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Artificial intelligence (AI) has a bright future in healthcare, as evidenced by its rapid growth 

and the gradual onset of AI research in the medical industry in recent years. The prediction of 

diseases and drugs has showed potential using deep learning. From a logistic regression model, 

to a machine learning model, and now to a deep learning model, improvements have been 

made in the ability to accurately predict medical illnesses. In this article, common illnesses, 

fundamental deep learning frameworks, and deep learning prediction techniques are all 

introduced to make a future prognosis and draw attention to issues with illness 

prognostication. It explains how well deep learning works for predicting diseases and 

demonstrates how deep learning and medicine will interact in the future. Medical research can 

benefit from deep learning's innovative feature extraction techniques. 

Keywords: Deep Learning , Deep neural network, CNN, RNN, Autoencoder, GAN. 

 

INTRODUCTION 

People's concealed illness risks rise as a result of changing environmental factors and lifestyle choices as society 
develops. Health issues affecting the brain, heart, eyes, low vision, diabetes, as well as cancer, and so on have a 
global impact. Worldwide, 422 million individuals have diabetes, of which 90% have Type 2 diabetes [1]. Cardiac 
disease risk is increased by age-related heart senescence and function decrease. Heart disease is a leading cause of 
mortality worldwide [2]. The health and output of these conditions are impacted. In addition to raising health care 
and medical expenditures, it will exacerbate societal pressure. The goal of disease prediction is to calculate a 
person's chance of developing a disease in the future. There are several contributing variables for various illnesses 
in various populations. Identifying features with broad dimensions and separating complicated and changeable 
distinctions between individuals and diseases These jobs are challenging and expensive to complete manually. 

The expansion of society has accelerated technical development. The gathering of medical data sets is made 
simpler. Worldwide medical organisations are always gathering health-related data. Various types of information 
are included in the realm of medicine [3]. Despite being a sort of fundamental data, they are incredibly effect 
sensitive. Data that is inaccurate or redundant due to timeliness or problems with personal security endanger 
privacy. Medical data is challenging to manually handle since it is high dimensional, diverse, irregular, and 
unstructured. Medical circumstances, the expertise of the diagnostician, and patient variations restrict medical 
diagnosis. People require supplementary ways to forecast and diagnose illnesses in light of the aforementioned 
problems [4]. 

As a method for learning to analyse complicated data, machine learning has quickly advanced, and deep learning 
has emerged as its most intriguing subfield. Deep learning outperforms older technological approaches in several 
areas, including the capacity to handle complicated data, the classification for extracting the key features from 
multidimensional data, the ability to deal with unstructured data, and the ability to classify data with more 
accuracy. This makes deep learning more accessible to more individuals. The deep learning field is developing. It 
has interfered with NLP, speech recognition, and picture recognition. With excellent results, deep learning has been 
used to forecast diseases [5]. Deep learning, which is better able to perform tasks, is extremely compatible with 
medical data. 

A perceptron, sometimes referred to as an artificial neural network (ANN), is the building block of deep learning. A 
deep neural network (DNN) has evolved from a shallow model NN to a deep model as a result of shifts in people's 
desire for models, the expansion of data size, and advancements in computer capacity. A deep neural network 
consists of three layers: input, hidden, and output. The training algorithm for conventional multi-layer perceptron 
neural networks is back propagation. 
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Information is propagated both forward and backward in this way. Visually, it's comparable to teaching a computer 
to create a set of programmes that simulate the functions of the human brain in order to train its intelligence to 
mimic human vision, hearing, and other intelligent behaviours and develop over time. When making disease 
predictions, the computer can mimic medical professionals to diagnose diseases and build up prior experience to 
increase prediction accuracy, strengthening the model. Figure 1 shows the evolution of some of the network 
structure models developed by DNN [6] for use with clinical data and problems. 

 

Figure 1: Deep neural network 

Popular deep learning models and techniques are introduced in the second section of the paper, which is then 
followed by enhanced model frameworks and fundamental approaches to medical problem solving. The third 
section provides a succinct overview of illnesses, the exploration of deep learning approaches for disease prediction, 
and a summary of successes and improvements. The fourth section examines issues and difficulties with using deep 
learning to forecast diseases. The fifth section outlines potential applications for intelligent fusion in the future 
under the state of technology today. Text is summarised in the sixth section. 

DEEP LEARNING MODELS 

1.1 CNN 

As the depth of the neural network with one fully connected layer increases, the size of the memory requirement 
and the cost of computation rise. The issues brought on by fully linked layers have been steadily addressed in order 
to promote neural network development. Local correlation and weight sharing are used in the construction of a 
convolutional neural network (CNN), which lowers the number of parameters and boosts training effectiveness. 
LeNet's 1998 plan laid the foundation for CNN. Convolutional, pooling, and completely linked layers are displayed 
in Figure. 2. Architectural modifications are output after fc, following convolution and pooling. 

It wasn't further developed at the time because of the computational capacity and data volume. After overcoming 
some objective challenges and doing well in international contests, CNN swiftly rose to the top of the computer 
vision heap. A slew of improved CNN models, including VGG net [7], ResNet [8], DenseNet [9], as well as Xception 
[10] and many more followed shortly thereafter. CNN was first developed for computer vision, but research has 
proven it is useful in a variety of industries, including medicine [11,12]. Classification, prognosis of illness, [13], [14] 
visualisation, etc. Medical chest X-ray, CT, and other [15] imaging data may all be processed using CNN. The CNN 
model can understand medical images through the feature extraction as well as data fusion [16], whether there is a 
single image for disease diagnosis or a collection of many images for supplementary prediction. The fully linked 
layer outperforms conventional machine learning models in terms of illness classification [17]. 
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Figure 2: Flow diagram of the CNN 

1.2 RNN 

For task-based conversation, time series forecasting, etc., models must learn sequence features. Effective time 
series management is impossible due to the inability of neurons in any layer of a neural network to link that 
includes the intigrated layer. Unlike temporal data, geographical data can be handled by CNN. Recurrent neural 
networks (RNN) were developed to address a few of the aforementioned issues. 

RNN is made up of neurons and feedback loops. When the prior and subsequent inputs are interdependent, RNN 
offers benefits [18]. Compared to other machine learning algorithms, RNN excels at handling massive data sets that 
are contaminated with delays and noise. Short-term memory problems [19] and gradient explosion problems that 
RNN encounters during training inspired the creation of LSTM and GRU, respectively. State vectors and gates are 
added by LSTM to RNN. Figure 3 the key components of an LSTM: input, forget, and output gates. GRU only has 
two gates: Reset and Update. Refresh and forgetfulness are managed by gating. Input data is represented by xt, the 
state vector by ht, and state vector changes under gate control by ht1 to ht. Tanh is the activation function. On long-
term data, LSTM performs better than RNN. Images, images, and sounds are sent to it. GRU is employed in place of 
LSTM due to its huge model parameters and high computational cost. The gate control system used by GRU 
consists of reset gate and update gate. Despite having a simpler structure than LSTM, GRU is just as effective [20]. 
Vertical time stamps work nicely with both types. It's crucial to review old medical records or compile data from 
several time periods when forecasting the development of specific disorders [21]. RNN has a use [22]. To deal with 
the space-time complexity of medical data, RNN is typically combined with a convolutional neural network (CNN) 
or other models [23-26]. 

 

Figure 3: structural diagrams of (a) RNN and LSTM (b) GRU 

1.3 Autoencoder (AE) 

In reality, unlabelled data are present. It facilitates learning without supervision. Real medical data is difficult to 
categorise. To uncover greater value, technology is needed to automatically categorise or aggregate data. There are 
several methods connected to the medical environment for obtaining medical data. Data loss and distortion happen 
sometimes [27]. Autoencoder is a neural network model that reduces feature dimensionality, eliminates noise, and 
restores lost data efficiently using unsupervised learning as well as feature extraction [28]. Encoding and decoding 
are the two components of the traditional AE paradigm. 4. AE utilises x as the output and creates a mapping of 
f:x>x because the input data lacks label information. The network really consists of two components: f 1:x>z 
encoding and f:z>x decoding. Dimensionality is reduced by encoding to z, which is subsequently recovered to x. The 
input x and the desired outcome x should be as comparable as feasible in order to optimize the objective function 
(x, x). We use deep neural networks to train F1 as well as F2 and then couple them with other deep learning models 
to obtain representational data. The initial input x can indeed be retrieved more accurately than with machine 
learning. Numerous other models can be combined with the AE model [29]. In order to effectively analyse medical 
data with low recognition, a variety of AE designs, including the Sparse Auto encoder [30] and Variational Auto 
encoder (VAE) [31], may be created using changing medical data. (Figure 4) 
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Figure 4: The flow diagram of the Autoencoder 

1.4 GAN (Generative-Adversarial-Networks) 

Using game theory GAN develops artificial images. Game theory is implemented in network training. Subnetworks 
for generation and discrimination are built up. Optimization is performed in a manner analogous to a competitive 
process on both the generative network as well as the discriminant network. Then, work together to get better. The 
discriminating network separates created samples from actual samples while the producing network learns the 
genuine sample distribution. The discriminating network is convolutional whereas the generating network is de-
convolutional. Regardless of picture size or fidelity, GAN's performance has increased and made strides since it was 
initially suggested in 2014. Image processing, such as image-to-image translation, image restoration[32], [33], 
image resolution enhancement [34], medical image fusion, [35], [36] etc., is where GAN is most frequently used. 
Gan has been successfully applied to medical imaging [37]. Gradient loss and mode collapse are effects of 
traditional Gan training. The majority of improved techniques function well [38–40]. Despite being relatively new 
to medical imaging, GAN has already demonstrated its advantages. Once these problems are fixed, GAN will benefit 
the medical industry more. 

1.5 Other Models and Methods 

Recent years have seen the emergence of Deep Belief Networks (DBN) in medical research. When processing 
medical images, for instance, it enhances image fusion [41]. Parkinson's disease is easier to diagnose because to 
DBN voice processing [42]. In order to assist doctors absorb medical information more thoroughly, DBN may be 
utilised with regard to both supervised and unsupervised learning. It may be used in supervised learning serve as a 
classifier, and in unsupervised learning, it has the similar effects as AE. 

Research applications are improved when many models are combined. Different models for solving problems are 
applied. Bagging increases accuracy compared to standalone models while RNN analyses vertical problems and 
CNN processes horizontal data [43]. 

Transfer learning has been increasingly popular in recent years and is frequently used in tandem with deep 
learning. The fact that deep learning needs so much information is one of its drawbacks. Transfer learning, like the 
"polymorphic" idea that suggests reusing models, may be performed with a small amount of data to save time and 
improve the model. DL models might benefit from more transfer learning [44]. Talo et al. [45] employ deep transfer 
learning to assist radiologists with MRI image diagnosis. The trained model is flexible enough to tackle novel 
challenges, medical researchers make use of transfer learning, and the baseline model is heavily modified to 
improve lesion identification in cancer images [46]. As the field of medical imaging evolves, transfer learning can 
help push forward ground breaking discoveries. 

CLASSIFICATION OF ILLNESSES AND RELATED PREDICTION 

1.6 Pneumonia 

Numerous organs in the lungs get inflamed as a result of pneumonia. The most typical is bacterial pneumonia. 
Chest discomfort, fever, and breathing problems are more common in children and senior citizens. The proportion 
of pneumonia individuals to mortality is high globally. There are still risks to one's health and life despite the use of 
antibiotics and immunizations. COVID-19 is a mild-to-moderate respiratory disease. Influenza-related pneumonia 
[47] The effects of COVID-19 extend beyond the lungs. cardiovascular, nerve system of the head, [48], [49] etc. The 
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emergence of new coronary pneumonia as a worldwide health issue on February 19 is crucial for pneumonia early 
detection and prediction. 

Patients who have suffered significant lung injury may experience breathing problems as a result of pneumonia-
related respiratory obstruction. A portable respiratory measuring device was created by Fan et al. [50] to enhance 
current ventilators. Radiologists can use deep learning to screen suspicious X-images of the lungs for the presence 
of pneumonia. With X-images, Voroshnina et al. [51] evaluated CNN. The data set includes 5863 X images that can 
clearly distinguish between healthy and sick lungs. By tweaking layers, optimizers, training parameters, and epochs, 
the author was able to find the optimum CNN model. With an accuracy of 89.24%, a 4-layer alternating Conv2D 
layer with a MaxPooling2D layer structure showed the best ability to diagnose pneumonia. By enhancing the CNN 
paradigm, Rajpurkar et al. [52] developed the 121-layer CheXNet network. The index outperformed the previous 
best model in detecting pneumonia from chest X-ray image data, outperforming radiologists. Qjidaa's team [53] 
employed the upgraded VGG16 network model to forecast pneumonia. This simple network can better extract 
picture features. According to the report, this model can spot lesions just as effectively as radiologists can. The 
external AUC and accuracy of this model for predicting chest radiographs are 95% and 87.5%, respectively. To track 
COVID-19, [54] comparisons with Xception, VGG16, as well as InceptionResnet-V2. When compared with the other 
models' accuracy (95.42% and 93.87% respectively), the CNN Xception algorithm has the highest accuracy 
(97.19%). 

Pneumonia risk can be reduced by transfer learning [55]. To get around the problem of limited data, first construct 
a foundation for deep learning, and then use transfer learning to incorporate the learned parameters of other 
models into your own. A brand-new pneumonia predictor was suggested by Liang et al. [56]. Convolutional 
networks with residual structures, which lessen overfitting and avoid feature loss owing to model depth, make up 
the fundamental architecture. Transfer learning improves accuracy over Xception by 87.8% to 90.5%. Additionally 
combining transfer learning and deep learning is Chouhan et al. [57]. It extracts and categorises features using an 
ensemble model and As many as five deep learning models that have already been trained. Performance of the 
combined model outperforms that of a single model. 

Fusion techniques have been developed in addition to the conventional solo approach. Convolutional and residual 
networks were integrated by Saul et al. [58] to categorise images. Figure 5. depicts the multi-view fusion paradigm 
proposed by Wu et al. [59] Accuracy of 78.73% was achieved by X-ray image analysis, which is higher than the best 
available independent model. which had a rate of 76.8%. ResNet50 makes up its base layer. The RGB channel 
picture of the original model is converted to a three-lungs view image. Utilizing medical images from a wider angle 
lessens single-factor issues, prevents overfitting, and enhances performance. In order to diagnose COVID-19, 495 
high-resolution CT images were employed. This shows the promise of machine learning to effectively screen 
patients by training models on CT scans. Numerous patient information and privacy concerns are involved with 
COVID-19. In order to identify Hossain et al. [60] developed the B5G architecture to incorporate COVID-19 into 
everyday life and connect this with distributed ledgers technology to enhance data security. 

 

Figure 5: Deep learning fusion model with several views [59] 

The COVID-19 outbreak affected the world economy and used up most of the medical resources. Quality and cost 
must coexist in harmony. A decision-making model and auction mechanism were suggested in reference [61] as a 
way to aid in product selection while fostering economy and quality. Deep learning models may be used to speed 
diagnosis and accurately forecast each patient's particular prognosis for COVID-19, which will lessen the strain on 
doctors and the paucity of medical resources [62]. Future studies should use DL along using medical records, X-
rays, and CT scans. A more thorough diagnosis may be made by anticipating the patient's computed tomography 
(CT) scans, chest x-rays, and other information prevent single-information mistakes. 
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1.7 The Cardiovascular Disease (CVD) 

Congenital heart defects, high blood pressure, irregular heartbeats, and coronary artery disease are all examples of 
cardiovascular disorders. Cardiovascular disease causes almost 18 million deaths annually, or 31% of all fatalities 
worldwide [63]. In our fast-paced environment, excessive job demands and inconsistent nutrition are prevalent. 
Cardiovascular illness is brought on by genes, inheritance, and overt markers like blood pressure and blood lipids. 
The most prevalent clinical arrhythmia, atrial fibrillation, results in organ embolization and brain thrombosis. 
Although clinical heart rate problems are not immediately apparent, general detection entails analysing heart 
rhythm variations [64]. A unique way for analyzing very complex characteristics in high dimensionality and 
identifying abnormal features is provided by deep learning. Arrhythmia and acute coronary syndrome can be found 
using an electrocardiogram (ECG) [65]. DNN was employed by Hannun et al. [65] to categorise ECG heart rhythm, 
outperforming cardiologists' sensitivity and lowering the rate of incorrect diagnoses of irregular heart rhythm. DL 
may speed up and increase the accuracy of CVD diagnosis, which aids in both prevention and therapy. 

To predict CVD, several practises employ machine learning. Many DL techniques have exceeded conventional ML 
techniques because to deep learning. Seven models were utilised by Ayon et al. [66] to forecast CHD. With the use 
of five-fold and ten-fold cross-validation, the author evaluated the Statlog and Cleveland data sets. Only the 
indicators from the Statlog data set's five-fold cross-validation are recovered in Figure 6. In comparison to SVM, the 
top ML model, DNN has greater accuracy, sensitivity, and NPV. Similar to SVM in terms of F1 score, specificity, and 
precision. DNN does well in ten-fold cross-validation. The graph demonstrates that DNN's performance on several 
assessment metrics is constant and that, in actual use, its classification impact is more accurate. When working 
with bigger illness datasets, DL models outperform ML models. 

Additionally, the clinical data on coronary heart disease frequently has poor data quality and uneven categories. 
Based on this issue, Dutta et al. [67] suggested a model for an effective neural network with convolutional layers 
that employs subsampling to resolve aberrant data types and contrasts them with many current machine learning 
techniques. While the accuracy rate while testing negative examples reaches 82%, greater than the best machine 
learning model's SVM 76%, it is equivalent to the best model in recall prediction (0.77). Additionally, the 
classification performance outperforms frequently employed machine learning methods. The MIT-BIH arrhythmia 
database was the first to evaluate all types of arrhythmia [68]. In classification to accomplish multi-level 
classification of heartbeat situations, Shi et al. [69] fused the threshold classifier on the hierarchical classifier with 
the enhanced XGBoost for the identification of aberrant heartbeats and the MIT-BIH “Atrial Fibrillation Database 
(AFDB)”. A neural network with a complete connection layer was suggested by Wang et al. [70] to identify AAMI-
standard aberrant heartbeats (N, S, V, F, and Q) represent a five-category classification of heartbeat types. The 
findings are optimised using two classifications, several data sets, and the fundamental structure's two layers of 
neural networks. A residual network was developed for transfer learning by Jin et al. [71]. Learning from and 
practicing on the domain may result in a 4.5 percent increase in average accuracy rate of the source data. The 
resolution of unlabeled and unbalanced data sets. 

 

Figure 6: Analysis of Statlog data for the ten-fold heart disease prediction algorithm [66]. 

RNN beats most ML algorithms for processing large amounts of massive data that is delayed and noise abnormally. 
The medical past of the patient can aid in predicting CVD. RNN can analyse data with time stamps. Real-time 
medical record monitoring and physical condition prediction are both possible with RNN's distinctive gate control 
mechanism. Anandajayam et al. [72] use the RNN algorithm to predict cardiovascular diseases using historical 
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medical information of those who have a history of heart disease. RNN's accuracy is greater than 90%, which is 
superior to logistic regression's 85%. As demonstrated, RNN performs better when handling huge data sets. A 
dynamic LSTM model was built by Kuang et al. [73]. LSTM classification is enhanced by combined processing of 
input data at various periods. For earlier aberrant heartbeats, there were significant individual variations. The 
hybrid LSTM model, which can analyse ECG segments across time and employs active learning to automatically 
extract features, was proposed by Jin et al. [74]. It resolved issues connected to personal differences. More illness 
prediction situations may be handled when RNN and CNN are combined. Moreover, hybrid model performance 
may be enhanced through model combining techniques. By utilising numerous input layers, Shi et al., [75] 
suggested a system topology that blends LSTM and CNN. To reach a subject accuracy of 94.20%, automatic feature 
extraction is paired with manual features. A CNN-LSTM hybrid model known as twin-attentional convolutional-
LSTM was developed by Jin et al. [76]. It exploits LSTM's capacity to gather time-domain data to make up for 
CNN's shortcomings in time-sensitive processing. Accuracy of the AFDB data set is 98.51%. CNN and GRU were 
employed by Ali et al. [77] to forecast cardiac disease. The resulting CNN-GRU ACU rate is 94.5%, higher than the 
LSTM and CNN-LSTM accuracy rates of 92% and 93.7%, respectively. This is accomplished by integrating the 
feature extraction methods for LDA and PCA, and then improving accuracy through k-fold cross-validation. Both 
supervised and unsupervised illness prediction may be performed using deep belief networks. A better DBN model 
with outstanding stability and prediction accuracy was proposed by Lu et al. [78] by combining unsupervised 
training with supervised optimization. The model's classification accuracy in the last test was 91.26. Deep learning 
can extract aberrant illness indicators and disease risk factors from a large set of indicators. To noninvasively 
identify blood vessel characteristics, Poplin et al. [79] monitored retinal characteristics. They classified a number of 
factors using retinal images and CNN to predict and verify cardiovascular classification influences. 

RNN can be used to make early predictions when taking the characteristics of CVD into account, and its special 
processing technique for time series data can be used to look into the patient's medical background. EHR's 
widespread use presents a chance for RNN health. Future integration of RNN with EHR should enhance illness 
monitoring. 

1.8 Alzheimer’s Disease (AD) 

Cognitive and behavioural deterioration are two symptoms of the neurodegenerative illness known as Alzheimer's 
disease. Across 50 million individuals around the world experience AD. The initial death rate is minimal, but it 
nevertheless causes hardship for people and their families [80]. Although early symptoms are difficult to identify, 
they get worse over time. There is no treatment for early AD, which is easily missed. Early diagnosis helps the 
medical community manage with AD. A major problem for technology is early AD diagnosis and prevention. The 
overall course of AD patients from normal to MCI to AD was documented in reference [81]. MCI can stop AD 
degeneration in its tracks. The essay mentioned difficulties in predicting AD. Although there is no complete way to 
forecast A generation later, machine learning technology has been employed extensively in the automated 
categorization as well as early diagnosis of AD. 

AD can be identified with MRI and PET multi-modality, high-dimensionality, as well as other complex properties 
characterise these two images [82]. Older processing techniques are cumbersome. Since its creation, more research 
have used deep learning models to analyse medical images of the brain. When several images were combined, Jo et 
al [82] analysis of the DL technique's and hybrid method's performance as well as the effects of various AD image 
data revealed that the hybrid approach performed better overall. Ji's [83] team suggested a 3D-CNN model that is 
superior for medical imaging analysis because it can extract features from Compared to a 2D model, time and space 
could capture more spatial details. Cheng’s team [84] to confirm the 3D-efficacy of CNN in AD MRI diagnostic uses 
the spatial and temporal characteristics of MRI. The ADNI contains Genetic, biospecimen, MRI, PET, and other 
diagnostics data related to AD. It accounts for the majority of AD effects and is a well-known resource for AD 
research. The 3D-densely CNN method in Figure. 7 was created by Wang et al. [85]. The accuracy of the 
classification tests on AD/MCI/Normal that the author performed using the ANDI dataset was 93%. The distinct 
distribution of the 18F-FDG PET picture in the low-metabolic brain can aid in the diagnosis of MCI and AD [86]. 
MRI is less sensitive than 18F-FDG PET for identifying AD/MCI [81]. Using the 18F-FDG PET images with the 
InceptionV3 CNN model, the DL method can accurately diagnose lesions. 
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Figure 7: Wang suggested 3D-DenseNet aimed at the diagnosis of AD as well as MCI [85]. 

RNN and CNN were suggested as a combination by Cui et al. [87] to classify brain abnormalities. RNN extracts 
longitudinal features, whereas CNN learns spatial features. This approach outperforms CNN's [88]. In the bilateral 
hippocampi of AD/MCI patients, MRI images can reveal lesion features. Li et al. [89] achieved 91.0% AUC while 
diagnosing AD using a hybrid recurrent and convolutional neural network in comparison to healthy controls. 
hippocampus lesions in MRI. 

These publications provide a more thorough processing of brain medical images by the deep learning model. Unlike 
conventional techniques and specialists, it can identify deeper forms of brain abnormality. The test findings of the 
model cannot give grounds for making decisions. In reality, it is challenging to match the demands for picture 
quality, and image set performance is unpredictable. Rapid changes are brought on by many brain disorders. 
Prediction for AD is still viable. AI can help with healthcare by advancing studies on AD prevention and therapy. It's 
also simpler to create DL technology. 

1.9 Cancer 

There are several disorders that fall under the umbrella of cancer. Primarily describes the uneven cell proliferation 
brought on by causes that induce illness and cells in tissue masses. Cancer ranks second in worldwide death rates 
[90]. Cancer, often known as tumour, is benign and malignant. Malignant tumours can harm other tissues and 
organs because they are tenacious, simple to recur, and simple to spread. Even though malignant tumours are 
challenging to treat, early discovery, prevention, and therapy can stop the tumour from getting worse [91], [92]. 
Early detection and screening can reduce cancer-related fatalities by 30% to 50%. Comprehensive prediction 
technology is needed due to the wide variety of malignant cells and the significant variances between cells. By 
automatically collecting crucial data, deep learning has demonstrated distinct improvements in the classification of 
cancerous lesions [93]. 

Complex disorders can't be studied using single-omics approaches [94]. Cancer is a condition that has a protracted 
course of development as well as the potential for several gene alterations. More data as well as associated genes are 
necessary for better knowledge. Accurate cancer detection will be facilitated by the multi-omics combined 
technique, which can get a additional complete stream of illness data [95]. There are tumour data collections on 
UCSC Xena. Multi-omics data are available in TCGA. It encourages multi-omics research on cancer. In order to 
analyse and fuse various omics structures, Tan et al [96] MOSAE's (Model for Multi-omics Supervised Auto 
encoding in Genomic Research was presented [96]. The ROC and AUC obtained using TCGA Pan-Cancer data to 
compare with six widely used machine learning models are better. Tong et al. [97] modified the original AE to 
accomplish various goals. CrossAE carried out multi-modal denoising while ConcatAE fused modal data. When put 
to the test with multi-omics data, these two models predict breast cancer superior than using only one model. 
Asada et al. [98] tested genes associated with lung cancer prognosis using ML and DL and revealed novel survival 
genes. After processing six multi-omics data sets using AE to decrease dimensionality and unify features, 
Takahashi's team [99] employed ML to create a lung cancer prognostic model. Several indications support the idea. 
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There is a dearth of recent research on deep learning and various omics for predicting cancer diagnosis. Data 
collection for cancer genomics is facilitated by current genomics technology. Future studies should concentrate on 
the integration of several omics employing DL to analyse multiple data sets. Cancerous cells can be identified from 
a wider range of angles, enabling precise cancer prediction, which is important for the irregular and variable growth 
of cancer. 

When processing diseased cell data, DL models can better extract potential features, improve the data using Solve 
unlabeled as well as irregular data, or optimize noisy data using AE or GAN. to find cancer cells. Using CNN and 
VAE, Khamparia et al. [100] diagnose and categorise cervical carcinoma. The primary structure makes use of dense 
and Softmax layers for classification, The convolutional neural network to extract high-dimensional characteristics 
while reducing dimensionality and enriching the data. When the size is 3 3, which is superior, 99.4% accuracy is 
attained after applying filters and compared to the current approach. Iizuka et al. [101] to identify adenoma, 
adenocarcinoma, as well as non-tumor combine InceptionV3 and RNN. The WSI image dataset classification test's 
AUC is more than 96%. The ResNet101 model, used at the bottom layer by Khan et al. [102], extracts more detailed 
features than the conventional CNN model while using less input due to transfer learning. After applying the 
improved model to analyze the WCE image data, which comprises four stomach abnormalities, the accuracy 
performance increased from 87.45% to 99.46%. It is more accurate than any preceding methods when compared 
toward other neural networks. 

Baptista et al [103] use of DL can identify cancerous tumours and anticancer medications forecast anti-cancer drug 
sensitivity lessened the constraints of clinical drug testing. The categorization of pharmacological responses using 
the Alex-NET framework, which was used by Mencattini et al. [104] to study cancer medication response at the 
cellular level, has a clear classification. Kuenzi et al. [105] investigate how medicines affect carcinogenesis in cells. 
Clinical cancer research should be reevaluated. 

Breakthrough computer technology and medical innovations will result in new cancer therapies. Conventionally, 
radiologists manually diagnose cancer. A medical image's malignant region could only be twelve pixels wide. 
Manual diagnosis takes a lot of time and is unreliable. The standards are higher for radiologists. By taking both 
horizontal and vertical characteristics into account, deep learning could identify deeper lesions with cancer cells. 
Early and accurate cancer cell diagnosis may result from less strain on medical diagnoses [106]. 

1.10 Diabetes Mellitus 

If your blood sugar levels spike dramatically, your insulin production is abnormal, or your body is unable to absorb 
glucose normally, you may have diabetes mellitus. If diabetes is not identified and treated in a timely manner, it can 
harm several organs and endanger human health. Diabetes can be of type 1 or type 2. Hereditary research is crucial 
to avoiding diabetes at its source since both forms have a genetic link. Diabetes-related features are screened using 
deep learning to diagnose and categorise illness. 

The levels of Blood glucose are frequently used in medical diagnosis to check for diabetes, as well as ECG signals 
can be used to monitor diabetes. Diabetic lesions can be recognised via HRV abnormalities [107]. DNN was applied 
for diabetes feature monitoring by Ayon et al. [108] and was contrasted with other machine learning techniques. In 
comparison to the optimum SVM's 97.47% accuracy, five-fold cross-validation produces a result of 98.35%. To test 
BG, Padmapritha [109] used LSTM. [110] Li et al. suggested the CRNN. Blood glucose problems may be easily 
identified and predicted using CNN and an enhanced LSTM structure. CNN and LSTM were combined by Swapna 
et al. [107] to diagnose HRV data with 95.7% accuracy. With the use of Deep GRU and LSTM, Pavithra's team [111] 
tested diabetes The accuracy of GRU is higher than LSTM's. In order to create a training network that could 
accurately diagnose Type 2 diabetes and sleep apnea with 98.80% accuracy, Perdomo et al. [112] coupled DBNN 
with CNN. 

In medical diabetes, diabetes monitoring equipment is employed. Diabetes treatment and management rates in 
China are below 50%. A disease analysis platform and essential tools are missing from real-time diabetes 
monitoring. Huge demand creates the environment for real-world IoT applications and fosters IoT growth globally. 
Deep learning's sophisticated processing techniques have also boosted medical therapy, resulting in smarter illness 
identification. Retinal fissures, facial features, and various perspectives can all be used to monitor diabetes. In 
actual practise, additional possibilities ought to be covered by a broader diagnostic model. AI will diagnose diabetes 
in the future. 

1.11 Other Diseases  

As mentioned below, deep learning technology is also employed to treat different ailments. 

1.11.1 Hepatitis 

The persistent inflammation that is hepatitis. Five categories make up medicine. Symptoms of various hepatitis 
kinds vary. Most people don't exhibit any early signs, thus further techniques are required. Hepatitis that is left 
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untreated can cause liver cancer and liver cirrhosis to diagnose. Immunization and early detection enhance 
preventive and care. Using DNN, Jyoti et al. [113] were able to forecast hepatitis and compare different activation 
methods. The accuracy of the swish method was the highest prediction accuracy as 92.3%. To find liver lesions, 
Yang's team [114] used transfer learning in conjunction with a 7-layer AlexNet CNN framework. Accuracy while 
automating methods is on par with machine learning and neural networks. Xiao et al. [115], in their study of 
hepatobiliary diseases using eye feature images, used ResNet-101 to diagnose hepatitis, establishing the link 
between defective eye functioning and hepatobiliary disorders. Frid-Adar et al. [116] synthesised high-quality liver 
lesion images, combined them with CNN to complete the lesion classification, and achieved sensitivity and 
specificity values of 85.7% and 92.4%, respectively, which are higher than those of the comparison method (78.6% 
and 88.2%). This improved the quality of the medical data significantly. Based on observations made with Raman 
spectroscopy, Lu et al. [117] developed MSCIR. Normalized architecture now includes convolutional and recurrent 
neural networks (CNN and RNN) to improve data processing. 96.15 percent accuracy, compared to 91.53 percent 
accuracy using regular NN. Patients having type B pneumonia were identified by Wang et al. [118] using Raman 
spectroscopy, principal component analysis to reduce dimensionality, as well as a long short-term memory network 
to manage long-span data, with a 97.32% success rate. Minimizing dimensionality with principal component 
analysis is a technique used in both articles. It could be beneficial to switch to AE or Gan. 

1.11.2 Infectious Disease 

Multiple organs are harmed by the bacterial and viral infection. There are numerous channels for transmission, and 
there is no clear pattern. It's challenging to control once infected. It's important to recognise the signs of infectious 
characteristics and take immediate action. A viral infectious disease, COVID-19. To forecast and diagnose 
worldwide medical issues, several teams employ DL. BiPathCNN and viral sequences were utilised by Zhu et al. 
[119] to estimate the source and infectiousness of COVID-19. ResNet-50 and transfer learning were employed by Fu 
et al. [120] to diagnose viral pneumonia in CT images having prediction accuracy as 98.8%. 

High-risk variables are found and managed with the use of AI. It enhances disease control and prevention [121]. 
When tested with ideal control settings, DNN and LSTM increase the ARIMA model's performance by 24% and 
19%, respectively. When an infectious illness spreads, DNN remains constant, although LSTM is much precise. 
Since a decade, big data has aided in the fight against infectious diseases. Deeper mining has been made possible by 
big data to address unforeseen infectious disease issues. Big data processing can be aided by deep learning [122]. 

1.11.3 Kidney Disease 

Inflammation and tissue damage are results of kidney diseases. CKD, or chronic kidney disease, is the usual one 
(CKD). Delaying detection and treatment may lead to kidney cancer. For the purpose of CKD detection, Alnazer et 
al. [123] assessed radiomics, etc. These intricate medical image sources can be used to examine kidney disease 
symptoms and aid in DL's disease research. In order to detect kidney abnormalities, Wu et al. [124] developed a 
multifunctional network (MF-Net) primarily made of CNN. This network achieved an average classification 
accuracy rate of 94.67% when compared to multiple fusion models. Convolutional neural networks were enhanced 
by Navaneeth et al. [125] using dynamic pooling. Proposed employing saliva urea levels to detect chronic renal 
illness, followed by SVM to reach 97.67% prediction accuracy, outperforming standard CNN's 96.12%. Bhaskar et 
al. [126] created an ammonia sensor, using the CNN-SVM model for classification, which has a 98.04% accuracy 
rate, and exploited irregularities in saliva urea to diagnose illnesses. Khamparia et al. [127] achieve 100% accuracy 
in CKD classification using stacked AutoEncoder for feature augmentation and Softmax as the classifier. An HMA 
model was suggested by Ma's team [128]. To forecast CKD, this model integrates many classifiers. Medical IoT 
ensures data accuracy and speeds up computation during the experiment. With the help of the medical Internet of 
Things and an adaptive hybridised deep CNN structure, Chen et al. [129] were able to predict and optimise their 
models for the detection of kidney disease. 

TECHNICAL BARRIERS AND EXISTING ISSUES 

1.12 Inadequate interoperability 

Although DL models do well at feature extraction and classification, they are difficult to comprehend. Since deep 
learning and medicine are two separate fields of science, the research they conduct will be varied. Some illness 
prediction techniques distinguish between deep learning and medical expertise. The model's interpretability must 
be taken into consideration when integrating these two subjects. The interpretability of the model reveals how well 
humans comprehend the choice. Models need to explain "why," or how they make predictions. Some conventional 
statistical techniques choose features by hand using medical expertise. Deep learning is data-driven and seldom 
ever takes risk considerations or domain expertise into account. 

Black boxes are what deep neural networks are. New data is added after the model has been trained, and 
predictions are then produced. The model just provides a forecast outcome based on input data; it does not explain 
how to predict that breeds mistrust. The model must be trustworthy in order to use deep learning for actual illness 
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prediction and healthcare and realise disease prediction intelligence. Interpretability is necessary for deep learning 
model believability. Only until the model interpretability issue is resolved will deep learning be widely used in 
medical scenarios. Model interpretability should be emphasised in future research. Realistic requirements should 
be used to "humanise" the model, regardless of its criteria, scope, or interpretability role. Deep learning can only 
increase credibility after that. Give patients quick, precise, and illuminating diagnosis. 

1.13 Problems with Clinical Deployment 

The vast majority of DL related disease prediction techniques are still in the conceptual phase. There are several 
reasons for this. 

1.13.1 Generalization Ability 

Poor generalisation raises questions about the model's usefulness and accuracy. It is challenging to extract high-
quality medical images and fulfil model input data requirements in places with inadequate medical equipment. 
Despite having advantages in a number of indicators, DNN is unstable when tested against various test sets [72]. 
More data is needed for DL. Denoising may be built into CNN or other deep learning models [130]. The usage of 
image enhancement technologies may also be used to magnify important features, increase the usability of images, 
and improve global or local picture features. Utilize existing picture fusion technologies to the fullest to improve 
diagnosis [131]. Class imbalance problems arise in small medical datasets. The generalizability of the approach 
should be enhanced by further study on data accessibility. 

1.13.2 Stability 

It is not known how stable the deep learning approach is. Deep learning needs to be very stable before it can be 
used in clinical settings. Medical data are unreliable and poor. The training sample could differ from the real 
sample when a neural network model is applied to a real medical scenario. When a model developed from training 
examples processes real samples, it could not be resilient, have aberrant features, or have insufficient classification 
accuracy. Inaccurate illness prediction, decreased algorithm performance and efficiency, and even patient safety are 
all risks if the model's stability cannot be assured. Make sure the model is stable before moving on to clinical 
application. 

1.13.3 Privacy Security 

Data protection and patient privacy should be taken into consideration because medical records and patient data 
are frequently used while utilising deep learning to detect illnesses. It's critical to safeguard patient privacy and stop 
data breaches. To process medical data, Lv et al. [132] recommended employing differential privacy technology. 
Telemedicine data is safeguarded by blockchain technology and conventional surveillance systems [60]. Technology 
should help with problems related to deep learning, just as technology should help with problems that have been 
supposedly created by technology. The goal of maintaining patient records within the institution of origin was 
achieved [133]. Deep learning integration research is still insufficient, and distributed technology is still 
autonomous. The privacy of doctors and patients should be protected in future studies [88]. The varying quality of 
medical data is influenced by medical disorders. We should create medical data application technologies that 
provide privacy and security using already available technology. To hasten clinical applications, let patients cease 
caring about their personal information. 

The previous three points are influenced by other factors. Data that has been manually labelled is used to forecast 
diseases. Ethical problems will result from personal bias. To avoid dealing with personal feelings, this calls for a 
practical ethical framework, but reaching a global ethical agreement is challenging. Deep learning has a high 
applicability barrier, talent is in short supply, and most fields lack fundamental requirements. We still have a ways 
to go before we can adopt clinical practise associated with DL. 

1.14 Training Models: A Challenge Task 

Deep learning models with weaknesses include AE and GAN. Credibility of manufactured data is a problem. 
Convincingness is hampered by insufficient linkages and mappings. Urgent issues include instability and 
ambiguous assessment signs. When these problems are resolved, the healthcare technology will be more 
trustworthy. During model training, there is greater over-fitting and under-fitting under the characteristics of 
medical data [134]. Inadequate or redundant data in the training set will lead to the aforementioned problems. The 
issue can be resolved by modifying the model's structure and dataset size [135]. 

The largest obstacle to model training is still data quality. In order to forecast illness, DL models rely on reliable 
medical data. Although medical data may be easily obtained, the quality is poor. Medical specialists with experience 
are needed to classify a lot of medical data. Image processing is crucial [136], and separate organisations hold 
medical data sets. Numerous closed data sets aren't suitable for use in research. Additionally, inadequate training 
[137] prevents creativity. 
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2 A Possible Future Research 

2.1 Advances in Precision Medicine Driven by Deep Learning 

Precision medicine will be emphasised in future research. Precision medicine has made significant strides in several 
areas, including patient diagnosis, treatment, and prognosis management, thanks to the growth of big data. In 
comparison to conventional medical care, it is quicker and more efficient. Since 2015, many countries have 
prioritised precision medicine as a central tenet of their development strategies because of its potential to 
transform healthcare around the world [138]. Human health and medical treatment have transformed as a result of 
its diagnostic paradigm and fundamental ideas [139–141]. From an informatics viewpoint, Afzal et al. [138] 
addressed PM's evolution and potential future directions and offered Figure 8, which shows data sources, 
processing, applications, and services. Precision medicine and multi-domain applications will be combined in next-
generation development. Systematic medical diagnosis and intelligent medical therapy may be accomplished using 
a set of comprehensive operation methodologies. 

Similar to personalised care, precision medicine emphasises the study of individual characteristics [142], and hones 
the influence of each patient's particular circumstances on disease [143]. Clinical data analysis combined with 
genetic, environmental, and other level assessments of an individual's health have a greater resolution. In the case 
of complex diseases, for illustration, Panayides et al., [144] suggested using radio genomics in conjunction with 
precision medicine to detect abnormal diseases at an earlier stage in the treatment process. It's easiest to make a 
quick diagnosis at night, with the right patient and the right medication. Precision medicine is also useful in 
avoiding malignant disorders, including cancer [145,146], tumour [147], and others. Its approaches for illness 
diagnosis and treatment encourage disease prognosis. A growing field is precision medicine [148]. 

Precision medicine has advanced significantly in Western nations, but it is still in its infancy in Asia-Pacific. It is 
critical to guarantee the diversity and excellence of gene collections. The extraction must be firmly guaranteed to be 
in line with genetics found in the Asia-Pacific region. Precision medicine and AI are connected [138]. Precision 
medicine has benefited greatly from the quick development of AI and the availability of associated platforms [149]. 
The advent of a big-data age, with deep learning at its forefront, has had a significant impact on advancing precision 
medicine [150]. 

 

Figure 8: Framework for integrated precision medicine [138] 

Precision medicine, big data, and deep learning must be approached fundamentally in order to address the 
remaining limitations between them [151]. Deep learning gives improved technological methods and improves 
medical multi-angle thinking. Accurate disease prediction is a crucial component of precision medicine because it 
illustrates the benefits of potential future medical treatment and supports the advancement of cutting-edge medical 
technology. The research level of various diseases is very variable, and the use of deep learning technology is still in 
its exploratory development stage for precision medicine [152–154]. Precision medicine should be the main topic of 
future AI medical research. Create a deep learning model for precision medicine by combining medical knowledge 
on pathogenic gene mutations. More complex and adaptable models. Precision medicine encourages the 
multifaceted use of deep learning, adjusting medical care to meet social requirements in the near future. 
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2.2 Combination of Medical and IoT sectors 

The growth of the IoT is being boosted by the fact that it has reached maturity so quickly. Changes in functionality 
have been made to IoT applications as a result of 5G. Broader IoT coverage, low-latency and high-throughput 
performance, and rising demand for health and healthcare transformation all contribute to closer coordination 
between the medical and IoT sectors as well as DL methods. The Internet of Things and medicine are combined in 
e-healthcare. It can offer telemedicine system and platform, as well as "interaction" with medical information. The 
[155] healthcare system has assisted in tracking patients and keeping an eye on disease symptoms during the 
current COVID-19 outbreak. AI and IoT integration has enhanced illness prediction. The cloud-based EPL system 
created by Hossain [156] can interpret both voice and EEG inputs. An IoT-based eHealth system was suggested by 
Bisio et al. [157] to remotely monitor the rehabilitation of stroke patients. When compared to more traditional 
medical systems, it allows for remote monitoring. After the promotion, DL will be able to efficiently process data to 
provide comprehensive, remote rehabilitation services for patients. 

IoMT has grown rapidly in recent years [158]. Intelligent home devices [159], [160] and wearable medical devices 
(such as a bracelet, belt, glasses for diagnosis and treatment, intelligent underwear, etc.) have emerged as 
significant sources of medical data. A medical system that can recognise and understand emotions was developed 
by Reference [161]. Easy to use and constantly updated data make it possible to track ones every day actions. 
Evolving processing of data with deep learning empowers real-time patient monitoring systems [162]. A new 
category of smart medical equipment is proposed in reference [163] that utilises deep learning techniques for 
disease monitoring. By gathering complete patient data, this enhances the detection system's performance. Using 
sensors, it's also feasible to follow critical postoperative physical indications. The longitudinal timeline data stream 
is analysed with the DL approach to remotely monitor patient recovery. IoT medical gadgets with deep learning 
promote symbiotic development. Figure 9 shows how personal medical information is collected at the terminal and 
sent through networks. The IoMT platform gets personal data. On its platform, IoMT processes enormous amounts 
of data using DL. Medical procedures that must be performed, including hospital and system interfaces. This is the 
IoT and DL framework for healthcare. 

It is recommended that in future work, Internet-of-Things-based intelligent data processing is implemented to 
provide better-quality baseline data for models using deep learning. A smart city is needed at the same time as even 
more IoT healthcare system platforms. An interactive medical platform and smart medical care are essential for a 
smart city. The [164] medical monitoring framework achieves 93% accuracy in voice case monitoring while 
concurrently receiving voice and EGG signals. It lessens interactivity issues. The IoT platform is made more secure, 
which broadens application coverage and improves user experience [165]. Intelligence is necessary for both urban 
development and future medical health. For complete medical intelligence, the medical IoT and deep learning need 
to be better integrated. A new technological model eases the strain on medical resources and aids in disease 
diagnosis. 

2.3 Specialized Model Improvement 

Deep learning's architecture is very flexible. Changeable features vary by model. They can be modified as necessary. 
The general model can be used to implement the actual needs regardless of the data or scene. This function is 
appropriate for the medical industry and may take into account various illnesses, patient variations, and intricate 
medical circumstances. 

Gradient disappearance throughout gradient propagation is a potential issue in DL models with deeper levels, 
which are a result of complex structures as well as high-dimensional features. The characteristics of medical data 
should inform the construction of a DL model [166-168]. Factoring in training data, optimization strategies, 
training times, the influence of parameters, etc. Enhance the classifier by better utilising medical data features, 
eliminating unnecessary parameters, and preventing overfitting. Medical data, like that found in electronic health 
records presented as a time series, can be used in conjunction with transfer learning to develop a framework that 
incorporates various models [169]. The training of unnecessary parameters should be minimised, and the use of 
existing data for model expansion should be maximised. A more robust integrated framework can be developed by 
combining transfer learning with the association of IoT hardware [170] as well as a big data foundation. 
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Figure 9: The structure of a medical IoT platform 

Multiple risk factors exist for each disease. No one truth exists, as well as no universally accepted method of making 
medical diagnoses. The aftereffects of one disease can occasionally trigger the onset of others. This limits their 
utility. Because each disease has its own unique characteristics, the DL model needs to be developed with its own 
set of usage data as well as prediction methods in order to see widespread use. With the goal of expanding model 
research and developing more targeted approaches to treating disease. 

CONCLUSION 

Big data and the Internet of Things will pave the way for future medical breakthroughs. Given the high 
dimensionality and inherent uncertainty of medical data, advances will be driven by deep learning's novel feature 
processing approach and flexible model structure. In this article, we'll take a look at some of the most well-known 
deep learning frameworks and prediction techniques for a variety of diseases, as well as the best approach to 
making that all-important issues in medicine and the bounds of deep learning were discussed. It is predicted that 
fusing personalised therapy with genetic disease research, as well as the Internet of Things with intelligent medical 
platforms and equipment, and ideas for improving medical data models will be beneficial in the future. It is likely 
that in the future, deep learning will be used in all stages of disease diagnosis, from ancillary diagnosis to final 
decision making. There are additional DL models for various diseases. Models that are able to learn from one 
another contribute to a more reliable DL network. The development of clinical applications and medical diagnosis 
will be bolstered by this cutting-edge medical system. 
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