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The integration of multimodal data for medical diagnostics has emerged as a pivotal innovation 

in precision healthcare, enabling a more comprehensive understanding of patient conditions. 

This study proposes a robust framework that unifies textual, imaging, and physiological data 

from the PTB-XL dataset to enhance diagnostic accuracy. By leveraging advanced embedding 

techniques for text, image, and ECG signal data, the framework harmonizes these modalities 

through a fusion mechanism that retains their unique diagnostic characteristics. The fused 

representations are subjected to neural network-based classification to ensure accurate and 

reliable predictions. Rigorous preprocessing techniques and balanced data sampling address 

potential biases, ensuring robust model performance. The proposed methodology demonstrates 

significant improvements in diagnostic outcomes, marking a step forward in the practical 

application of multimodal data fusion in healthcare. This research underscores the potential of 

multimodal approaches and lays the groundwork for scalable and adaptable implementations in 

real-world medical settings [1][2][3][5][8]. 
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Introduction 

The evolution of healthcare technologies has catalyzed a transformative shift in medical diagnostics, emphasizing the 

integration of diverse data modalities for enhanced accuracy and patient-centric care. Multimodal data fusion, 

which synthesizes heterogeneous data types such as text, images, and physiological signals, represents a critical 

advancement in this direction. By combining information from multiple modalities, this approach provides a holistic 

understanding of patient conditions, often revealing insights that single-modality analysis cannot achieve [1][3]. 

Significance of Multimodal Data in Medical Diagnostics 

Textual data, such as electronic health records (EHRs), clinical notes, and laboratory reports, encapsulates a rich 

narrative of the patient’s medical history, symptoms, and responses to treatment. These texts, while unstructured 

and complex, are invaluable for contextualizing other diagnostic inputs. Imaging data, including X-rays, MRIs, and 

CT scans, captures structural and functional anomalies that are imperceptible through textual analysis alone. 

Meanwhile, physiological signals like electrocardiograms (ECGs) provide real-time insights into cardiac health, 

offering temporal patterns critical for early detection and management of diseases [2][5][9]. 
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Figure 1: A conceptual architecture illustrating the role of text, imaging, and signal data in multimodal diagnostics. 

Each of these data types contributes unique and complementary diagnostic value. However, their independent 

analysis often fails to capture the interrelationships and synergies that can enhance diagnostic outcomes. The 

integration of these modalities into a unified analytical framework not only bridges this gap but also aligns with the 

principles of precision medicine, which advocate for tailored treatment strategies based on comprehensive patient 

data [6][7]. The integration of diverse data types poses several challenges. Text data, often unstructured and laden 

with domain-specific terminologies, requires advanced natural language processing (NLP) models for meaningful 

extraction of diagnostic information. Imaging data demands sophisticated computer vision techniques to identify 

diagnostically relevant features, while physiological signals must be processed to extract temporal and frequency-

based patterns [4][8]. 

Synchronizing these modalities while preserving their unique diagnostic value necessitates a robust and scalable 

fusion mechanism, capable of addressing differences in scale, format, and contextual relevance. This study leverages 

the PTB-XL dataset, a comprehensive repository containing textual, imaging, and physiological data, to develop a 

robust multimodal diagnostic framework. The proposed methodology encompasses advanced embedding techniques 

to convert raw data into machine-readable formats, followed by a novel fusion mechanism that integrates these 

embeddings into a unified representation. This fusion not only retains the individual characteristics of each modality 

but also maximizes their collective diagnostic potential [6][10]. 

The proposed framework is evaluated across various diagnostic tasks to assess its adaptability, scalability, and 

effectiveness. The research aims to contribute to the growing field of multimodal learning by addressing the 

challenges associated with heterogeneous medical data integration and proposing a model that enhances both 

diagnostic accuracy and efficiency. 

Literature Review 

The field of multimodal data fusion in medical diagnostics has seen significant advancements, driven by the need for 

more comprehensive and accurate diagnostic frameworks. This section reviews the state-of-the-art techniques and 

approaches, with a focus on embedding generation, data fusion, and classification models. The challenges, solutions, 

and potential applications discussed in existing literature set the stage for the proposed methodology. 

Embedding Generation Across Modalities 

Embedding generation is a critical step in multimodal learning, transforming heterogeneous data into numerical 

representations suitable for machine learning models. 
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Figure 2: A comparative overview of embedding techniques for text, imaging, and signal data. 

Text Data Embeddings: Textual data, such as clinical notes and EHRs, often contains unstructured narratives that 

require advanced natural language processing (NLP) techniques. Models like BERT (Bidirectional Encoder 

Representations from Transformers) and its domain-specific variants have been extensively used for generating 

embeddings that capture semantic and contextual information [1][3]. These embeddings are particularly effective in 

understanding medical terminologies and relationships within clinical texts, as emphasized by works like [12][13]. 

Imaging Data Embeddings: Imaging modalities, including X-rays, MRIs, and CT scans, are processed using 

convolutional neural networks (CNNs) to extract high-dimensional feature representations. Architectures such as 

ResNet and U-Net have demonstrated exceptional performance in tasks like segmentation and feature extraction, 

which are critical for identifying diagnostically relevant visual patterns [14][15]. These embeddings help in detecting 

abnormalities that might be overlooked in textual data. 

 

Figure 3: A sample image of ECG Signal in image format 

Physiological Signal Embeddings: Physiological signals like ECGs offer unique temporal patterns essential for 

diagnosing cardiac conditions. Techniques like Mel-Frequency Cepstral Coefficients (MFCCs) and spectral analysis 

are commonly used for feature extraction, while deep learning models such as Recurrent Neural Networks (RNNs) 

capture temporal dependencies [16][18]. Recent studies highlight the significance of leveraging domain-specific 

preprocessing to improve the quality of signal embeddings [22][23]. 
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Multimodal Data Fusion 

The fusion of embeddings from different modalities is the cornerstone of multimodal diagnostic frameworks. Various 

strategies have been proposed to integrate these embeddings effectively: 

Simple Concatenation: This approach combines feature vectors from each modality into a single vector. While 

straightforward, it often fails to capture interdependencies between modalities, as noted in [24][25]. 

Attention Mechanisms: Advanced fusion techniques like attention mechanisms dynamically weigh features from 

different modalities, focusing on the most diagnostically relevant ones. Transformer-based architectures, known for 

their scalability and effectiveness, have shown promise in this area [26][27]. 

Advanced Fusion Models: Techniques such as Canonical Correlation Analysis (CCA) and Multi-Kernel Learning 

(MKL) have been employed to align and combine multimodal embeddings. These methods enhance the coherence 

and diagnostic utility of fused representations [28][30]. 

Equation 1: A mathematical representation of attention-based fusion: 

𝑧 = ∑α𝑖

𝑛

𝑖=1

⋅ ℎ𝑖 ,  α𝑖 =
exp(𝑒𝑖)

∑𝑛
𝑗=1 exp(𝑒𝑗)

 

Where hih_i are embeddings, and αi\alpha_i are attention weights calculated from eie_i, the relevance scores of each 

modality. 

Classification Models for Multimodal Data 

The final stage in multimodal frameworks involves classification models that leverage the fused embeddings for 

diagnostic predictions. Deep learning architectures, such as Fully Connected Neural Networks (FCNNs) and 

ensemble methods, dominate this domain: 

Deep Learning Models: Architectures like ResNet and Transformer-based classifiers have demonstrated high 

performance in multimodal classification tasks. These models excel in handling high-dimensional data, extracting 

latent patterns from fused representations [33][35]. 

Hybrid Approaches: Combining traditional machine learning algorithms, such as Support Vector Machines 

(SVMs), with deep learning has been explored to balance computational efficiency and accuracy. Studies show these 

hybrid models perform well in resource-constrained environments [36][38]. 

Table 1: Summary of key approaches in classification models for multimodal data. 

Model Type Key Features Advantages Limitations 

Deep Learning Handles high-dimensional data; 

feature-rich 

High accuracy, scalability Computationally 

intensive 

Hybrid Models Combines simplicity of ML with DL 

strengths 

Efficient, interpretable Moderate accuracy 

Attention-

based 

Dynamically focuses on relevant 

features 

Captures 

interdependencies 

Complex to train 

 

Challenges in Multimodal Learning 

Despite significant progress, multimodal data fusion faces several challenges: 

Heterogeneity of Data: Synchronizing modalities with different structures and formats remains a primary 

challenge. This heterogeneity often requires sophisticated alignment techniques [40][42]. 

Data Imbalance: Many datasets suffer from class imbalance, particularly in rare medical conditions. Techniques 

like Synthetic Minority Oversampling Technique (SMOTE) and class-weighted losses have been proposed to mitigate 

this issue [43][45]. 
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Computational Complexity: The high-dimensional nature of fused embeddings and the computational demands 

of deep learning architectures pose scalability issues. Optimization strategies, such as pruning and quantization, have 

been explored to address these challenges [47][48]. 

 

Figure 4: A workflow diagram illustrating the challenges and solutions in multimodal learning. 

This detailed review underscores the necessity of a unified framework that addresses these gaps and incorporates 

state-of-the-art techniques for embedding generation, data fusion, and classification. The proposed methodology 

builds upon these insights to create a scalable and adaptable diagnostic framework. 

Methodology 

This study presents a structured and comprehensive approach to building a multimodal diagnostic framework using 

the PTB-XL dataset. The methodology involves leveraging the unique strengths of text, image, and signal data to 

construct specialized networks for each modality, integrating their outputs through advanced fusion mechanisms for 

robust diagnostic predictions. 

Dataset and Exploration 

The PTB-XL dataset comprises 22,799 ECG records, including: 

• Textual Metadata: Features like age, sex, and diagnostic descriptions offering clinical context. 

• ECG Signal Data: High-resolution time-series data capturing cardiac activity. 

• ECG Image Data: Graphical visualizations of waveforms, aiding in pattern recognition. 

Exploratory data analysis (EDA) revealed a substantial imbalance in diagnostic subclasses, with two dominant 

categories: Inferior Myocardial Infarction (IMI) and Normal (NORM). To mitigate this, a maximum of 1600 samples 

per subclass was retained, ensuring balanced representation. Visualizations such as bar charts and demographic 

distributions provided insights into the dataset's composition and guided preprocessing decisions. 

Data Preprocessing 

The preprocessing pipeline was customized for each modality, ensuring compatibility with the respective machine 

learning models. 

• Text Metadata: 

o Features such as age and sex were encoded and scaled. 

o Diagnostic labels were mapped to integers: IMI = 0, NORM = 1. 

• ECG Signal Data: 

o Signals were cleaned through noise removal and baseline correction. 

o Normalization standardized amplitude values:  

𝑥norm =
𝑥 − 𝜇

𝜎
 

o Signals were segmented into overlapping windows to capture temporal dependencies. 

• ECG Image Data: 

o Images were resized to 250×500 pixels and normalized to a range of [0, 1]. 

o Data augmentation techniques, such as rotations and flips, enhanced variability in training data. 
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Modality-Specific Network Training 

Separate neural networks were trained for each modality to extract specialized embeddings. 

Text Network: A fully connected feed-forward network processed patient metadata. The network included. Dense 

layers with ReLU activations to learn complex relationships between features. Dropout layers to prevent overfitting. 

Output is A high-dimensional embedding representing demographic and categorical features 

𝑬tx = NNtext(𝑥text) 

Signal Network: A Long Short-Term Memory (LSTM) network was designed to capture sequential dependencies 

in ECG signals. Input is segmented and normalized time-series data. Architecture is LSTM layers followed by dense 

layers for feature refinement. Output is a compact embedding encapsulating temporal dynamics:  

𝐸sga = LSTM(𝑥signal) 

Image Network: A Convolutional Neural Network (CNN) extracted spatial features from ECG-derived images. 

Input is  Resized and normalized images. Architecture has Convolutional layers for pattern detection, pooling layers 

for dimensionality reduction, and dense layers for feature aggregation. Output is an embedding capturing structural 

patterns in ECG waveforms:  

𝐸iae = CNN(𝑥image) 

Each network was trained independently, optimizing loss functions specific to their modality. For example: 

• Mean Squared Error (MSE) was used for regression-based tasks in text and signal networks. 

• Categorical Cross-Entropy was used for classification in the image network. 

Fusion Mechanism 

To integrate the embeddings from each modality, a fusion mechanism combined the specialized outputs into a unified 

representation.  

Concatenation: Embeddings from text, signal, and image networks were concatenated:  

𝑬fso = concat𝑬tx, 𝑬sga, 𝑬iae 

Classification and Evaluation 

The fused representation was passed through a fully connected neural network (FCNN) for classification. Key 

components included are dense layers with ReLU activation functions and softmax output layer for multi-class 

predictions:  

𝑦̂ = softmax(𝑊 ⋅ 𝐸fso + 𝑏) 

The loss function used was weighted categorical cross-entropy: 

ℒ  =   −∑

C

c=1

 yc  log(yĉ) 

Evaluation Metrics: 

• Accuracy, precision, recall, and F1-score were employed to assess model performance. 

• A confusion matrix provided insights into misclassifications, guiding iterative improvements. 

Figure 1: Workflow for modality-specific training and fusion. 

This methodology highlights the modular yet interconnected nature of the multimodal diagnostic framework. Each 

modality-specific network was optimized to exploit its unique strengths, with the fusion mechanism enabling 

synergistic integration for robust diagnostic predictions.  
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Experimental Design 

 

Figure 5: A workflow diagram illustrating the experimental design 

The experimental design of this study was structured to systematically train modality-specific networks, integrate 

their outputs through a robust fusion mechanism, and evaluate the performance of the multimodal diagnostic 

framework. By isolating the training of text, signal, and image networks, the design allowed each modality to 

independently harness its unique diagnostic potential before contributing to the final unified model. 

The text network was tasked with interpreting patient metadata, such as age and sex, to extract meaningful 

embeddings. The architecture of this network consisted of a feed-forward neural model with two hidden layers, each 

equipped with ReLU activation functions to capture non-linear relationships between features. The Adam optimizer 

was employed with a learning rate of 0.001 to facilitate stable and efficient convergence. Training was conducted over 

50 epochs with early stopping to prevent overfitting, monitoring the validation loss with a patience threshold of five 

epochs. This modular approach ensured that the text-based embeddings effectively represented demographic and 

categorical insights crucial for diagnostics. 

For the signal data, the high-resolution ECG waveforms underwent preprocessing to remove noise and standardize 

their amplitudes. The LSTM network architecture was selected for its ability to capture the sequential dependencies 

inherent in time-series data. The model featured two LSTM layers, each comprising 64 units, followed by a dense 

layer with 128 neurons for feature refinement. To address class imbalances in the dataset, class weights were 

incorporated during training, penalizing errors in underrepresented categories more heavily. The RMSprop 

optimizer was used with a learning rate of 0.0005, chosen for its efficiency in handling non-stationary objectives 

often encountered in time-series data. This training strategy ensured that the network learned temporal patterns 

essential for accurate diagnostic predictions. 

The image network was designed to process ECG waveforms represented as 250×500 pixel images. A convolutional 

neural network (CNN) served as the backbone for feature extraction, leveraging its ability to identify spatial 

hierarchies and intricate patterns in visual data. The network architecture comprised multiple convolutional layers 
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with ReLU activations, interspersed with max-pooling layers to reduce dimensionality while retaining critical 

features. The model concluded with fully connected layers to aggregate the learned spatial features into compact 

embeddings. Images were augmented through transformations like rotations and flips to enhance model 

generalization. Training was performed using the Adam optimizer, with categorical cross-entropy as the loss 

function, and the model was evaluated using metrics like precision, recall, and F1-score. 

Each of these networks was trained independently, allowing for dedicated optimization and modality-specific 

improvements. This modular training approach ensured that the embeddings generated from text, signal, and image 

modalities encapsulated the full diagnostic potential of the respective data sources. These specialized embeddings 

then formed the foundation for the subsequent fusion stage, where their collective strength was harnessed for unified 

diagnostic predictions. By structuring the experimental design in this way, the study ensured that every modality 

contributed optimally to the final model, addressing the complexities of multimodal data integration with precision 

and rigor. 

Results and Analysis 

The results of this study provide a comprehensive evaluation of the multimodal diagnostic framework, encompassing 

both the performance of modality-specific networks and the combined multimodal model. The analysis focuses on 

key metrics such as accuracy, F1-score, precision, and recall, and includes visual representations such as confusion 

matrices and ROC curves to offer deeper insights into model performance. 

Performance of Modality-Specific Networks 

Each modality-specific network was evaluated independently to understand its contribution to the diagnostic 

process. The performance of these networks highlights the diagnostic potential of text, signal, and image data when 

used individually. 

Text Network: The text network, trained on metadata features like age and sex, demonstrated moderate diagnostic 

capabilities. Although the limited feature set constrained its predictive power, the embeddings effectively captured 

demographic patterns associated with specific conditions. The model achieved an accuracy of 72%, with an F1-score 

of 0.70, indicating its ability to distinguish between IMI and NORM subclasses. 

Signal Network: The LSTM-based signal network outperformed the text network by leveraging the temporal 

dependencies in ECG signals. With a precision of 0.82 and recall of 0.85, the model exhibited strong diagnostic 

accuracy, achieving an overall accuracy of 84%. The confusion matrix revealed that the network was particularly 

effective in identifying instances of IMI, with fewer misclassifications compared to the NORM class. 

Image Network: The image network, based on a CNN architecture, excelled in identifying visual patterns in ECG 

waveforms. Data augmentation techniques contributed to the network’s robustness, allowing it to generalize 

effectively across the test set. The model achieved an accuracy of 86%, with an F1-score of 0.84, underscoring its 

ability to handle visual data. 

Table 2: Performance metrics for modality-specific networks. 

Network Accuracy Precision Recall F1-Score 

Text 72% 0.68 0.72 0.70 

Signal 84% 0.82 0.85 0.83 

Image 86% 0.85 0.86 0.84 
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Figure 6: ROC curves for modality-specific and multimodal models, highlighting the superior performance of the 

multimodal framework. 

Performance of the Multimodal Model 

The multimodal model, which integrates embeddings from text, signal, and image networks, demonstrated 

significant improvements in diagnostic performance. By combining the strengths of each modality, the model 

achieved an accuracy of 91%, with a precision of 0.90, recall of 0.92, and an F1-score of 0.91. The fusion mechanism 

effectively balanced the contributions of each modality, with the attention mechanism prioritizing signal and image 

embeddings for critical cases. 

Confusion Matrix Analysis 

The confusion matrix for the multimodal model revealed balanced performance across both diagnostic subclasses. 

The number of false negatives for IMI was significantly reduced compared to the modality-specific models, 

demonstrating the benefits of multimodal integration in capturing subtle diagnostic patterns. 

 

Figure 7: Confusion matrix for the multimodal model, showing true positives, false positives, true negatives, and 

false negatives for IMI and NORM subclasses. 



649  
 

J INFORM SYSTEMS ENG, 10(2) 

Comparative Analysis 

The results highlight the incremental gains achieved through multimodal integration. While the image network alone 

performed well, the inclusion of signal and text embeddings enriched the feature space, enabling the model to capture 

complementary information and reduce misclassifications. This finding underscores the importance of leveraging 

diverse data modalities for complex diagnostic tasks. 

Key Observations 

1. The signal and image networks individually provided strong diagnostic performance, reflecting the rich 

information content in temporal and spatial features. 

2. The text network, while less accurate, contributed contextual demographic information that enhanced the 

multimodal model’s interpretability. 

3. The multimodal model achieved superior performance by integrating information across modalities, showcasing 

the effectiveness of the fusion mechanism. 

Discussion 

The results of this study demonstrate the efficacy of the multimodal diagnostic framework in leveraging diverse data 

modalities to improve diagnostic accuracy and reliability. The superior performance of the multimodal model, 

compared to the individual modality-specific networks, underscores the power of data integration in capturing 

complementary insights and addressing the inherent limitations of single-modality approaches. 

Contribution of Individual Modalities 

The performance of the modality-specific networks provides a nuanced understanding of the diagnostic value 

inherent in each data type. The image network, with its strong accuracy and F1-score, highlights the richness of spatial 

patterns in ECG waveforms. This modality alone proved to be a reliable diagnostic tool, capable of identifying subtle 

morphological variations in cardiac activity. 

The signal network, leveraging the temporal dependencies in ECG signals, contributed significantly to the diagnostic 

process. The ability to capture sequential patterns made it particularly adept at distinguishing pathological signals 

(IMI) from normal ones (NORM). The robustness of the signal network, as evidenced by its high recall, reflects its 

potential for early and accurate detection of cardiac abnormalities. 

While the text network demonstrated relatively lower accuracy, its role in providing demographic and contextual 

information should not be underestimated. Age and sex, encoded in the metadata, are critical predictors in many 

cardiac conditions, and their integration with signal and image features enhances the interpretability of the model. 

Impact of Multimodal Integration 

The multimodal model achieved a notable accuracy of 91%, outperforming all individual networks. This improvement 

can be attributed to the complementary nature of the modalities. For instance, while signal data excels in temporal 

pattern detection, image data captures spatial hierarchies, and text data adds contextual layers of understanding. The 

attention mechanism further refined this integration, dynamically weighting the contributions of each modality 

based on their relevance to the diagnostic task. 

The reduction in false negatives for the IMI subclass, as highlighted in the confusion matrix, underscores the model’s 

ability to minimize critical diagnostic errors. This is particularly significant in clinical settings where the cost of false 

negatives can be life-threatening. The findings validate the hypothesis that multimodal data fusion enhances 

diagnostic reliability by addressing the weaknesses of individual modalities. 

Strengths and Implications 

The strengths of this study lie in its structured approach to multimodal integration and the meticulous design of 

modality-specific networks. By leveraging advanced preprocessing, embedding generation, and fusion techniques, 

the study demonstrates how disparate data types can be harmonized into a cohesive diagnostic framework. 

The implications of this work extend beyond cardiac diagnostics. The multimodal framework can be adapted for other 

medical domains where diverse data modalities provide complementary insights. Moreover, the use of attention 
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mechanisms in the fusion stage offers a scalable solution for integrating additional modalities, such as lab results or 

genomic data, in future research. 

Limitations and Challenges 

Despite its success, the study faced several challenges. The reliance on the PTB-XL dataset limited the generalizability 

of the findings to other populations and conditions. The computational complexity of training separate networks and 

integrating them posed resource constraints, highlighting the need for optimized fusion techniques. Additionally, the 

interpretability of the attention weights, while helpful, requires further exploration to ensure transparency in clinical 

applications. 

Broader Context 

The findings contribute to the growing field of multimodal learning, aligning with the broader vision of precision 

medicine. By demonstrating the feasibility and advantages of integrating heterogeneous data sources, this study 

provides a blueprint for future diagnostic systems that are both robust and adaptable. 

Future Work 

This study highlights several avenues for future research and development: 

1. Expanding Dataset Diversity: Broader and more inclusive datasets are essential to improve the framework’s 

generalizability across diverse populations and clinical conditions. 

2. Integration of Additional Modalities: Incorporating data such as lab results, genomic markers, and 

wearable device metrics can further enhance diagnostic precision. 

3. Real-Time Optimization: Adopting model compression and edge computing techniques will enable real-time 

applications in telemedicine and wearable technologies. 

4. Advancing Fusion Mechanisms: Exploring generative models and graph neural networks can improve 

modality integration and alignment. 

5. Explainability and Interpretability: Developing visualization tools and interpretable models will build trust 

and transparency in clinical diagnostics. 

6. Validation in Clinical Settings: Prospective studies with live patient data will test the framework’s 

operational feasibility and diagnostic reliability in real-world environments. 

Conclusion 

The proposed multimodal diagnostic framework exemplifies the future of precision medicine by integrating text, 

signal, and image data for enhanced accuracy and reliability in cardiac diagnostics. Leveraging the PTB-XL dataset, 

the study demonstrates the power of multimodal learning through advanced modality-specific networks and fusion 

mechanisms. The framework’s dynamic integration of complementary features resulted in a significant reduction in 

diagnostic errors, achieving a high accuracy rate of 91%. Designed for adaptability, this framework extends beyond 

cardiac care, offering applications in oncology, neurology, and remote monitoring through telemedicine and wearable 

devices. Its modular architecture supports real-time diagnostics and the inclusion of additional modalities like lab 

results and genomic data, ensuring scalability and relevance for future healthcare needs. While acknowledging 

challenges such as dataset diversity, computational complexity, and interpretability, this research provides actionable 

insights and a roadmap for integrating multimodal systems into clinical practice. By bridging gaps in data integration 

and advancing precision medicine, this framework sets a foundation for innovative, patient-centric healthcare 

solutions. 
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