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The proposed  research focus on the Collaborative Dynamic Multi-Agent Wormhole Detection and 

Anomaly Mitigation Framework for Secure Networks (CDMA-Worm). It is a comprehensive solution 

designed to protect large  dynamic networks from wormhole attacks and other malicious activities. The 

architecture is built around three key algorithms namely- Dynamic Multi-Agent Generation and 

Broadcasting (DMGB), Anomaly Detection and Isolation (ADI), and Collaborative Wormhole Detection 

and Network-Wide Threat Mitigation(CWD-NWTM). The first algorithm, Dynamic Multi-Agent 

Generation and Broadcasting, focuses on the creation of agents that are tested for integrity and distributed 

across the network. These agents work collaboratively to monitor network activity in real-time, detecting 

any anomalies. The second algorithm, Anomaly Detection and Isolation, identifies irregularities by 

analyzing agent behavior, calculating affinity scores, and isolating malicious nodes to prevent potential 

damage. The third algorithm, Collaborative Wormhole Detection and Network-Wide Threat Mitigation, 

targets wormhole attacks by tracking Round-Trip Time (RTT) and validating neighbor sets. If wormhole 

nodes are detected, they are isolated and blocked, with joint threat levels computed  to coordinate 

mitigation efforts across the network.The CDMA-Worm framework ensures high detection accuracy, 

efficient node isolation, and minimal impact on network latency. Its scalability makes it suitable for the 

networks with different number of nodes that, offering robust protection against wormhole and other 

attacks. By leveraging multi-agent collaboration and dynamic anomaly detection, the architecture  adapts 

to evolving network conditions, providing continuous and effective security. 

Keywords: List of Keywords that are used in the article should be written. All the keywords should be 

separated with commas. Minimum of four keywords must be written. 

 

INTRODUCTION 

The widely used computing domains namely Mobile Ad-hoc Networks (MANETs) and Wireless Sensor Networks 
(WSNs) are characterized by their self-organizing, dynamic nature, where mobile nodes communicate wirelessly 
without relying on established framework or centralized control. These networks are widely employed in critical 
fields where dynamic decisions are expected  response,  highly secured data handling and wireless 
configuration,military operations, and IoT due to their flexibility and suitability for deployment in challenging 
environments. However, the decentralized and open structure of these networks also makes them highly vulnerable 
to various security threats, notably wormhole attacks, which can severely disrupt communication by deviating from 
performance and result in significant data breaches (Gupta et al., 2023)[1]. 

In a wormhole attack, malicious nodes form a concealed communication link that transfer packets between 
different parts of the network. This creates a false proximity between the nodes, deceiving legitimate nodes into 
routing traffic through this compromised link. Consequently, attackers gain the ability to intercept, modify, or 
discard packets, thereby compromising network security and reliability (Li & Zhang, 2023)[2]. The consequences of 
such attacks are particularly severe in large, complex networks, where centralized security mechanisms often 
struggle to respond effectively due to limitations in scalability and resource management (Smith & Kumar, 
2022)[3]. 

 The traditional approaches to detecting wormhole attacks, such as static routing, centralized decision-making, or 
fixed agent deployment, exhibit notable shortcomings in dynamic, large-scale networks. These methods frequently 
encounter issues such as bottlenecks, excessive energy usage, and increased delays in detecting and responding to 
attacks (Mahajan & Bhatia, 2022)[4]. Moreover, as network size and node mobility increase, managing resources 
efficiently and maintaining scalability become more challenging (Ahmed & Hasan, 2021)[5]. Many existing 
detection systems are not equipped to adapt to the evolving tactics of attackers or fluctuating network conditions, 
resulting in reduced detection accuracy and overall network performance (Chen & Lee, 2022)[6]. 

The impact of emerging technologies  in machine learning and network architecture design offer promising 
solutions for enhancing the detection and mitigation of wormhole attacks. By integrating machine learning 
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techniques, such as reinforcement learning, network agents can learn from past experiences to identify malicious 
activity more effectively and refine their detection strategies over time (Patel & Desai, 2023)[7]. Additionally, the 
resilient network architectures that employ decentralized decision-making and dynamic re-routing mechanisms 
can help maintain network functionality, even in the presence of detected attacks (Zhao & Wang, 2022)[8]. The 
introduction of a novel Dynamic Agent Allocation (DAA) algorithm, which adjusts agent deployment in response to 
current network conditions, further optimizes resource use while ensuring high detection accuracy (Kumar & 
Singh, 2023)[9]. This combination of adaptive learning, scalable architecture, and efficient resource management 
represents a significant advancement in addressing the challenges associated with detecting wormhole attacks in 
large-scale MANETs and WSNs. 

II.LITERATURE REVIEW ON WORNHOLE ATTACK DETECTION 

The Wormhole attacks in Mobile Ad-hoc Networks (MANETs) and Wireless Sensor Networks (WSNs) have gained 
increased attention in recent years due to the vulnerabilities these attacks exploit in decentralized network 
structures. The significant advancements have been made in utilizing machine learning, trust-based methods, and 
dynamic agent systems for enhancing wormhole detection mechanisms. 

i.Time-of-Flight (ToF) Analysis 

Time-of-Flight (ToF) analysis is a reliable method to detect these attacks by measuring the signal travel time 
between nodes. 

 𝑇(𝑇ℎ𝑒𝑡𝑖𝑚𝑒 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 𝑡𝑎𝑘𝑒𝑠 𝑡𝑜 𝑡𝑟𝑎𝑣𝑒𝑙) =
𝑑

𝑣
→(1) 

         here d is the distance between the nodes,v is the speed of the signal 

The research outcome proven the efficiency of Time-of-Flight (ToF) analysis is detecting the wormhole attack  
which involves measuring the time a signal takes to travel between two nodes. Wormholes manipulate the 
perceived distance between nodes, and discrepancies in signal travel time can be an indication of a wormhole 
attack. 

The research work of Hu, Perrig, and Johnson (2006) introduced the use of synchronized clocks to 
measure signal travel times for detecting wormholes. While effective, this approach faced limitations due to its 
reliance on precise synchronization, which can be difficult to maintain in large, dynamic networks. 

More recent research efforts have sought to improve this approach. Kumar et al. (2023)[11] proposed a hybrid 
model that integrates ToF analysis with machine learning techniques, such as Support Vector Machines 
(SVMs), to enhance detection accuracy. Their system trains the SVM on data collected from normal node behavior 
and signal travel times to detect deviations caused by wormhole attacks. The experiments demonstrated significant 
improvements in detection performance compared to traditional ToF-based methods. 

ii. Machine Learning-Based Detection 

Machine learning has become a crucial part of modern wormhole detection due to its ability to adapt and learn 
from network behaviors. 

Zhao & Wang (2022)[8] implemented reinforcement learning to train network agents for detecting 
wormhole attacks. The outcome that the system allowed network agents (Ai) to learn from previous data and adapt 
their strategies as attack patterns evolved, which improved detection accuracy, particularly in high-mobility 
networks. 

Similarly, Desai (2023) developed an energy-efficient wormhole detection model using adaptive machine learning 
algorithms to adjust ToF measurements based on network conditions dynamically. This system not only enhanced 
detection rates but also reduced energy consumption in resource-constrained environments, such as WSNs. 

iii. Multi-Hop ToF Analysis 

Recent advancements have extended ToF analysis to multi-hop communication, where the travel time across 
multiple hops is measured to detect more sophisticated wormhole attacks that may affect only part of the network. 

𝑇𝑀𝑢𝑙𝑡𝑖−ℎ𝑢𝑏 = ∑ 𝑇𝑖
𝑛
𝑖=1 →(2) 

 Tmulti-hop is the total travel time across multiple hops, Ti is the travel time of each individual hop, n is the 
number of hops. 

Singh & Bhatia (2022)[13] introduced a multi-hop ToF detection model, which calculates the total travel 
time of a signal over several hops and compares it to the expected cumulative time. Significant deviations suggest 
the presence of a wormhole attack. Their findings showed enhanced detection capabilities, particularly in larger 
MANETs with high node mobility. 
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iv. Trust-Based Enhancements 

To strengthen the wormhole detection, trust-based systems have been integrated into traditional methods. These 
systems assign trust scores to nodes dynamically, based on factors such as signal travel times and packet 
forwarding behavior. 

         Ti(t+1)=ω⋅Ti(t)+(1−ω)⋅Ri(t)→(3) 

 Ti(t+1) is the updated trust score at time t+1, ω is a weighting factor, Ri(t) is the reputation or behavior score at 
time t. 

Chen & Lee (2022)[6] combined trust management with ToF analysis, assigning lower trust scores to nodes 
that consistently exhibited suspicious travel times. By incorporating additional behavioral factors into the detection 
process, they were able to reduce false positives, especially in environments with high interference or node mobility. 

Zhao et al. (2024)[14] expanded  idea by introducing dynamic trust scores that evolve over time, depending 
on a node’s ongoing behavior. Nodes with consistently abnormal behavior are flagged as malicious, while 
temporary anomalies caused by environmental factors are tolerated. This approach helped reduce false positives 
and improved the long-term reliability of wormhole detection. 

v. Round-Trip Time (RTT) Based Detection 

The Round-Trip Time (RTT) analysis has become an important tool for detecting wormhole attacks in 
Mobile Ad-hoc Networks (MANETs) and Wireless Sensor Networks (WSNs) due to its ability to measure 
anomalies in signal travel times.  

𝑅𝑇𝑇 = 2𝑋
𝑑

𝑣
+ 𝑇→(4) 

d is the distance between the two nodes, v is propagation speed 

Ahmed & Hasan (2022)[10] presented a real-time, adaptive RTT-based detection model that 
incorporated a filtering mechanism to distinguish between legitimate network delays and wormhole-induced 
anomalies. The system dynamically adjusts its sensitivity based on network conditions such as node density and 
traffic volume. This adaptive filtering mechanism reduced false positives in large-scale networks and proved 
especially useful in resource-constrained environments, such as WSNs. 

Kumar & Singh (2023)[9] proposed an RTT and ToF hybrid model to detect wormhole attacks to enrich the 
reliability. They utilized RTT for basic anomaly detection and supplemented it with Time-of-Flight (ToF) 
measurements to cross-validate suspected anomalies. Their approach showed improved detection accuracy by 
combining both methods, allowing for better identification of wormhole attacks in complex network topologies. 

Zhao et al. (2023)[12] explored the use of machine learning algorithms, particularly Support Vector 
Machines (SVM), to classify RTT deviations caused by wormholes. By training the SVM with a labeled dataset of 
RTT values under both normal and attack scenarios, they demonstrated that the system could dynamically detect 
wormhole attacks even in high-mobility environments. Their attained  results showed an improvement in 
detection accuracy compared to traditional static threshold-based methods. 

III.PORPOSED MODELLING 

The proposed method MultiGuardNet consists of three key algorithms that are integrated together to ensure 
network security. The DMAGB algorithm creates and deploys agents across the network to monitor for potential 
threats, dynamically adapting to network conditions for better coverage. The Anomaly Detection and Isolation 
Algorithm detects unusual behaviors in real time, such as unauthorized access or abnormal traffic patterns, and 
isolates suspicious nodes by collaborating with neighboring nodes to confirm the threat. Finally, the Collaborative 
Wormhole Detection and Network-Wide Threat Mitigation Algorithm detects wormhole attacks by analyzing packet 
round-trip times and node interactions.  
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When a wormhole is detected, the affected nodes are isolated, preventing further threats and ensuring the overall 
security of the network. This work objective os of integrating the efficient techniques in tandem to detect and 
mitigate a wide range of network security risks. 

 

Dynamic Multi-Agent Generation and Broadcasting Algorithm: 

This algorithm is designed to detect, test, and broadcast agents that represent different types of malicious behaviors 
across a network of nodes. The algorithm takes as input the types of malicious behaviors, denoted as BBB, and the 
set of network nodes, denoted as N, and outputs the agents generated by each node Nj and their subsequent 
broadcasting across the network. 

 

a.Multi-Agent Generation 

The algorithm begins by defining an agent Ai for each type of malicious behavior Bi, where Bi belongs to the set of 
identified malicious behaviors BBB. Each malicious behavior corresponds to a specific agent, and these agents are 
grouped as A1,A2,…,An  for each type of behavior in B. Next, each node Nj in the network generates a set of agents 
corresponding to each behavior type. For every node Nj in the network (where j=1,2,...,∣N∣j = 1, 2, ..., |N|), the node 
generates agents Ai(Nj) corresponding to each malicious behavior Bi. This generation process prepares the network 
for testing and monitoring potential security threats represented by these agents. 

Node N1: 

Generated 
Agents: 

Awormhole(N1) 

Ablackhole(N1) 

Agrayhole(N1) 

ADoS(N1) 

 

 

 

 

 

 

 

 

Node N2: 

Generated 
Agents: 

Awormhole(N2) 

Ablackhole(N2) 

Agrayhole(N2) 

ADoS(N2) 

 

 

 

 

 

 

 

 

Node N3: 

Generated 
Agents: 

Awormhole(N3) 

Ablackhole(N3) 

Agrayhole(N3) 

ADoS(N3) 

For every node Nj, agents Ai are generated for each type of malicious behavior Bi. For example, if the network has 3 
nodes and there are 2 types of malicious behaviors, 
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 the output of this stage will be: 

A1(N1),A2(N1) for node N1 

A1(N2),A2(N2) for node N2, and so on. 

 

Thus, the set of agents generated at each node reflects the network’s readiness to detect various malicious 
behaviors. 

b. Self-Test Mechanism 

Once the agents are generated, they undergo periodic self-testing to detect anomalies or corruptions. The self-
testing is performed at defined time intervals t1,t2,…,tk ensuring continuous monitoring of the agents' states. The 
state of each agent Ai is represented by a state variable S(Ai), where S(Ai)indicates the current status of the agent. 
The algorithm applies a self-test function fself(Ai) to determine the state of the agent, resulting in an updated state 
S(Ai)=fself(Ai). If the self-test reveals that S(Ai)=0, meaning the agent has been corrupted, the algorithm declares 
the agent corrupt and eliminates it from the network. After elimination, the corrupted agent is regenerated by the 
node to ensure continuity in testing and monitoring. 

(i)Periodic Testing: 

At t1 all agents undergo self-testing: 

Node N1 agents: Awormhole(N1), Ablackhole(N1), Agrayhole(N1), ADoS(N1) 

Node N2 agents: Awormhole(N2), Ablackhole(N2), Agrayhole(N2), ADoS(N2) 

Node N3 agents: Awormhole(N3), Ablackhole(N3), Agrayhole(N3), ADoS(N3) 

Node N4 agents: Awormhole(N4), Ablackhole(N4), Agrayhole(N4), ADoS(N4) 

At t2 self-testing repeats. 

(ii)State Representation 

Node N1 Self-
Test Results: 

S(Awormhole(N1))= 
1 (Healthy) 

S(Ablackhole(N1))= 
0 (Corrupt, 
Eliminated, 
Regenerated) 

S(Agrayhole(N1))= 1 
(Healthy) 

S(ADoS(N1)) = 1 
(Healthy) 

Node N2Self-
Test 

S(Awormhole(N2)) 
= 1 (Healthy) 

S(Ablackhole(N2)) 
= 1 (Healthy) 

S(Agrayhole(N2)) 
= 1 (Healthy) 

S(ADoS(N2)) = 1 
(Healthy) 

Node N3Self-
Test 

S(Awormhole(N3))=1 
(Healthy) 

S(Ablackhole(N3))=1 
(Healthy) 

S(Agrayhole(N3))=1 
(Healthy) 

S(ADoS(N3))= 1 
(Healthy) 

(iii)Corruption Check: 

• Node N1’s agent Ablackhole(N1) is declared corrupt and eliminated. 

• Regenerate Ablackhole(N1). 

 

 The state of each agent is represented by S(Ai), which can be either: 

• S(Ai)=1 (indicating a healthy agent) 

• S(Ai)=0(indicating a corrupted agent) 

If an agent is found to be corrupted (S(Ai)=0), it will be eliminated and regenerated. This testing mechanism 
ensures that only healthy agents continue to participate in the network communication. 

 



533  

 

 

 J INFORM SYSTEMS ENG, 10(15s) 

Broadcasting Agents 

 

Once the agents have passed their self-tests, they are ready to be broadcasted to neighboring nodes. Each node Nj 
broadcasts its agents Ai(Nj) to its neighboring nodes Nk (where k=1,2,...,∣N∣). This collaborative broadcasting 
ensures that every node in the network receives information about the agents of its neighboring nodes, thereby 
enabling a network-wide monitoring system. The broadcast is represented as B(Ai(Nj))→Nk where node Nj sends 
the state of its agents to node Nk. Additionally, nodes continuously update their security database Dj by storing the 
information of the agents received from neighboring nodes. The database at node Nj will contain agents from other 
nodes Nk, represented as Dj={Ai(Nk)∣k=1,2,...,∣N∣} thus maintaining a shared security repository across the 
network. 

Collaborative Broadcasting 

Node N1 
broadcast: 

B(Awormhole(N1))to 
N2,N3 

B(Agrayhole(N1))to 
N2,N3 

B(ADoS(N1)) to 
N2,N3 

Node N2 

broadcast: 

B(Awormhole(N2)) 
to N1,N3 

B(Ablackhole(N2)) 
to N1,N3 

Node N3 

broadcast: 

B(Awormhole(N3)) 
to N1,N2 

B(Ablackhole(N3)) 
to N1,N2  

Each node Nj broadcasts its agents Ai to neighboring nodes Nk: 

Broadcast B(Ai(Nj))→Nk for k=1,2,...,∣N∣ Where B(Ai(Nj)) represents the set of agents from node Nj being 
broadcasted to neighboring node Nk. Collaborative Broadcast is crucial for each node to help its neighbors 
detect and deal with malicious behaviors by sharing its agent's current state. 

d. Security Database: 

the algorithm ensures a distributed and collaborative approach to monitoring malicious behaviors in a network. 
Each node generates agents representing malicious behaviors, performs periodic self-tests to detect anomalies, and 
broadcasts the state of these agents to neighboring nodes, building a robust network-wide defense system. The 
security database at each node stores the broadcasted agents, enhancing the collective ability to detect and respond 
to malicious behaviors. 

Node N1 Security Database D1: 

D1={Awormhole(N2), Ablackhole(N2), Agrayhole(N3)} 

Node N2Security Database D2: 

D2= {Awormhole (N1), ADoS(N1), Agrayhole(N3)} 

Node N3 Security Database D3: 

D3={Awormhole(N1),ADoS(N2),Ablackhole(N2)} 

 

Each node maintains a security database Dj containing agents from its neighboring nodes Nk: 

Dj={Ai(Nk)∣k=1,2,...,∣N∣} 

Algorithm 1: Multi-Agent Generation and Broadcasting 

Input: 

Types of malicious behavior B 

Network nodes N 

Output: 

Agents generated and broadcasted by each node Nj 
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Define an agent Ai for each type of malicious behavior Bi where Bi∈B: 

Ai={A1,A2,...,An} for each Bi∈B 

Each node Nj in the network generates agents Ai: 

For j=1 to ∣N∣,  

Generate Ai(Nj) for each Bi∈B 
Each agent Ai undergoes periodic self-testing for anomalies: 

Test Ai at intervals t1,t2,...,tk 
Represent the state of agent Ai as S(Ai): 

S(Ai)=State of Ai 

If S(Ai)=1: Healthy agent 

Else 

S(Ai)=0: Corrupt agent 

Self- Test Function 
Apply the self-test function fself(Ai) to determine the state S(Ai): 

S(Ai)=fself(Ai) 
If S(Ai)=0  (agent corrupted): 

Declare agent Ai corrupt and eliminate Ai 

Regenerate Ai if corruption is detected 

Step 3 : Broadcasting Agents  

Collaborative BroadCasting 

Each node Nj broadcasts its agents Ai to neighboring nodes Nk: 

Broadcast B(Ai(Nj))→Nk for k=1,2,...,∣N| 

Broadcast B(Aik(Nj)) 

Security Database  
Nodes maintain a security database Dj containing agents from neighboring nodes: 

Dj={Ai(Nk)∣k=1,2,...,∣N∣} 

Anomaly Detection and Isolation Algorithm: 

This algorithm aims to detect abnormal or suspicious behavior in the network and isolate malicious nodes to 
ensure network security. It starts by monitoring network traffic at each node in real time. When irregularities like 
packet loss, unexpected traffic patterns, or unauthorized access attempts are identified, agents analyze these events 
by comparing them to predefined behavioral patterns using methods such as Hamming distance. This comparison 
results in an affinity score, which indicates the likelihood that the event corresponds to malicious behavior. If the 
score is below a specified threshold, the event is marked as suspicious or possibly malicious. Once flagged, 
neighboring nodes engage in a collaborative voting process to verify the legitimacy of the anomaly. Each 
neighboring node casts a vote on whether the anomaly is valid. If the majority agrees that the event is legitimate, 
the node that triggered the anomaly, Ns is designated as malicious and promptly isolated. The isolation process 
entails severing all communication links with Ns and removing its entries from the routing tables of other nodes, 
preventing further traffic from being routed through it. By integrating agent-based anomaly detection with cross-
node collaboration, the algorithm ensures reliable detection and isolation of malicious nodes, protecting the 
network from potential threats. 

Node N1 broadcasts the potential anomaly (suspicious behavior of Node N2) to neighboring nodes N3 and N4. Each 
of these nodes checks their own communication with Node N2 to verify whether they are also observing similar 
issues. If Node N3 and Node N4 both observe packet drops or other irregular behavior, they vote to confirm the 
anomaly. Assume that Node N3 votes "True" (anomaly confirmed), and Node N4 also votes "True". With two votes 
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out of three, the majority confirms that Node N2 is behaving maliciously. After confirming that Node N2 is 
malicious, all neighboring nodes sever their communication links with Node N2. Node N1, N3, and N4 update their 
routing tables to remove Node N2 so that no further traffic is routed through or to it. Essentially, Node N2 becomes 
isolated and cannot interfere with the network any longer. 

Algorithm 2: Anomaly Detection and Isolation Algorithm 

Input: 

Agents Ai generated in Multiagent Generation. 

Events Ef(network anomalies, suspicious activities, malicious behaviors). 

Historical data Hj (previous states of nodes and agents). 

Output: 

Detection of anomalies or corrupted agents. 

Identification and isolation of malicious nodes. 

Updated security database with detected threat 

Continuous Event Monitoring and Data Collection 

Each node Nj monitors incoming network traffic and detects any unusual activity or event Ef  

Ef={Packet drop, suspicious traffic flow, unauthorized access}.For each detected event Ef agents Ai(Nj) at the node 
Nj analyze the event. The agent compares the characteristics of the event with its own state using a Hamming 
distance calculation between the bit-pattern of the agent and the event. 

𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒  𝑑𝐻(𝐴𝑖, 𝐸𝑓) = ∑ |𝐴𝑖
𝑘 

𝑛

𝑘=1

− 𝐸𝑓
𝑘 

Affinity Calculation 

Calculating affinity score 𝛼(𝐴𝑖, 𝐸𝑓) 

 Ai. 

𝛼(𝐴𝑖, 𝐸𝑓) = 1 −
𝑑𝐻(𝐴𝑖, 𝐸𝑓)

𝐿
 

if affinity_score < threshold:  

 return True:   Event is suspicious (threat detected) 

else: 

 Return False :  Event is not suspicious 

Threshold Comparison: 

Compare the affinity score α(Ai,Ef) with the threshold θ 

If α(Ai,Ef)<θ, then classify Ef as a threat  

α(Ai,Ef) is below the threshold, mark the event as an anomaly. 

Step 2: Anomaly Detection Based on Threshold Comparison 

Source Identification: 
Identify the source node Ns  of the detected event Ef by analyzing the event’s origin. 

Use historical data Hj to verify whether Ns has previously been involved in any malicious activity. 

Malicious Node Classification: 
If Ns has a history of abnormal behaviors or infections, classify it as a malicious node. 

If Hj(Ns)≥threshold, classify Ns as malicious 

Broadcast Anomaly to Neighbors : B(Ef)→Nk 

Block Communication and Isolate Malicious Node: 

network_topology['N1'] = ['N2', 'N3', 'N4'] 
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routing_table['N1'] = ['N2', 'N3', 'N4'] 

If Node N2= Malicious 

N1: ['N3', 'N4']  

Step 3: Cross-Validation of Anomalies Across Neighboring Nodes 

Cross-Validate Anomalies: 

Neighboring nodes Nk perform cross-validation on the anomaly Ef reported by node Nj. 

Majority Voting for Malicious Node: 

neighbors = {  

'N1': True, # Neighbor N1 votes 'True' (confirm anomaly) 

'N2': True, # Neighbor N2 votes 'True' (confirm anomaly) 

'N3': False, # Neighbor N3 votes 'False' (reject anomaly) 

'N4': True # Neighbor N4 votes 'True' (confirm anomaly) } 

If majority votes confirm anomaly, block Ns. 

Step 4: Update Security Database and Generate New Agents 

Collaborative Wormhole Detection and Network-Wide Threat Mitigation 

Collaborative Wormhole Detection and Network-Wide Threat Mitigation is designed to detect and mitigate 
wormhole attacks in a distributed network by utilizing a collaborative approach across multiple nodes. The process 
begins with each node periodically exchanging packets with its neighboring nodes, recording the time packets are 
sent and received to calculate the Round-Trip Time (RTT). If the RTT between two nodes is unusually short, falling 
below a predefined threshold, a wormhole attack is suspected. Additionally, each node monitors changes in its 
neighbor set—unexpected fluctuations in the neighbor set can also indicate a potential wormhole attack. 

Once a wormhole attack is suspected, the involved nodes are added to a suspected wormhole node list, which is 
then broadcasted across the network. Neighboring nodes collaboratively validate the anomaly by sharing their RTT 
data and neighbor set information. A voting mechanism is employed, where each node votes on whether it confirms 
the anomaly. If the majority of nodes confirm the wormhole, the nodes involved are classified as malicious. 

The confirmed wormhole nodes are then isolated by severing all communication links and removing them from the 
routing tables of other nodes, ensuring that no further traffic is routed through them. This malicious status is 
broadcast to the entire network to prevent any future interaction with these nodes. Once the wormhole nodes are 
isolated, the network computes a threat level, taking into account factors such as the number of wormhole nodes 
detected and the extent of network disruption. If the calculated threat level exceeds a certain threshold, network-
wide mitigation actions are initiated, including rerouting traffic, increasing monitoring, and adjusting routing 
protocols to prevent further attacks. This collaborative and adaptive approach ensures that the network can not 
only detect and isolate wormhole nodes effectively but also enhance its resilience against future attacks. 

Algorithm 3: Collaborative Wormhole Detection and Network-Wide Threat Mitigation 

Input: 

Wormhole detection agents from algorithm1,2. 

Packets with timestamps,Round-trip times (RTTs). 

Output: 

Detection of wormhole nodes. 

Isolation of wormhole nodes and network-wide threat mitigation. 

Step 1: Wormhole Detection Using Round-Trip Time (RTT) 

Packet Exchange: 
Each node Nj sends packets with timestamps to its neighboring nodes Nk, recording the time the packet was sent 
Tsentand the time it was received Treceived. 

RTT(Nj,Nk)=Treceived(Nk)−Tsent(Nj) 
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RTT Threshold Check: 
If the recorded RTT between node Nj and Nk is below a predefined threshold τ suspect a wormhole. 

If RTT<τ → suspect wormhole. 

Neighbor Set Anomaly Detection: 

Each node continuously monitors changes in its neighbor set S(Nj) 

ΔS(Nj)=∣Scurrent (Nj)−Sprevious (Nj)∣ 

If ΔS(Nj)>θ ⇒ suspect wormhole. 

Step 2: Wormhole Node Isolation 

Suspected Node List: 

Nodes Nj and Nk suspected of being involved in a wormhole attack are added to a suspected wormhole node list. 

Lwormhole={Nj,Nk,…} 

Broadcast the list of suspected wormhole nodes to all nodes in the network. 

B(wormhole nodes)→Nk for k=1,2,…,∣N∣. 

Step 3: Collaborative Voting and Confirmation of Wormhole Nodes 

 Voting Process 

V(Ni)={True (wormhole detected)or False (no wormhole)} 

Majority Voting 

The suspected node is confirmed as malicious if the majority of the nodes agree that the behavior is indicative of a 
wormhole: 

If 
∑ 𝑉(𝑁𝑖)

|𝑁𝑖|
> 0.5 ⇒ 𝐶𝑜𝑛𝑓𝑖𝑟𝑚 𝑊𝑜𝑟𝑚ℎ𝑜𝑙𝑒 𝑁𝑜𝑑𝑒 

Step 4: Isolation and Blocking of Wormhole Nodes 

Communication Blocking 

Once confirmed, the wormhole nodes are isolated by cutting off their communication links: 

Lremove (Nj)={L(Nj,Nk)∀Nk } 

Removal from Routing Tables 

The wormhole nodes are removed from the routing tables of their neighbors, ensuring they cannot participate in 
any further network communication: 

Routing Table(Ni)=Routing Table(Ni)∖Nj 

Step 5: Network-Wide Threat Mitigation 

Threat Level Calculation 

Threat Level=f(Number of Wormhole Nodes, Traffic Disruption, Affected Routes) 

Triggering Mitigation Actions 

If the threat level exceeds a critical threshold λ, the network initiates mitigation actions: 

If Threat Level>λ⇒Mitigation Actions Initiated 

Rerouting traffic to bypass the malicious nodes: 

New Route={R new  excluding wormhole nodes} 

Increasing monitoring frequency at other nodes: 

fmonitoring←fmonitoring+Δf 

RESULTS AND DISCUSSIONS 

Dynamic Multi-Agent Generation and Broadcasting (DMAGB) 
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DMAGB is evaluated using the following metrics: agent coverage, broadcast latency, and broadcast overhead, and is 
compared with the Centralized Agent-Based Method and Distributed Static Assignment 

Agent Coverage 

Measures the percentage of network nodes covered by the generated agents for monitoring various types of 
malicious behaviors. Ensures a large proportion of nodes are actively involved in the detection process. 

𝐴𝑔𝑒𝑛𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑎𝑐𝑡𝑖𝑣𝑒 𝑎𝑔𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
𝑋100 

Broadcast Overhead 

Measures the extra traffic generated by agent broadcasting. High broadcast overhead can impact the network's 
overall performance. 

   𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
𝑋100 

1. Table 1. Agent Coverage 

Number of Nodes Centralized Agent-Based Distributed Static Assignment DMAGB 
50 85% 80% 95% 

100 85% 80% 95% 

150 84% 80% 95% 

200 83% 79% 95% 

250 82% 78% 95% 

 

 

Figure 1 Comparison of Agent Coverage 

The figure 1 compares the Agent Coverage across different network sizes (50, 100, 150, 200, and 250 nodes) for 
three methods: Centralized Agent-Based, Distributed Static Assignment, and Dynamic Multi-Agent 
Generation and Broadcasting (DMAGB). It shows that the Centralized Agent-Based method consistently 
achieves moderate agent coverage, with values just below 85% across all network sizes. In contrast, the 
Distributed Static Assignment method performs relatively worse, with agent coverage ranging from 70% to 
80%, indicating a less efficient coverage of the network. On the other hand, DMAGB stands out by maintaining 
nearly 100% agent coverage across all node configurations, showcasing its superior capability in ensuring that 
nearly all nodes actively participate in the detection process. This highlights DMAGB as the most effective method, 
especially for dynamic networks, providing the highest level of security coverage compared to the other two 
methods. 

Broadcast Latency 

Time taken to broadcast agent states from one node to neighboring nodes. Reduced latency enables faster 
distribution of security information throughout the network 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
∑ (𝑇𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 − 𝑇𝑠𝑒𝑛𝑡)𝑁

𝑖=1

𝑁
 

The broadcast latency comparison with values for 50, 100, 150, 200, and 250 nodes. 
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Table 2 Broadcast Latency 

Number of Nodes Centralized Agent-Based Distributed Static Assignment DMAGB 
50 50 65 60 

100 55 80 70 

150 60 95 80 

200 70 110 90 

250 75 125 100 

 

 

Figure 2 Broadcast Latency 

The graph compares the broadcast latency of three methods: Centralized Agent-Based, Distributed Static 
Assignment, and Dynamic Multi-Agent Generation and Broadcasting (DMAGB), across various network sizes of 50, 
100, 150, 200, and 250 nodes. 

Initially, the Centralized Agent-Based method exhibits the lowest broadcast latency, around 50 ms for 50 nodes. As 
the network size increases, latency gradually rises, reaching approximately 120 ms at 250 nodes. This increase 
suggests that the centralized approach becomes less efficient as the number of nodes grows, likely due to traffic 
congestion at the central node, leading to communication delays. 

On the other hand, the Distributed Static Assignment method starts with a higher latency of 60 ms for 50 nodes. As 
the network size increases, the latency grows more significantly, peaking at 130 ms for 250 nodes. This suggests 
that despite distributing the load, this method faces scalability challenges and struggles to efficiently handle larger 
networks due to its static structure. 

The DMAGB method, in contrast, shows a more stable increase in latency compared to the other two. Starting at 
about 55 ms for 50 nodes, it experiences a gradual rise in latency as the network size grows. At 250 nodes, DMAGB 
reaches approximately 100 ms, making it the most efficient method for larger networks. Its dynamic nature allows 
for better scalability, avoiding the congestion and delays seen in the other methods. 

The Centralized Agent-Based method is optimal for smaller networks with the lowest latency, DMAGB outperforms 
the others as the network size increases. DMAGB consistently maintains lower latency than the Distributed Static 
Assignment method, which suffers from significant latency growth as the network expands. This highlights 
DMAGB's suitability for large-scale networks, offering an efficient and scalable solution for broadcasting security 
information across the network. 

b.Anomaly Detection and Isolation 

This is focused on detecting suspicious events using agents and isolating malicious nodes through a voting 
mechanism. The performance of the algorithm evaluated by Detection Accuracy(DA) and Isolation Success 
Rate(ISR) 

Detection Accuracy(DA): 

The algorithm's capability to accurately detect malicious activities (true positives) while reducing false positives 
(incorrect alarms) is crucial. High accuracy ensures that real threats are identified without mistakenly flagging 
legitimate behavior as harmful. 

𝐷𝐴 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝐶𝑎𝑠𝑒𝑠
 

True Positives (TP) represent the number of correctly identified malicious activities. 
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False Positives (FP) are benign activities incorrectly classified as malicious. 

True Negatives (TN) are the legitimate activities correctly classified as benign. 

False Negatives (FN) are malicious activities that were not detected. 

Table 3 Anomaly Detection and Isolation values 

Method  TP FP TN FN Detection Accuracy (DA) 
Signature-Based Detection 120 15 100 5 0.90 
Heuristic-Based Anomaly Detection 110 18 95 7 0.88 
Anomaly Detection and Isolation 130 10 110 3 0.9 

 

The table 4 highlights the detection accuracy of three techniques—Signature-Based Detection, Heuristic-Based 
Anomaly Detection, and Anomaly Detection and Isolation—across varying network sizes (50, 100, 150, 200, and 
250 nodes). As the number of nodes increases, the accuracy of all methods declines slightly. However, Anomaly 
Detection and Isolation consistently achieves the highest accuracy, starting at 0.95 for 50 nodes and decreasing to 
0.90 for 250 nodes. Signature-Based Detection shows fairly high performance, starting at 0.92 and dropping to 
0.83. Heuristic-Based Anomaly Detection has the lowest accuracy, beginning at 0.90 and reducing to 0.82 as the 
network size increases. This indicates that Anomaly Detection and Isolation is the most reliable method, especially 
as the network grows.                                   

Table 4 Detection Accuracy 

Number of 
Nodes 

Signature-Based 
Detection 

Heuristic-Based Anomaly 
Detection 

Anomaly Detection and 
Isolation 

50 0.92 0.90 0.95 

100 0.90 0.88 0.93 

150 0.88 0.86 0.92 

200 0.85 0.84 0.91 

250 0.83 0.82 0.90 

 

 

Figure 3 Comparison of Detection Accuracy 

The Anomaly Detection and Isolation method consistently outperforms the others, maintaining the highest 
accuracy across all data points and often approaching or hitting the ideal value of 1.00. On the other hand, 
Signature-Based Detection demonstrates fairly high accuracy but shows a slight decline as the data points increase. 
Heuristic-Based Anomaly Detection, however, has the lowest accuracy among the three methods and sees a more 
significant drop as the data points grow. 

Anomaly Detection and Isolation is the most effective method for anomaly detection, while Heuristic-Based 
Anomaly Detection shows the weakest performance, especially as the dataset size expands. 

Isolation Success Rate(ISR): 

The percentage of successfully identified and isolated malicious nodes compared to all detected anomalies.Ensures 
that identified malicious nodes are effectively isolated to minimize further harm. 

𝐼𝑆𝑅 =
𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑁𝑜𝑑𝑒 𝐼𝑠𝑜𝑙𝑎𝑡𝑒𝑑

𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑁𝑜𝑑𝑒
𝑥100 
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Table 5 Isolation Success Rate 

Number of 
Nodes 

Centralized Agent-Based 
Detection 

Distributed Static 
Assignment 

Anomaly Detection and 
Isolation 

50 85% 80% 90% 
100 82% 78% 90% 
150 80% 75% 87.5% 
200 77% 72% 87% 
250 75% 70% 85% 

2. The table presents a comparison of Isolation Success Rate (ISR) for various network sizes (50, 100, 150, 
200, and 250 nodes) across three methods: Centralized Agent-Based Detection, Distributed Static Assignment, and 
Anomaly Detection and Isolation. For smaller networks with 50 nodes, the Centralized Agent-Based Detection 
method achieves an ISR of 85%, while Distributed Static Assignment performs slightly lower at 80%. The Anomaly 
Detection and Isolation method, however, stands out with an ISR of 90%, highlighting its greater efficiency in 
isolating malicious nodes. 
3. As the network expands to 100 nodes, the Centralized Agent-Based Detection and Distributed Static 
Assignment methods both experience a decline, with ISR values of 82% and 78%, respectively. On the other hand, 
Anomaly Detection and Isolation continues to deliver high performance with a consistent 90% ISR, demonstrating 
its robustness as the network grows. 

 
Figure 4 Comparison of ISR 

4. For larger networks of 150, 200, and 250 nodes, both Centralized Agent-Based Detection and Distributed 
Static Assignment show a further reduction in success rates, with the centralized method dropping to 75% ISR at 
250 nodes and the distributed method falling to 70% ISR. Meanwhile, the Anomaly Detection and Isolation method 
sustains higher performance, with 87.5% ISR at 150 nodes, 87% ISR at 200 nodes, and 85% ISR at 250 nodes. This 
indicates that Anomaly Detection and Isolation is more scalable and effective in handling larger networks, making 
it the most efficient at isolating malicious nodes compared to the other two methods. 

 

Figure 1 Resultant Graph of the Proposed System 

Value 1 Value 2 Value 3 
2 2 9 
6 7 4 
2 9 6 

Table 1 Modelling Table  

All the tables should be presented as shown above. 
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All the mathematical equations should be numbered as shown above. 

             CONCLUSION 

CDMA-Worm framework offers an efficient and scalable solution for detecting and mitigating wormhole attacks 
and other network threats. By leveraging multi-agent collaboration, real-time anomaly detection, and coordinated 
threat mitigation, it ensures high detection accuracy, effective isolation of malicious nodes, and minimal network 
latency. The framework’s dynamic approach allows for adaptive security in both small and large networks, making 
it highly resilient to evolving threats. Its ability to maintain performance and security at scale highlights its 
potential as a valuable tool for securing dynamic and complex network environments, ensuring long-term reliability 
and safety. 
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