precision farming, focusing on 

real-time monitoring of moisture levels to optimize automated irrigation and minimize water waste. This RTL-level 

design is efficient, scalable, and compatible with multiple sensors, enhancing complex irrigation management 

systems. Using FPGAs allows for real-time processing, ideal for time-sensitive agricultural operations. The 

asynchronous register block (RTL_REG_ASYNC) ensures reliable state transitions, improving robustness in 

changing environmental conditions. Overall, this design integrates technology with agriculture, providing an efficient 

and adaptable solution for better water management in farming. 

.  

Fig. 7 - Simulation result for soil moisture monitoring 

The soil moisture monitoring and irrigation control system was successfully implemented using the PYNQ-Z2 FPGA 

board, as shown in Figure 8. This Xilinx-based platform features the Zynq-7000 SoC, which integrates a dual-core 

ARM Cortex-A9 processor with FPGA fabric. The design was described using Verilog, synthesized, and programmed 

onto the PYNQ-Z2 board. The hardware implementation includes a finite state machine (FSM) to control the states 

of the system—whether to activate or deactivate the water pump—based on real-time soil conditions [8], [20], [21], 

[22]. After synthesis, the system showed low resource utilization on the FPGA fabric, with minimal usage of LUTs, 

flip-flops, and I/O blocks. The implementation is highly resource-efficient, leaving ample space for future system 

expansion, such as integrating additional sensors or more complex control logic. Furthermore, the use of the PYNQ-

Z2 board allows for a Python-based overlay in future work, enabling quick prototyping and higher-level software 

integration. 

 

Fig. 8 – The PYNQ-Z2 FPGA board showing the soil moisture sensor status and the motor signal 
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5.2.  FPGA Resource Utilization for Sustainable Farming Application 

In the design flow of our FPGA-based sustainable farming system, efficient resource utilization is critical for achieving 

the desired performance while minimizing power consumption and hardware complexity. The post-synthesis FPGA 

utilization reports highlight key aspects of this efficiency, particularly in terms of logic resource usage, input/output 

(I/O) interface, and clock distribution.                                                               

In the post-synthesis report (Figure 9), the Look-Up Table (LUT) and flip-flop (FF) utilization is just 1%, indicating 

highly efficient core logic for sensor data processing, irrigation control, and decision-making. The system relies on 

simple, optimized operations suited for FPGA architecture. The I/O utilization, as shown in Table 1, is relatively high 

at 23%, reflecting significant interaction with external devices like moisture and temperature sensors, which is typical 

in precision agriculture. BUFG (Global Buffers) utilization is moderate at 3%, supporting synchronized timing 

without excessive resource demands. In the subsequent report (Figure 10), I/O utilization drops to 4%, while LUT, 

FF, and BUFG usage remain constant. This decline suggests design optimizations that reduce external connections, 

enhancing resource efficiency while keeping core functionality intact. Overall, low LUT and FF utilization, along with 

moderate BUFG use, demonstrates that the system is well-optimized for sustainable farming needs. It efficiently 

manages real-time data from sensors, controls irrigation, and minimizes power and resource demands, showcasing 

the flexibility of FPGA-based systems in precision agriculture. 

 

Fig. 9 - Utilization graph of FPGA (PYNQ-Z2): irrigation control  

 

Fig. 10 - Utilization graph of FPGA (PYNQ-Z2): soil moisture monitoring 

Table 1 – Post-synthesis report 

 

Parameter  (PYNQ-Z2) Spartan-6 Cyclone V

FPGA Platform
PYNQ-Z2 

(Zynq-7000)
Spartan-6 Cyclone V

Clock Frequency 100 MHz 75 MHz 85 MHz

Power 

Consumption
1.2 W 1.3 W 1.5 W

Response Delay <1 μs 2 μs 1.5 μs

LUT Utilization 1% 10% 12%

Flip-Flop 

Utilization
1% 8% 9%

I/O Utilization 23% 30% 28%

Max Frequency 

(Fmax)
95 MHz 65 MHz 80 MHz
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This resource-efficient FPGA design presents a promising approach for sustainable farming, enabling real-time 

environmental monitoring and control with minimal hardware complexity. The findings from these synthesis reports 

underline the effectiveness of the design and its potential for scaling up to larger, more complex farming operations 

without significant increases in hardware resource consumption. 

6.  CONCLUSION 

The use of FPGA-based systems in sustainable farming presents a powerful solution for addressing the increasing 

demands of precision agriculture while conserving critical resources like water and energy. This paper demonstrates 

the design and implementation of a soil moisture monitoring and automated irrigation system using an FPGA, 

emphasizing efficient resource utilization, real-time processing, and scalability. The low logic utilization observed in 

post-synthesis reports, combined with the flexibility of the FPGA, makes this approach ideal for applications that 

require responsive and adaptive control over environmental factors such as soil moisture. By leveraging the inherent 

parallelism and reconfigurability of FPGAs, the system effectively manages sensor data and actuates irrigation 

systems with minimal delay, ensuring optimal crop hydration while reducing water waste. Additionally, the modular 

design can be easily expanded to incorporate multiple sensors or extended control mechanisms, making it a versatile 

solution for various agricultural settings. 

The results show that the PYNQ-Z2 FPGA board provides a robust and efficient platform for implementing real-time 

soil moisture monitoring and irrigation control. This FPGA technology offers significant benefits in sustainable 

farming applications, including energy efficiency, high-performance computing, adaptability to different crops or 

conditions, and the ability to optimize resource usage. As the need for more efficient and scalable farming systems 

grows, FPGA-based designs hold great potential for enhancing productivity and sustainability in agriculture, 

contributing to more resilient and environmentally friendly farming practices. 
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