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1. Introduction: 

The concept of fuzzy sets, introduced by Zadeh [24] in 1965, has transformed various scientific and engineering 

applications. Fuzzy sets are functions from a non-empty set X to [0, 1], enabling the modeling of uncertainty and 

imprecision. Building upon this concept, Kramosil and Michalek [9] introduced fuzzy metric spaces, which were later 

modified by George and Veeramani [5] to include the Hausdorffness property. 

The fuzzy fixed point theory, initiated by Grabiec [7] in 1988, has undergone significant developments. 

Grabiec introduced G-Cauchy sequences and G-complete fuzzy metric spaces, providing a fuzzy metric version of 

Banach's contraction principle. Subsequent research has led to numerous fixed point results in fuzzy metric spaces. 

However, the concept of G-completeness has been found to be somewhat restrictive, as even the set of real 

numbers is not complete in this sense. To address this limitation, George and Veeramani [5] modified the definition 

of fuzzy metric spaces and M-Cauchy sequences, introducing a Hausdorff topology in their new framework. 

Extending the foundational work of Gregori and Sapena [8], Mihet [14] made significant contributions to the field in 

2008. Specifically, Mihet expanded the scope of fuzzy contractive mappings and established a fuzzy Banach 

contraction principle for complete non-Archimedean fuzzy metric spaces, adhering to the framework developed by 

Kramosil and Michalek. 

In recent years, researchers have explored the intersection of fuzzy metric spaces and relation-theoretic fixed point 

theory. Turinici [23] initiated this line of inquiry, which gained momentum with the contributions of Ran and 

Reurings [19] and Nieto and Lopez [15,16]. These authors equipped the contractive condition with an ordered binary 

relation, providing new versions of Banach's contraction principle. 

This research builds upon the foundational work presented in the paper by Samera M. Saleh, Waleed M. 

Alfaqih et. al [22] in 2022. The authors' innovative relation-theoretic fixed point theorems in fuzzy metric spaces 

have inspired our investigation into extending these results to the more general framework of intuitionistic fuzzy 

metric spaces. By leveraging their insights and methodologies, we aim to provide new theoretical results and 

applications in the context of intuitionistic fuzzy metric spaces. 
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This paper extends the existing results on fuzzy metric spaces to the more general framework of intuitionistic 

fuzzy metric spaces. By incorporating both membership and non-membership functions, intuitionistic fuzzy metric 

spaces offer a more refine and flexible approach to modeling uncertainty. Our research builds upon the foundation 

established by the aforementioned authors, providing new insights and results in the context of intuitionistic fuzzy 

metric spaces. 

2. Preliminaries: 

“Definition 1([9]): A continuous t-norm ∗ is a continuous binary operation ∗: [0,1] × [0,1] → [0,1] which is 

commutative and associative and it satisfies the following properties: 

(i) 𝑡 ∗ 1 = 𝑡         ∀𝑡 ∈ [0,1].  

(ii) 𝑡 ∗ 𝑠 ≤ 𝑢 ∗ 𝑣 whenever 𝑡 ≤ 𝑢 and 𝑠 ≤ 𝑣 ∀𝑡, 𝑠, 𝑢, 𝑣 ∈ [0,1]. 

Some well-known examples of continuous t-norm include: 𝑡 ∗ 𝑠 = 𝑚𝑖𝑛{𝑡, 𝑠}, 𝑡 ∗ 𝑠 = 𝑡𝑠, and 𝑡 ∗ 𝑠 = 𝑚𝑎𝑥{𝑡 + 𝑠 −

1}, ∀𝑡, 𝑠 ∈ [0,1].  

Kramosil and Michalek [9] defined fuzzy metric spaces as under. 

Definition 2([9]): Consider M as a fuzzy set on 𝑋2 × [0, ∞) and ∗ a continuous t-norm. Assume that ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 

and 𝑡, 𝑠 > 0: 

(𝐾𝑀𝑖) 𝑀(𝑥, 𝑦, 0) = 0. 

(𝐾𝑀𝑖𝑖) 𝑀(𝑥, 𝑦, 𝑡) = 1 𝑖𝑓𝑓 𝑥 = 𝑦. 

(𝐾𝑀𝑖𝑖𝑖) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡). 

(𝐾𝑀𝑖𝑣) 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑡 + 𝑠). 

(𝐾𝑀𝑣) 𝑀(𝑥, 𝑦, . ): [0, ∞) → [0,1] is left continuous. 

Then (𝑋, 𝑀,∗) is called a fuzzy metric space (Kramosil and Michalek’s sense). 

Definition 3([14]): Consider M as a fuzzy set on 𝑋2 × [0, ∞) and ∗ a continuous t-norm. Assume that ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 

and 𝑡, 𝑠 > 0: 

(𝑁𝑀𝑖) 𝑀(𝑥, 𝑦, 0) = 0. 

(𝑁𝑀𝑖𝑖) 𝑀(𝑥, 𝑦, 𝑡) = 1 𝑖𝑓𝑓 𝑥 = 𝑦. 

(𝑁𝑀𝑖𝑖𝑖) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡). 

(𝑁𝑀𝑖𝑣) 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑚𝑎𝑥{𝑡, 𝑠}). 

(𝑁𝑀𝑣) 𝑀(𝑥, 𝑦, . ): [0, ∞) → [0,1] is left continuous. 

Then (𝑋, 𝑀,∗) is called a Non-Archimedean fuzzy metric space. 

It can be verified that the triangular inequality (NM-iv)₀ implies (KM-iv). This indicates that every non-Archimedean 

fuzzy metric space is itself a fuzzy metric space. 

In general, the topology of a fuzzy metric space, as defined by Kramosil and Michalek, is not Hausdorff. To address 

this, George and Veeramani [5,6] made slight modifications to the definition of fuzzy metric spaces, ensuring that the 

topology of the newly defined fuzzy metric space is Hausdorff. 

Definition 4([5,6]): Consider M as a fuzzy set on 𝑋2 × [0, ∞) and ∗ a continuous t-norm. Assume that ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 

and 𝑡, 𝑠 > 0: 

(𝐺𝑉𝑖) 𝑀(𝑥, 𝑦, 0) > 0. 

(𝐺𝑉𝑖𝑖) 𝑀(𝑥, 𝑦, 𝑡) = 1 𝑖𝑓𝑓 𝑥 = 𝑦. 

(𝐺𝑉𝑖𝑖𝑖) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡). 

(𝐺𝑉𝑖𝑣) 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑡 + 𝑠). 
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(𝐺𝑉𝑣) 𝑀(𝑥, 𝑦, . ): (0, ∞) → [0,1] is left continuous. 

Then (𝑋, 𝑀,∗) is defined as a fuzzy metric space in accordance with George and Veeramani’s concept. 

Remark 1 ([5]): The topology associated with a fuzzy metric space, as defined in Definition 4, is Hausdorff.  

Remark 2 ([5]): Each fuzzy metric space as defined in Definition 4 is also a fuzzy metric space according to 

Definition 2, though the reverse is not generally true. 

Remark 3 ([9]): For all 𝑥, 𝑦 ∈ 𝑋 , 𝑀(𝑥, 𝑦, . ) is a non-decreasing mapping. 

Definition 5 ([5,6,7]): Let 𝑀(𝑥, 𝑦,∗) be a fuzzy metric space. A sequence {𝑥𝑛} ∈ 𝑋 is said to be 

i. Convergent to 𝑥 ∈ 𝑋 if lim
𝑛→∞

𝑀(𝑥, 𝑦, 𝑡) = 1     ∀𝑡 > 0, in this case we write lim
𝑛→∞

𝑥𝑛 = 𝑥. 

ii. Cauchy if ∀𝜀 > 0 and 𝑡 > 0, ∃𝑁 ∈ ℕ satisfying 𝑀(𝑥𝑛, 𝑥𝑛+𝑝, 𝑡) > 1 − 𝜀, ∀𝑛 ≥ 𝑁 and 𝑝 ∈ ℕ0. 

Let (𝑋, 𝑀,∗) be a fuzzy metric space. If every Cauchy sequence in X is convergent in X , then X is said to be complete. 

Lemma 1 ([19]): If 𝑀(𝑥, 𝑦,∗) is a fuzzy metric space, then M is a continuous function on 𝑋2 × (0, ∞). 

Definition 6([18]): If 𝑀(𝑥, 𝑦,∗) is a fuzzy metric space. Then the mapping M is said to be continuous function on 

𝑋2 × (0, ∞) if  

lim
𝑛→∞

𝑀(𝑥𝑛 , 𝑦𝑛 , 𝑡𝑛) = 𝑀(𝑥, 𝑦, 𝑡) 

Whenever {(𝑥𝑛 , 𝑦𝑛 , 𝑡𝑛)} is sequence in 𝑋2 × (0, ∞) which converges to a point (𝑥, 𝑦, 𝑡) ∈ 𝑋2 × (0, ∞), i.e. 

lim
𝑛→∞

𝑀(𝑥𝑛 , 𝑥, 𝑡) = lim
𝑛→∞

𝑀(𝑦𝑛 , 𝑦, 𝑡) = 1 and lim
𝑛→∞

𝑀(𝑥, 𝑦, 𝑡𝑛) = 𝑀(𝑥, 𝑦, 𝑡). 

Roldán-López-de-Hierro [19] defined a comparison function ψ: [0, 1] → [0, 1] which satisfies 

A. The function 𝜓 is non-decreasing and left continuous.  

B. 𝜓(𝑡) < 𝑡 for all 𝑡 ∈ (0,1);  

C. 𝜓(0) = 0.  

Let Ψ represent the set of all such functions 𝜓. 

For instance, consider Ψ(t) = 𝑡2 for all 𝑡 ∈ [0,1]. It is important to note that, according to the previous definition, the 

condition 𝜓(1) = 1 does not necessarily hold true. 

Remark 4([21]): Let 𝜓 ∈ 𝛹. 

(i) 𝜓(𝑡) ≤ 𝑡,   ∀𝑡 ∈ [0,1]. 

(ii) If 𝜓(𝑡0) = 𝑡0 for some 𝑡0 ∈ (0,1], then 𝑡0 = 1. 

(iii)  If {𝑡𝑛} ⊂ [0,1] and 𝜓(𝑡𝑛) → 1, then 𝑡𝑛 → 1. 

Definition 7([17]): Let M and N be fuzzy sets on 𝑋2 × (0, ∞), * is a be a continuous t-norm and ◊ is a continuous t-

conorm. If M and N satisfy the following conditions we say that (𝑀, 𝑁) is intuitionistic fuzzy metric on X: 

(𝐼𝐹𝑀1) 𝑀(𝑥, 𝑦, 𝑡) + 𝑁(𝑥, 𝑦, 𝑡) ≤ 1 

(𝐼𝐹𝑀2) 𝑀(𝑥, 𝑦, 𝑡) > 0 

(𝐼𝐹𝑀3) 𝑀(𝑥, 𝑦, 𝑡) = 1 if and only if 𝑥 = 𝑦. 

(𝐼𝐹𝑀4) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡) 

(𝐼𝐹𝑀5) 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑡 + 𝑠) 

(𝐼𝐹𝑀6) 𝑀(𝑥, 𝑦, . ): (0, ∞) → (0,1] is continuous. 

(𝐼𝐹𝑀7) 𝑁(𝑥, 𝑦, 𝑡) < 1 

(𝐼𝐹𝑀8) 𝑁(𝑥, 𝑦, 𝑡) = 0 if and only if 𝑥 = 𝑦. 

(𝐼𝐹𝑀9) 𝑁(𝑥, 𝑦, 𝑡) = 𝑁(𝑦, 𝑥, 𝑡) 

(𝐼𝐹𝑀10) 𝑁(𝑥, 𝑦, 𝑡) ◊ 𝑁(𝑦, 𝑧, 𝑠) ≥ 𝑁(𝑥, 𝑧, 𝑡 + 𝑠) 

(𝐼𝐹𝑀11)𝑁(𝑥, 𝑦, . ): (0, ∞) → (0,1] is continuous 
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A five tuple (X, M, N,∗,◊) intuitionistic fuzzy metric space. The functions 𝑀(𝑥, 𝑦, 𝑡) and 𝑁(𝑥, 𝑦, 𝑡) denote the degree of 

nearness and the degree of non-nearness between x and y with respect to t, respectively. 

Definition 8([17]): Let (X, M, N,∗,◊) be an intuitionistic fuzzy metric space and 𝑡 > 0,   𝑟 ∈ (0,1) and 𝑥 ∈ 𝑋. The set 

𝐵𝑥(𝑟, 𝑡) 

  𝐵𝑥(𝑟, 𝑡) ={y∈ 𝑋: 𝑀(𝑥, 𝑦, 𝑡) > 1 − 𝑟, 𝑁(𝑥, 𝑦, 𝑡) < 𝑟 } 

The set 𝐵𝑥(𝑟, 𝑡) is said to be an open ball with center x, radius r with respect to t. 

Definition 9([17]): Let (X, M, N,∗,◊) be an intuitionistic fuzzy metric space and {𝑥𝑛} ∈ 𝑋 be sequence 

i. {𝑥𝑛} is called convergent to x if for all 𝑡 > 0 and 𝑟 ∈ (0,1) there exits 𝑛0 ∈ ℕ such that 𝑀(𝑥𝑛, 𝑥, 𝑡) > 1 −

𝑟, 𝑁(𝑥𝑛 , 𝑥, 𝑡) > 𝑟 for all 𝑛 ≥ 𝑛0. (𝑀(𝑥𝑛 , 𝑥, 𝑡) → 1 &𝑁(𝑥𝑛 , 𝑥, 𝑡) → 0 𝑎𝑠 𝑛 → ∞ 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡 > 0). 

It is denoted by 𝑥𝑛 → 𝑥 as 𝑛 → ∞. 

ii. {𝑥𝑛} is called Cauchy sequence if for 𝑡 > 0 and 𝑟 ∈ (0,1) there exists 𝑛0 ∈ ℕ such that 𝑀(𝑥𝑛 , 𝑥𝑚, 𝑡) > 1 −

𝑟, 𝑁(𝑥𝑛 , 𝑥𝑚, 𝑡) > 𝑟 for all  𝑛, 𝑚 ≥ 𝑛0. 

iii. (X, M, N,∗,◊) is called (𝑀, 𝑁) complete if every Cauchy sequence is convergent. 

Definition 10: Let M and N be fuzzy sets on 𝑋2 × (0, ∞), * is a be a continuous t-norm and ◊ is a continuous t-

conorm. If M and N satisfy the following conditions we say that (𝑀, 𝑁) is non- archimedean intuitionistic fuzzy metric 

on X: 

(𝐼𝐹𝑀1) 𝑀(𝑥, 𝑦, 𝑡) + 𝑁(𝑥, 𝑦, 𝑡) ≤ 1 

(𝐼𝐹𝑀2) 𝑀(𝑥, 𝑦, 𝑡) > 0 

(𝐼𝐹𝑀3) 𝑀(𝑥, 𝑦, 𝑡) = 1 if and only if 𝑥 = 𝑦. 

(𝐼𝐹𝑀4) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡) 

(𝐼𝐹𝑀5) 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑚𝑎𝑥{𝑡, 𝑠}) 

(𝐼𝐹𝑀6) 𝑀(𝑥, 𝑦, . ): (0, ∞) → (0,1] is continuous. 

(𝐼𝐹𝑀7) 𝑁(𝑥, 𝑦, 𝑡) < 1 

(𝐼𝐹𝑀8) 𝑁(𝑥, 𝑦, 𝑡) = 0 if and only if 𝑥 = 𝑦. 

(𝐼𝐹𝑀9) 𝑁(𝑥, 𝑦, 𝑡) = 𝑁(𝑦, 𝑥, 𝑡) 

(𝐼𝐹𝑀10) 𝑁(𝑥, 𝑦, 𝑡) ◊ 𝑁(𝑦, 𝑧, 𝑠) ≥ 𝑁(𝑥, 𝑧, 𝑚𝑖𝑛{𝑡, 𝑠}) 

(𝐼𝐹𝑀11)𝑁(𝑥, 𝑦, . ): (0, ∞) → (0,1] is continuous 

A five tuple (X, M, N,∗,◊) non-archimedean intuitionistic fuzzy metric space. The functions 𝑀(𝑥, 𝑦, 𝑡) and 𝑁(𝑥, 𝑦, 𝑡) 

denote the degree of nearness and the degree of non-nearness between x and y with respect to t, respectively. 

Here, we recall some fundamental concepts in relation theory. 

Definition 11([12]): A subset ℜ of 𝑋2 is defined as a binary relation on X. If (𝑥, 𝑦) ∈ ℜ (alternatively, we may write 

𝑥ℜ𝑦 instead of (𝑥, 𝑦) ∈ ℜ, then we state that “x is related to y under ℜ". If either 𝑥ℜ𝑦 or 𝑦ℜ𝑥, we denote this as [𝑥, 𝑦] ∈

ℜ. 

Note that 𝑋2 is a binary relation on X known as the universal relation. In this context, X refers to a non-empty set, 

and ℜ denotes a non-empty binary relation on X. 

Definition 12([12,13]): A binary relation ℜ on a non-empty set X is characterized as follows 

(i) Reflexive if 𝑥ℜ𝑥, ∀𝑥 ∈ 𝑋. 

(ii) Transitive if 𝑥ℜ𝑦 and 𝑦ℜ𝑧 imply 𝑥ℜ𝑧, ∀𝑥, 𝑦, 𝑧 ∈ 𝑋. 

(iii)  Antisymmetric if 𝑥ℜ𝑦 and 𝑦ℜ𝑥 imply 𝑥 = 𝑦, ∀𝑥, 𝑦 ∈ 𝑋. 

(iv)  partial order if it is reflexive, antisymmetric and transitive. 

(v) complete if [𝑥, 𝑦] ∈ ℜ ∀𝑥, 𝑦 ∈ 𝑋. 

(vi)  f -closed if (𝑥, 𝑦) ∈ ℜ ⇒ (𝑓𝑥, 𝑓𝑦) ∈ ℜ, ∀𝑥, 𝑦 ∈ 𝑋, where 𝑓: 𝑋 → 𝑋 is a mapping. 
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Definition 13([2]): Consider X as a non-empty set and ℜ as a binary relation on X. A sequence {𝑥𝑛} ⊂ 𝑋 is termed 

an ℜ-preserving sequence if (𝑥𝑛, 𝑥𝑛+1) ∈ ℜ, ∀𝑛 ∈ ℕ. 

In a recent work, Alfaqih et al. [3] introduced a relation-theoretic perspective for the fuzzy version of the Banach 

contractive principle. The authors developed relation-theoretic variations of several fuzzy metrical concepts as 

described below. 

Definition 14([3]): A binary relation ℜ on X is considered M-self-closed if for any convergent ℜ-preserving 

sequence {𝑥𝑛} ⊂ 𝑋 that converges (in the fuzzy sense) to some 𝑥 ∈ 𝑋, there exists a subsequence {𝑥𝑛𝑘
} ⊆ {𝑥𝑛} such 

that (𝑥𝑛𝑘
, 𝑥) ∈ ℜ. 

Example 1([3]): Let 𝑋 = (0,4] and ∗ be the product t-norm defined by 𝑡 ∗ 𝑠 = 𝑡𝑠, ∀𝑡, 𝑠 ∈ [0,1]. Define M for all 𝑥, 𝑦 ∈

𝑋 and 𝑡 > 0. 

𝑀(𝑥, 𝑦, 𝑡) = {

0, 𝑖𝑓 𝑡 = 0
2𝑡

2𝑡 + |𝑥 − 𝑦|
, 𝑖𝑓 𝑡 ≠ 0

 

Define ℜ on X as follows 

ℜ = {(1,1), (1,2), (2,1), (2,2), (1,4), (2,4)} 

Note that if  {𝑥𝑛} is an ℜ-preserving sequence converging to some 𝑥 ∈ 𝑋, then there exists 𝑁 ∈ ℕ such that either 𝑥𝑛 =

1, ∀𝑛 ≥ 𝑁 or 𝑥𝑛 = 2, ∀𝑛 ≥ 𝑁. Consequently, {𝑥𝑁+𝑖}𝑖∈𝑁 is a subsequence of {𝑥𝑛} with 𝑥𝑁+𝑖ℜ𝑥 for each 𝑖 ∈ ℕ. Thus, ℜ 

is M-self closed. 

Definition 15: A sequence {𝑥𝑛} is termed ℜ-Cauchy if 𝑥𝑛ℜ𝑥𝑛+1 for all 𝑛 ∈ ℕ0 and for all 𝜀 > 0, there exists 𝑛0 ∈ ℕ 

such that ∀𝑡 > 0 

𝑀(𝑥𝑛 , 𝑥𝑛+ƥ, 𝑡) > 1 − 𝜀, ∀𝑛 ≥ 𝑁, ƥ > 𝑁0 

Remark 5: Any given Cauchy sequence can be considered an ℜ-Cauchy sequence for any arbitrary binary relation 

ℜ. The concepts of ℜ-Cauchyness and Cauchyness align when ℜ is defined as the universal relation. 

Definition 16([22]): A fuzzy metric space (X, M, ∗) with a binary relation ℜ is described as ℜ-complete if each ℜ-

Cauchy sequence converges within X. 

Remark 6: Any complete fuzzy metric space is also an ℜ-complete fuzzy metric space for any arbitrary binary 

relation ℜ. When ℜ is considered as the universal relation, ℜ-completeness and completeness are equivalent.” 

This paper introduces the concept of intuitionistic fuzzy ℜ − 𝜓 contractive mappings and presents several significant 

findings regarding the existence and uniqueness of fixed points for these mappings within the framework of non-

Archimedean intuitionistic fuzzy metric spaces (as defined by Kramosil and Michalek as well as George and 

Veeramani). These findings extend and generalize the results from previous works [6,19]. Additionally, we provide 

illustrative examples to support our findings. In the final section, we apply our fixed point results to establish the 

existence and uniqueness of solutions for Caputo fractional differential equations. 

3. Main Results: 

Our primary section begins with a lemma that will be crucial in proving our main results. 

Lemma 2: Consider a function ℎ: 𝐼 → 𝐼 and transitive binary relation ℜ that is h-closed. Suppose there exists an 𝑞0 ∈

𝐼 such that 𝑞0ℜℎ𝑞0 and define a sequence {𝑞𝑛} ∈ 𝐼  by 𝑞𝑛 = ℎ𝑞𝑛−1, ∀𝑛 ≥ 𝑁0. Then 

𝑞𝑚ℜ𝑞𝑛   ∀𝑚, 𝑛 ∈ 𝑁0 with 𝑚 < 𝑛.                                                     (1)     

Definition 17: Consider (𝐼, 𝑃, 𝑄, 𝜏, 𝜇) as a non-Archimedean intuitionistic fuzzy metric space. Let ℜ be a binary 

relation on I and ℎ: 𝐼 → 𝐼. We define h as a intuitionistic fuzzy ℜ − 𝜑 contractive mapping if there exist 𝜑 ∈ Ω such 

that ∀ 𝑞, 𝑝 ∈ 𝐼, 𝑡 > 0 with 𝑞ℜ𝑝. 

𝑃(𝑞, 𝑝, 𝑡) > 0 ⟹ 𝑚𝑖𝑛{𝑃(𝑞, 𝑝, 𝑡), 𝑚𝑎𝑥{𝑃(ℎ𝑞, 𝑞, 𝑡), 𝑃(𝑝, ℎ𝑝, 𝑡)}} ≤ 𝜑(𝑃(ℎ𝑞, ℎ𝑝, 𝑡)).                (2) 
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𝑄(𝑞, 𝑝, 𝑡) < 1 ⟹ 𝑚𝑎𝑥{𝑄(𝑞, 𝑝, 𝑡), 𝑚𝑖𝑛{𝑄(ℎ𝑞, 𝑞, 𝑡), 𝑄(𝑝, ℎ𝑝, 𝑡)}} ≥ 𝜑(𝑄(ℎ𝑞, ℎ𝑝, 𝑡)).              (3) 

This illustrates a KM-fuzzy R − ψ−contractive mapping. 

Example 2: Consider 𝐼 = [0, ∞) and let 𝜏 be the product t-norm given by 𝜏(𝑡, 𝑠) = 𝑡𝑠 and t-conorm  𝜇(𝑡, 𝑠) = 𝑡 + 𝑠 −

𝑡𝑠,   ∀𝑡, 𝑠 ∈ [0,1]. Define  

𝑃(𝑞, 𝑝, 𝑡) = {
0                                 𝑖𝑓 𝑡 = 0

(
𝑡

1 + 𝑡
) |𝑞 − 𝑝|       𝑖𝑓 𝑡 ≠ 0

 

𝑄(𝑞, 𝑝, 𝑡) = {

1                                 𝑖𝑓 𝑡 = 0

(
1

1 + 𝑡
) |𝑞 − 𝑝|       𝑖𝑓 𝑡 ≠ 0

 

Let ℎ: 𝐼 → 𝐼 defined as 

ℎ = {

𝑞
3⁄ ,      𝑖𝑓 𝑞 ∈ [0,3]

𝑞
2⁄ ,      𝑖𝑓 𝑞 ∈ (3, ∞)

  

Define binary relation ℜ on I as 𝑞ℜ𝑝 ⇔ 𝑞, 𝑝 ∈ [0,3], 𝑞 ≤ 𝑝 and 𝜑: [0,1] → [0,1] by 𝜑(𝑡) = 𝑡2. 

Then h is intuitionistic fuzzy ℜ − 𝜑 − contractive mapping. 

We are now prepared to present and demonstrate our primary result as follows. 

Theorem 1: Consider (𝐼, 𝑃, 𝑄, 𝜏, 𝜇) to be a non-Archimedean intuitionistic fuzzy metric space with a binary relation 

ℜ and a mapping ℎ: 𝐼 → 𝐼. Suppose I is ℜ- complete and h is intuitionistic fuzzy ℜ − 𝜑 − contractive mapping such 

that: 

i. There is 𝑞0 ∈ 𝐼 such that 𝑞0 is related to ℎ(𝑞0) by ℜ and 𝑃(𝑞0,ℎ𝑞0, 𝑡) > 0 and 𝑄(𝑞0,ℎ𝑞0, 𝑡) < 1 for all 𝑡 > 0. 

ii. Relation ℜ is transitive and closed under h. 

iii. One of the following conditions is true: 

a. The function h exhibits continuity or 

b. Relation ℜ is P- self closed and Q-self closed. 

Consequently, h possesses a fixed point within I. 

Proof: We can find 𝑞0 ∈ 𝐼 from (i) such that 𝑞0 is related to ℎ(𝑞0) by ℜ and P(𝑞0,ℎ𝑞0, 𝑡)> 0 and 𝑄(𝑞0,ℎ𝑞0, 𝑡)< 1 for all 

𝑡 > 0. Let a sequence {𝑞0} in I where ℎ(𝑞𝑛) = 𝑞𝑛+1, ∀𝑛 ∈ 𝑁0. If 𝑞𝑛 = 𝑞𝑛+1 for some 𝑛 ∈ 𝑁0, then 𝑞𝑛 is fixed point of h. 

Suppose  𝑞𝑛 ≠ 𝑞𝑛+1 for all 𝑛 ∈ 𝑁0. 

As 𝑃(𝑞0, ℎ𝑞0, 𝑡) = 𝑃(𝑞0, 𝑞1, 𝑡) > 0, ∀𝑡 > 0. Given Lemma 2 and equation (2), we deduce 

𝑚𝑖𝑛{𝑃(𝑞0, 𝑞1, 𝑡), 𝑚𝑎𝑥{𝑃(ℎ𝑞0, 𝑞0, 𝑡), 𝑃(𝑞1, ℎ𝑞1, 𝑡)}} ≤ 𝜑(𝑃(ℎ𝑞0, ℎ𝑞1, 𝑡)) 

⟹        𝑚𝑖𝑛{𝑃(𝑞0, 𝑞1, 𝑡), 𝑚𝑎𝑥{𝑃(𝑞1, 𝑞0, 𝑡), 𝑃(𝑞1, 𝑞2, 𝑡)}} ≤ 𝜑(𝑃(𝑞1, 𝑞2, 𝑡))                                 (4) 

⟹         0 < 𝑃(𝑞0, 𝑞1, 𝑡) ≤ 𝜑(𝑃(𝑞1, 𝑞2, 𝑡)) ≤ 𝑃(𝑞1, 𝑞2, 𝑡) 

Similarly, As 𝑄(𝑞0, ℎ𝑞0, 𝑡) = 𝑄(𝑞0, 𝑞1, 𝑡) < 1, ∀𝑡 > 0. Given Lemma 2 and equation (3), we deduce 

𝑚𝑎𝑥{𝑄(𝑞0, 𝑞1, 𝑡), 𝑚𝑖𝑛{𝑄(ℎ𝑞0, 𝑞0, 𝑡), 𝑄(𝑞1, ℎ𝑞1, 𝑡)}} ≥ 𝜑(𝑄(ℎ𝑞0, ℎ𝑞1, 𝑡)) 

⟹        𝑚𝑎𝑥{𝑄(𝑞0, 𝑞1, 𝑡), 𝑚𝑖𝑛{𝑄(𝑞1, 𝑞0, 𝑡), 𝑄(𝑞1, 𝑞2, 𝑡)}} ≥ 𝜑(𝑄(𝑞1, 𝑞2, 𝑡))                                (5) 

⟹         0 < 𝑄(𝑞0, 𝑞1, 𝑡) ≥ 𝜑(𝑄(𝑞1, 𝑞2, 𝑡)) ≥ 𝑄(𝑞1, 𝑞2, 𝑡) 

If there exists a 𝑡0 > 0 for which 𝑃(𝑞1, 𝑞2, 𝑡0) = 0, then 𝜑(𝑃(𝑞1, 𝑞2, 𝑡0)) = 0. This indicates that 𝑃(𝑞1, 𝑞2, 𝑡0) = 0 (as a 

result of condition (C) in the definition of 𝜑). Which is in conflict with (4). 

Consequently, 𝑃(𝑞1, 𝑞2, 𝑡) > 0, ∀𝑡 > 0.  
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Similarly, If there exists a 𝑡0 > 0 for which 𝑄(𝑞1, 𝑞2, 𝑡0) = 1, then 𝜑(1 − 𝑄(𝑞1, 𝑞2, 𝑡0)) = 𝜑(0) = 0. This indicates that 

1 − 𝑄(𝑞1, 𝑞2, 𝑡0) = 0 which implies that 𝑄(𝑞1, 𝑞2, 𝑡0) = 1, Which is in conflict with (5). Consequently, 𝑄(𝑞1, 𝑞2, 𝑡) <

1, ∀𝑡 > 0. 

Following the same scenario, we infer that  ∀𝑛 ∈ 𝑁0 and 𝑡 > 0 

0 < 𝑃(𝑞𝑛−1, 𝑞𝑛 , 𝑡) ≤ 𝜑(𝑃(𝑞𝑛, 𝑞𝑛+1, 𝑡)) ≤ 𝑃(𝑞𝑛 , 𝑞𝑛+1, 𝑡) < 1 

0 < 𝑄(𝑞𝑛, 𝑞𝑛+1, 𝑡) ≥ 𝜑(𝑄(𝑞𝑛−1, 𝑞𝑛 , 𝑡)) ≥ 𝑄(𝑞𝑛−1, 𝑞𝑛 , 𝑡) > 0 

Which indicates that the sequence {𝑃(𝑞𝑛, 𝑞𝑛+1, 𝑡)} and {𝑄(𝑞𝑛, 𝑞𝑛+1, 𝑡)} are non-decreasing and non-increasing 

sequences, respectively and bounded. 

Therefore, for all 𝑡 > 0, there exist 0 < 𝛿1(𝑡) ≤ 1 and 0 < 𝛿2(𝑡) ≤ 1 such that 

lim
𝑛→∞

𝑃(𝑞𝑛, 𝑞𝑛+1, 𝑡) = 𝛿1(𝑡) 

lim
𝑛→∞

𝑄(𝑞𝑛 , 𝑞𝑛+1, 𝑡) = 𝛿2(𝑡) 

We will now demonstrate that for all 𝑡 > 0 , 𝛿1(𝑡) = 1 and 𝛿2(𝑡) = 0.  

If there exists 𝑡0 > 0 where 𝛿1(𝑡0) < 1 then it follows that,  

0 < 𝑃(𝑞𝑛−1, 𝑞𝑛, 𝑡0) ≤ 𝜑(𝑃(𝑞𝑛 , 𝑞𝑛+1, 𝑡0)) ≤ 𝑃(𝑞𝑛, 𝑞𝑛+1, 𝑡0) ≤ 𝛿1(𝑡0) < 1                               (6) 

Thus 0 < 𝛿1(𝑡0) < 1. 

Similarly, If there exists 𝑡0 > 0 where 𝛿1(𝑡0) > 0 then it follows that,  

0 < 𝑄(𝑞𝑛, 𝑞𝑛+1, 𝑡0) ≥ 𝜑(𝑄(𝑞𝑛−1, 𝑞𝑛 , 𝑡0)) ≥ 𝑄(𝑞𝑛−1, 𝑞𝑛 , 𝑡0) ≥ 𝛿2(𝑡0) > 0                             (7) 

Thus 0 < 𝛿2(𝑡0) < 1. 

Given that 𝜑 is left-continuous and {𝑃(𝑞𝑛 , 𝑞𝑛+1, 𝑡)} and {𝑄(𝑞𝑛 , 𝑞𝑛+1, 𝑡)} are sequences of positive numbers that are 

non-decreasing and non-increasing, respectively, by letting n approach infinity in (6) and (7), we get: 

𝜑(𝛿1(𝑡0)) =  𝛿1(𝑡0), a contradiction (𝛿1(𝑡) ∈ (0,1)). 

1 − 𝜑(1 − 𝛿2(𝑡0)) =  𝛿2(𝑡0), a contradiction (𝛿2(𝑡) ∈ (0,1)). 

Consequently, 𝛿1(𝑡) = 1 and 𝛿2(𝑡) = 0, ∀𝑡 > 0. That is: 

lim
𝑛→∞

𝑃(𝑞𝑛, 𝑞𝑛+1, 𝑡) = 1                                                                         (8)    

lim
𝑛→∞

𝑄(𝑞𝑛 , 𝑞𝑛+1, 𝑡) = 0                                                                         (9) 

Next, we demonstrate that {𝑞𝑛} forms a Cauchy sequence in (𝐼, 𝑃, 𝑄, 𝜏, 𝜇) . Conversely, if {𝑞𝑛} is not a Cauchy sequence, 

then there exist ε within the interval (0, 1) and some 𝑡0 > 0 such that for every 𝑘 ∈ 𝑁0, there are 𝑚(𝑘) and 𝑛(𝑘) within 

𝑁0 such that 𝑘 ≤ 𝑛(𝑘) ≤ 𝑚(𝑘) satisfying: 

  𝑃(𝑞𝑚(𝑘), 𝑞𝑛(𝑘), 𝑡0) ≤ 1 − 𝜀 

       𝑃(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘), 𝑡0) > 1 − 𝜀, ∀𝑘 ∈ 𝑁0 

 

Similarly,     𝑄(𝑞𝑚(𝑘), 𝑞𝑛(𝑘), 𝑡0) ≥ 𝜀 

𝑄(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘), 𝑡0) < 𝜀, ∀𝑘 ∈ 𝑁0 

Given that (𝐼, 𝑃, 𝑄, 𝜏, 𝜇) is non-Archimedean, it holds true for all 𝑘 ∈ 𝑁0 

    1 − 𝜀 ≥ 𝑃(𝑞𝑚(𝑘), 𝑞𝑛(𝑘),𝑡0) 

   ≥ 𝑃(𝑞𝑚(𝑘), 𝑞𝑛(𝑘)−1,𝑡0) ∗ 𝑃(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘),𝑡0)  
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            > 𝑃(𝑞𝑚(𝑘), 𝑞𝑛(𝑘)−1,𝑡0) ∗ (1 − 𝜀) 

Similarly,              𝜀  ≤ 𝑄(𝑞𝑚(𝑘), 𝑞𝑛(𝑘),𝑡0) 

   ≤ 𝑄(𝑞𝑚(𝑘), 𝑞𝑛(𝑘)−1,𝑡0) ◊ 𝑄(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘),𝑡0)  

              < 𝑄(𝑞𝑚(𝑘), 𝑞𝑛(𝑘)−1,𝑡0) ◊ 𝜀 

By letting k approach infinity, and considering the continuity of ∗ and ◊, along with (8) and (9), we can conclude that 

lim
𝑘→∞

𝑃(𝑞𝑚(𝑘), 𝑞𝑛(𝑘), 𝑡0) = 1 − 𝜀                                                      (10) 

lim
𝑘→∞

𝑄(𝑞𝑚(𝑘), 𝑞𝑛(𝑘), 𝑡0) = 𝜀                                                              (11) 

Furthermore, given that (𝐼, 𝑃, 𝑄, 𝜏, 𝜇) is non-Archimedean, the following holds for all 𝑘 ∈ 𝑁0 

𝑃(𝑞𝑚(𝑘)−1,𝑞𝑛(𝑘)−1, 𝑡0) ≥ 𝑃(𝑞𝑚(𝑘)−1,𝑞𝑛(𝑘), 𝑡0) ∗ 𝑃(𝑞𝑛(𝑘),𝑞𝑛(𝑘)−1, 𝑡0) > (1 − 𝜀) ∗ 𝑃(𝑞𝑛(𝑘), 𝑞𝑛(𝑘)−1, 𝑡0) 

𝑃(𝑞𝑚(𝑘), 𝑞𝑛(𝑘), 𝑡0) ≥ 𝑃(𝑞𝑚(𝑘), 𝑞𝑚(𝑘)−1, 𝑡0) ∗ 𝑃(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0) ∗ 𝑃(𝑞𝑛(𝑘)−1, 𝑞𝑛(𝑘), 𝑡0) 

𝑄(𝑞𝑚(𝑘)−1,𝑞𝑛(𝑘)−1, 𝑡0) ≤ 𝑄(𝑞𝑚(𝑘)−1,𝑞𝑛(𝑘), 𝑡0) ◊ 𝑄(𝑞𝑛(𝑘),𝑞𝑛(𝑘)−1, 𝑡0) < 𝜀 ◊ 𝑄(𝑞𝑛(𝑘), 𝑞𝑛(𝑘)−1, 𝑡0) 

𝑄(𝑞𝑚(𝑘), 𝑞𝑛(𝑘), 𝑡0) ≤ 𝑄(𝑞𝑚(𝑘), 𝑞𝑚(𝑘)−1, 𝑡0) ◊ 𝑄(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0) ◊ 𝑄(𝑞𝑛(𝑘)−1, 𝑞𝑛(𝑘), 𝑡0) 

By allowing k to approach infinity within the above inequalities and applying (8), (9) and (10), (11), we deduce 

lim
𝑘→∞

𝑃(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0) = 1 − 𝜀.                                            (12) 

lim
𝑘→∞

𝑄(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0) = 𝜀.                                                    (13) 

Specifically, whenever k is sufficiently large, we have 𝑃(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0) > 0 and 𝑄(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0) < 1. 

Utilizing (2) & (3) and Lemma 2, we obtain the following for all k 

         𝑚𝑖𝑛 {𝑃(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0), 𝑚𝑎𝑥{𝑃(ℎ𝑞𝑚(𝑘)−1, 𝑞𝑚(𝑘)−1, 𝑡0), 𝑃(𝑞𝑛(𝑘)−1, ℎ𝑞𝑛(𝑘)−1, 𝑡0)}} ≤ 𝜑(𝑃(ℎ𝑞𝑚(𝑘)−1, ℎ𝑞𝑛(𝑘)−1, 𝑡0)) 

           𝑚𝑎𝑥 {𝑄(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0), 𝑚𝑖𝑛{𝑄(ℎ𝑞𝑚(𝑘)−1, 𝑞𝑚(𝑘)−1, 𝑡0), 𝑄(𝑞𝑛(𝑘)−1, ℎ𝑞𝑛(𝑘)−1, 𝑡0)}} ≥ 𝜑(𝑄(ℎ𝑞𝑚(𝑘)−1, ℎ𝑞𝑛(𝑘)−1, 𝑡0)) 

Hence, 

𝑚𝑖𝑛 {𝑃(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0), 𝑚𝑎𝑥{𝑃(𝑞𝑚(𝑘), 𝑞𝑚(𝑘)−1, 𝑡0), 𝑃(𝑞𝑛(𝑘)−1, 𝑞𝑛(𝑘), 𝑡0)}} ≤ 𝜑(𝑃(𝑞𝑚(𝑘), 𝑞𝑛(𝑘), 𝑡0)) 

𝑚𝑎𝑥 {𝑄(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0), 𝑚𝑖𝑛{𝑄(𝑞𝑚(𝑘), 𝑞𝑚(𝑘)−1, 𝑡0), 𝑄(𝑞𝑛(𝑘)−1, 𝑞𝑛(𝑘), 𝑡0)}} ≥ 𝜑(𝑄(𝑞𝑚(𝑘), 𝑞𝑛(𝑘), 𝑡0)) 

By allowing k to approach infinity and applying (8) – (13) along with the left-continuity of 𝜑, we conclude that: 

1 − 𝜀 < 𝑚𝑖𝑛{1 − 𝜀, 𝑚𝑎𝑥{1,1}} ≤ 𝜑(1 − 𝜀) ⇒ 1 − 𝜀 ≤ 𝜑(1 − 𝜀) < 1 − 𝜀,  a contradiction. 

𝜀 > 𝑚𝑎𝑥{𝜀, 𝑚𝑖𝑛{0,0}} ≥ 𝜑(𝜀) ⇒ 𝜀 ≥ 𝜑(𝜀) > 𝜀, a contradiction. 

Therefore, {𝑞𝑛} must form a Cauchy sequence in (𝐼, 𝑃, 𝑄, 𝜏, 𝜇). Given that {𝑞𝑛} is an ℜ-Cauchy sequence and 

(𝐼, 𝑃, 𝑄, 𝜏, 𝜇) is ℜ-complete, there exists an 𝑞 ∈ 𝐼 such that 𝑞𝑛 converges to q. 

If f is continuous, then by taking the limit as n approaches infinity on both sides of 𝑞𝑛+1 = ℎ𝑞𝑛, 𝑛 ∈ 𝑁0, we obtain 𝑞 =

ℎ𝑞. 

Otherwise, if ℜ is P-self-closed and Q-self-closed, there exists a subsequence {𝑞𝑛(𝑘)} ⊆ {𝑞𝑛} such that {𝑞𝑛(𝑘)}ℜ𝑞 for all 

𝑘 ∈ 𝑁0.  

We state that 𝑞 = ℎ(𝑞). Given that the lim
𝑘→∞

𝑞𝑛(𝑘) = 𝑞, we have 

lim
𝑘→∞

𝑃(𝑞𝑛, 𝑞, 𝑡) = 1, ∀𝑡 > 0 
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lim
𝑘→∞

𝑄(𝑞𝑛 , 𝑞, 𝑡) = 0, ∀𝑡 > 0 

Thus, for all 𝑡 > 0, when k is sufficiently large, we have 𝑃(𝑞𝑛 , 𝑞, 𝑡) > 0 and 𝑄(𝑞𝑛 , 𝑞, 𝑡) < 1. Given that 𝑞𝑛(𝑘)ℜ𝑞, 

according to condition (2) & (3), we find 

𝑚𝑖𝑛 {𝑃(𝑞𝑛(𝑘), 𝑞, 𝑡), 𝑚𝑎𝑥{𝑃(ℎ𝑞𝑛(𝑘), 𝑞𝑛(𝑘), 𝑡), 𝑃(𝑞, ℎ𝑞, 𝑡)}} ≤ 𝜑 (𝑃(ℎ𝑞𝑛(𝑘), ℎ𝑞, 𝑡)). 

𝑚𝑎𝑥 {𝑄(𝑞𝑛(𝑘), 𝑞, 𝑡), 𝑚𝑖𝑛{𝑄(ℎ𝑞𝑛(𝑘), 𝑞𝑛(𝑘), 𝑡), 𝑄(𝑞, ℎ𝑞, 𝑡)}} ≥ 𝜑 (𝑄(ℎ𝑞𝑛(𝑘), ℎ𝑞, 𝑡)). 

Thus, 

𝑚𝑖𝑛 {𝑃(𝑞𝑛(𝑘), 𝑞, 𝑡), 𝑚𝑎𝑥{𝑃(𝑞𝑛(𝑘)+1, 𝑞𝑛(𝑘), 𝑡), 𝑃(𝑞, ℎ𝑞, 𝑡)}} ≤ 𝜑 (𝑃(𝑞𝑛(𝑘)+1, ℎ𝑞, 𝑡)). 

𝑚𝑎𝑥 {𝑄(𝑞𝑛(𝑘), 𝑞, 𝑡), 𝑚𝑖𝑛{𝑄(𝑞𝑛(𝑘)+1, 𝑞𝑛(𝑘), 𝑡), 𝑄(𝑞, ℎ𝑞, 𝑡)}} ≥ 𝜑 (𝑄(𝑞𝑛(𝑘)+1, ℎ𝑞, 𝑡)). 

By allowing 𝑘 → ∞ and utilizing equations (8) and (9), we observe that lim
𝑘→∞

𝑃(𝑞𝑛(𝑘), 𝑞, 𝑡) = 1 and lim
𝑘→∞

𝑄(𝑞𝑛(𝑘), 𝑞, 𝑡) = 0 

leading to the conclusion  

1 = 𝑚𝑖𝑛{1, 𝑚𝑎𝑥{1, 𝑃(𝑞, ℎ𝑞, 𝑡)}} ≤ lim
𝑘→∞

𝜑(𝑃(𝑞𝑛(𝑘)+1, ℎ𝑞, 𝑡)) 

0 = 𝑚𝑎𝑥{0, 𝑚𝑖𝑛{1, 𝑄(𝑞, ℎ𝑞, 𝑡)}} ≥ lim
𝑘→∞

𝜑(𝑄(𝑞𝑛(𝑘)+1, ℎ𝑞, 𝑡)) 

As a result, this indicates that 

lim
𝑘→∞

𝜑 (𝑃(𝑞𝑛(𝑘)+1, ℎ𝑞, 𝑡)) = 1 

lim
𝑘→∞

𝜑 (𝑄(𝑞𝑛(𝑘)+1, ℎ𝑞, 𝑡)) = 0 

Consequently, based on Remark 4 (iii) and the continuity of P and Q, we deduce 

lim
𝑘→∞

𝑃(𝑞𝑛, 𝑞, 𝑡) = 1, ∀𝑡 > 0 

lim
𝑘→∞

𝑄(𝑞𝑛 , 𝑞, 𝑡) = 0, ∀𝑡 > 0 

Hence, as k approaches infinity, lim
𝑘→∞

𝑞𝑛(𝑘)+1 = ℎ𝑞. The unique limit implies that ℎ𝑞 = 𝑞. This concludes the proof. 

Following this, we present the subsequent uniqueness theorem. 

Theorem2: Building on the hypotheses of Theorem 1, if the following condition is satisfied: 

iv. For all 𝑞, 𝑝 ∈ 𝐹𝑖𝑥(ℎ), there exists 𝑟 ∈ 𝐼 such that 𝑞ℜ𝑟 and 𝑝ℜ𝑟, with 

𝑃(𝑞, 𝑟, 𝑡) > 0, 𝑄(𝑞, 𝑟, 𝑡) < 1, 𝑃(𝑝, 𝑟, 𝑡) > 0, 𝑄(𝑝, 𝑟, 𝑡) < 1, ∀𝑡 > 0.                   

Then, the fixed point of h is unique. 

Proof: Considering Theorem 1, 𝐹𝑖𝑥(ℎ) is not empty. Suppose 𝑞 and 𝑝 are elements of 𝐹𝑖𝑥(ℎ). 

According to condition (iv), there exists an element 𝑟 in 𝐼 such that 𝑞ℜ𝑟 and 𝑝ℜ𝑟, with  

𝑃(𝑞, 𝑟, 𝑡) > 0, 𝑄(𝑞, 𝑟, 𝑡) < 1, 𝑃(𝑝, 𝑟, 𝑡) > 0, 𝑄(𝑝, 𝑟, 𝑡) < 1, ∀𝑡 > 0.  

Let 𝑟0 = 𝑟 and 𝑟𝑛+1 = ℎ𝑟𝑛 , ∀𝑛 ≥ 0. We claim that 𝑞 = 𝑝. Given that 𝑞ℜ𝑟0, and 𝑃(𝑞, 𝑟0, 𝑡) > 0, 𝑄(𝑞, 𝑟0, 𝑡) < 1 ∀𝑡 >

0, it follows from equation (2) & (3) that 

𝑚𝑖𝑛{𝑃(𝑞, 𝑟0, 𝑡), 𝑚𝑎𝑥{𝑃(ℎ𝑞, 𝑞, 𝑡), 𝑃(𝑟0, ℎ𝑟0, 𝑡)}} ≤ 𝜑(𝑃(ℎ𝑞, ℎ𝑞0, 𝑡)) 

⟹              𝑚𝑖𝑛{𝑃(𝑞, 𝑟0, 𝑡), 𝑚𝑎𝑥{𝑃(𝑞, 𝑞, 𝑡), 𝑃(𝑟0, 𝑟1, 𝑡)}} ≤ 𝜑(𝑃(𝑞, 𝑟1, 𝑡)) 

⟹              𝑚𝑖𝑛{𝑃(𝑞, 𝑟0, 𝑡), 𝑚𝑎𝑥{1, 𝑃(𝑟0, 𝑟1, 𝑡)}} ≤ 𝜑(𝑃(𝑞, 𝑟1, 𝑡)) 

⟹              𝑚𝑖𝑛{𝑃(𝑞, 𝑟0, 𝑡), 1} ≤ 𝜑(𝑃(𝑞, 𝑟1, 𝑡)) 
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⟹              0 < 𝑃(𝑞, 𝑟0, 𝑡) ≤ 𝜑(𝑃(𝑞, 𝑟1, 𝑡)) ≤ 𝑃(𝑞, 𝑟1, 𝑡) 

 

And       𝑚𝑎𝑥{𝑄(𝑞, 𝑟0, 𝑡), 𝑚𝑖𝑛{𝑄(ℎ𝑞, 𝑞, 𝑡), 𝑄(𝑟0, ℎ𝑟0, 𝑡)}} ≥ 𝜑(𝑃(ℎ𝑞, ℎ𝑞0, 𝑡)) 

⟹              𝑚𝑎𝑥{𝑄(𝑞, 𝑟0, 𝑡), 𝑚𝑖𝑛{𝑄(𝑞, 𝑞, 𝑡), 𝑄(𝑟0, 𝑟1, 𝑡)}} ≥ 𝜑(𝑄(𝑞, 𝑟1, 𝑡)) 

⟹              𝑚𝑎𝑥{𝑄(𝑞, 𝑟0, 𝑡), 𝑚𝑖𝑛{1, 𝑄(𝑟0, 𝑟1, 𝑡)}} ≥ 𝜑(𝑄(𝑞, 𝑟1, 𝑡)) 

⟹              𝑚𝑎𝑥{𝑄(𝑞, 𝑟0, 𝑡), 1} ≥ 𝜑(𝑄(𝑞, 𝑟1, 𝑡)) 

⟹              0 < 𝑄(𝑞, 𝑟0, 𝑡) ≥ 𝜑(𝑄(𝑞, 𝑟1, 𝑡)) ≥ 𝑄(𝑞, 𝑟1, 𝑡) 

Through induction, we establish that 𝑃(𝑞, 𝑟𝑛 , 𝑡) > 0 and 𝑄(𝑞, 𝑟𝑛 , 𝑡) < 1 ∀𝑛 ∈ 𝑁0 and 𝑡 > 0. Given that ℜ is h-closed, we 

deduce (by induction) that 𝑞ℜ𝑟𝑛 , ∀𝑛 ∈ 𝑁0. Hence, 

        𝑚𝑖𝑛{𝑃(𝑞, 𝑟𝑛 , 𝑡), 𝑚𝑎𝑥{𝑃(ℎ𝑞, 𝑞, 𝑡), 𝑃(𝑟𝑛 , ℎ𝑟𝑛 , 𝑡)}} ≤ 𝜑(𝑃(ℎ𝑞, ℎ𝑟𝑛 , 𝑡)) 

⟹                𝑚𝑖𝑛{𝑃(𝑞, 𝑟𝑛 , 𝑡), 𝑚𝑎𝑥{𝑃(𝑞, 𝑞, 𝑡), 𝑃(𝑟𝑛 , 𝑟𝑛+1, 𝑡)}} ≤ 𝜑(𝑃(𝑞, 𝑟𝑛+1, 𝑡))          (14) 

⟹                𝑚𝑖𝑛{𝑃(𝑞, 𝑟𝑛 , 𝑡), 𝑚𝑎𝑥{1, 𝑃(𝑟𝑛 , ℎ𝑟𝑛+1, 𝑡)}} ≤ 𝜑(𝑃(𝑞, 𝑟𝑛+1, 𝑡)) 

⟹                𝑚𝑖𝑛{𝑃(𝑞, 𝑟𝑛 , 𝑡), 1} ≤ 𝜑(𝑃(𝑞, 𝑟𝑛+1, 𝑡)) 

⟹                0 < 𝑃(𝑞, 𝑟𝑛 , 𝑡) ≤ 𝜑(𝑃(𝑞, 𝑟𝑛+1, 𝑡) ≤ 𝑃(𝑞, 𝑟𝑛+1, 𝑡) 

and 

        𝑚𝑎𝑥{𝑄(𝑞, 𝑟𝑛 , 𝑡), 𝑚𝑖𝑛{𝑄(ℎ𝑞, 𝑞, 𝑡), 𝑄(𝑟𝑛 , ℎ𝑟𝑛 , 𝑡)}} ≥ 𝜑(𝑄(ℎ𝑞, ℎ𝑟𝑛 , 𝑡)) 

⟹                𝑚𝑎𝑥{𝑄(𝑞, 𝑟𝑛 , 𝑡), 𝑚𝑖𝑛{𝑄(𝑞, 𝑞, 𝑡), 𝑄(𝑟𝑛 , 𝑟𝑛+1, 𝑡)}} ≥ 𝜑(𝑄(𝑞, 𝑟𝑛+1, 𝑡))         (15) 

⟹                𝑚𝑎𝑥{𝑄(𝑞, 𝑟𝑛 , 𝑡), 𝑚𝑖𝑛{0, 𝑄(𝑟𝑛 , ℎ𝑟𝑛+1, 𝑡)}} ≥ 𝜑(𝑄(𝑞, 𝑟𝑛+1, 𝑡)) 

⟹                𝑚𝑖𝑛{𝑄(𝑞, 𝑟𝑛 , 𝑡), 0} ≥ 𝜑(𝑄(𝑞, 𝑟𝑛+1, 𝑡)) 

⟹                0 < 𝑄(𝑞, 𝑟𝑛 , 𝑡) ≥ 𝜑(𝑄(𝑞, 𝑟𝑛+1, 𝑡) ≥ 𝑄(𝑞, 𝑟𝑛+1, 𝑡) 

Consequently, {𝑃(𝑞, 𝑟𝑛 , 𝑡)} is non-decreasing and capped at an upper limit, while {𝑄(𝑞, 𝑟𝑛 , 𝑡)} is non-increasing and 

limited from below. Therefore, for all 𝑡 > 0 , there exist values 0 < 𝛾1(𝑡) ≤ 1 and 0 < 𝛾2(𝑡) ≤ 1 such that 

lim
𝑛→∞

𝑃(𝑞, 𝑟𝑛 , 𝑡) = 𝛾1(𝑡) 

lim
𝑛→∞

𝑄(𝑞, 𝑟𝑛 , 𝑡) = 𝛾2(𝑡) 

By allowing 𝑛 → ∞ in equation (14) & (15), and considering that ψ is left-continuous, it follows that: 

𝜑(𝛾1(𝑡)) = 𝛾1(𝑡) 

1 − 𝜑(𝛾2(𝑡)) = 𝛾2(𝑡) 

Accordingly, considering Remark 4, we conclude that 

𝛾1(𝑡) = 1, ∀𝑡 > 0 

𝛾2(𝑡) = 0, ∀𝑡 > 0 

Thus,  

lim
𝑛→∞

𝑃(𝑞, 𝑟𝑛 , 𝑡) = 1 , ∀𝑡 > 0 

lim
𝑛→∞

𝑄(𝑞, 𝑟𝑛 , 𝑡) = 0, ∀𝑡 > 0 
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In a similar way, we can demonstrate that 

lim
𝑛→∞

𝑃(𝑝, 𝑟𝑛 , 𝑡) = 1 , ∀𝑡 > 0 

lim
𝑛→∞

𝑄(𝑝, 𝑟𝑛 , 𝑡) = 0, ∀𝑡 > 0 

Since (𝐼, 𝑃, 𝑄, 𝜏, 𝜇) is non-Archimedean, it follows that (for all 𝑛 ∈ 𝑁0) 

𝑃(𝑞, 𝑝, 𝑡) ≥ 𝑃(𝑞, 𝑟𝑛 , 𝑡) ∗ 𝑃(𝑟𝑛 , 𝑝, 𝑡) 

𝑄(𝑞, 𝑝, 𝑡) ≤ 𝑄(𝑞, 𝑟𝑛 , 𝑡) ◊ 𝑄(𝑟𝑛 , 𝑝, 𝑡) 

As n approaches infinity and considering the continuity of 𝜏 and 𝜇, we deduce that: 

𝑃(𝑞, 𝑝, 𝑡) ≥ 𝜏(1,1) = 1 

𝑄(𝑞, 𝑝, 𝑡) ≤ 𝜇(0,0) = 0 

Hence,     𝑃(𝑞, 𝑝, 𝑡) = 1 

𝑄(𝑞, 𝑝, 𝑡) = 0 

Thus, we arrive at the conclusion that 𝑞 = 𝑝 , fulfilling our requirements. 

Corollary 1: Consider a space (𝐼, 𝑃, 𝑄, 𝜏, 𝜇) which is an ℜ-complete non-Archimedean intuitionistic fuzzy metric 

space, with ℜ being a binary relation and a mapping ℎ: 𝐼 ⟶ 𝐼. Suppose there exists 𝑘 ∈ (0,1) such that for any 𝑞, 𝑝 ∈ 𝐼 

and all 𝑡 > 0 where 𝑞ℜ𝑝, if 𝑃(𝑞, 𝑝, 𝑡) > 0 and 𝑃(𝑞, 𝑝, 𝑡) > 0 ⇒ 𝑚𝑖𝑛{𝑃(𝑞, 𝑝, 𝑡), 𝑚𝑎𝑥{𝑃(ℎ𝑞, 𝑞, 𝑡), 𝑃(𝑝, ℎ𝑝, 𝑡)}} ≤

𝑘𝑃(ℎ𝑞, ℎ𝑝, 𝑡) 

𝑄(𝑞, 𝑝, 𝑡) < 1 ⇒ 𝑚𝑎𝑥{𝑄(𝑞, 𝑝, 𝑡), 𝑚𝑖𝑛{𝑄(ℎ𝑞, 𝑞, 𝑡), 𝑄(𝑝, ℎ𝑝, 𝑡)}} ≥ 𝑘𝑄(ℎ𝑞, ℎ𝑝, 𝑡) 

Moreover,  

i. there exists 𝑞0 ∈ 𝐼 such that 𝑞0ℜℎ𝑞0, where 𝑃(𝑞0, ℎ𝑞0, 𝑡) > 0 and 𝑄(𝑞0, ℎ𝑞0, 𝑡) < 1 for all 𝑡 > 0. 

ii. ℜ exhibits transitivity and is closed under the function h. 

iii. One of the following conditions is true: 

a. The function h exhibits continuity or 

b. Relation ℜ is P- self closed and Q-self closed. 

Consequently, h possesses a fixed point in I. Moreover, this is true provided that the following condition is met. 

iv. For every q and p in 𝐹𝑖𝑥(ℎ), there exists a r in I such that 𝑞ℜ𝑟 and 𝑝ℜ𝑟, with 𝑃(𝑞, 𝑟, 𝑡) > 0, 𝑄(𝑞, 𝑟, 𝑡) < 1 

and 𝑃(𝑝, 𝑟, 𝑡) > 0, 𝑄(𝑝, 𝑟, 𝑡) < 1 for all 𝑡 > 0. 

Then the fixed point is unique. 

In the following sections, we demonstrate that Theorems 1 and 2 can be established within the framework of ℜ-

complete non-Archimedean intuitionistic fuzzy metric spaces (based on definition of fuzzy metric space defined by 

George and Veeramani). Subsequently, we introduce the concept of GV-intuitionistic fuzzy ℜ − 𝜑-contractive. 

Definition 18: Consider (𝐼, 𝑃, 𝑄, 𝜏, 𝜇) as a non-Archimedean intuitionistic fuzzy metric space. Let ℜ be a binary 

relation on I and ℎ: 𝐼 → 𝐼. We define h as a intuitionistic fuzzy ℜ − 𝜑 contractive mapping if there exist 𝜑 ∈ Ω such 

that ∀ 𝑞, 𝑝 ∈ 𝐼, 𝑡 > 0 with 𝑞ℜ𝑝. 

𝑚𝑖𝑛{𝑃(𝑞, 𝑝, 𝑡), 𝑚𝑎𝑥{𝑃(ℎ𝑞, 𝑞, 𝑡), 𝑃(𝑝, ℎ𝑝, 𝑡)}} ≤ 𝜑(𝑃(ℎ𝑞, ℎ𝑝, 𝑡)).                    (16) 

𝑚𝑎𝑥{𝑄(𝑞, 𝑝, 𝑡), 𝑚𝑖𝑛{𝑄(ℎ𝑞, 𝑞, 𝑡), 𝑄(𝑝, ℎ𝑝, 𝑡)}} ≥ 𝜑(𝑄(ℎ𝑞, ℎ𝑝, 𝑡)).                   (17) 

Theorem 3: Consider (𝐼, 𝑃, 𝑄, 𝜏, 𝜇) to be a non-Archimedean intuitionistic fuzzy metric space with a binary relation 

ℜ and a mapping ℎ: 𝐼 → 𝐼. Suppose I is ℜ- complete and h is intuitionistic fuzzy ℜ − 𝜑 − contractive mapping such 

that: 

i. There is 𝑞0 ∈ 𝐼 such that 𝑞0ℜℎ𝑞0;  

ii. Relation ℜ is transitive and closed under h. 
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iii. One of the following conditions is true: 

a. The function h is continuous or 

b. Relation ℜ is P- self closed and Q-self closed. 

Consequently, h possesses a fixed point within I. 

Proof: We can find 𝑞0 ∈ 𝐼 from (i) such that  𝑞0ℜℎ𝑞0. Let a sequence {𝑞0} in I where ℎ𝑞𝑛 = 𝑞𝑛+1, ∀𝑛 ∈ ℕ0. If 𝑞𝑛 =

𝑞𝑛+1 for some 𝑛 ∈ 𝑁0, then 𝑞𝑛 is fixed point of h. Suppose  𝑞𝑛 ≠ 𝑞𝑛+1 for all 𝑛 ∈ ℕ0. Given that 𝑞0ℜ𝑞1 and considering 

equation (16) & (17), we derive the following: 

 𝑚𝑖𝑛{𝑃(𝑞0, 𝑞1, 𝑡), 𝑃(ℎ𝑞0, 𝑞0, 𝑡), 𝑃(𝑞1, ℎ𝑞1, 𝑡)} ≤ 𝜑(𝑃(ℎ𝑞0, ℎ𝑞1, 𝑡)) 

⟹                       𝑚𝑖𝑛{𝑃(𝑞0, 𝑞1, 𝑡), 𝑃(𝑞1, 𝑞0, 𝑡), 𝑃(𝑞1, 𝑞2, 𝑡)} ≤ 𝜑(𝑃(𝑞1, 𝑞2, 𝑡))                            (18) 

Similarly,  

𝑚𝑎𝑥{𝑄(𝑞0, 𝑞1, 𝑡), 𝑄(ℎ𝑞0, 𝑞0, 𝑡), 𝑄(𝑞1, ℎ𝑞1, 𝑡)} ≥ 𝜑(𝑄(ℎ𝑞0, ℎ𝑞1, 𝑡)) 

⟹                     𝑚𝑎𝑥{𝑄(𝑞0, 𝑞1, 𝑡), 𝑄(𝑞1, 𝑞0, 𝑡), 𝑄(𝑞1, 𝑞2, 𝑡)} ≥ 𝜑(𝑄(𝑞1, 𝑞2, 𝑡))                            (19) 

If   𝑚𝑖𝑛{𝑃(𝑞0, 𝑞1, 𝑡), 𝑃(𝑞1, 𝑞2, 𝑡)} = 𝑃(𝑞1, 𝑞2, 𝑡) ⟹ 𝜑(𝑃(𝑞1, 𝑞2, 𝑡)) = 𝑃(𝑞1, 𝑞2, 𝑡),  

then we have, 𝑃(𝑞1, 𝑞2, 𝑡) = 1, leading to a contradiction.  

and  𝑚𝑎𝑥{𝑄(𝑞0, 𝑞1, 𝑡), 𝑄(𝑞1, 𝑞2, 𝑡)} = 𝑄(𝑞1, 𝑞2, 𝑡) ⟹ 𝜑(𝑄(𝑞1, 𝑞2, 𝑡)) = 𝑄(𝑞1, 𝑞2, 𝑡), 

then we have, 𝑄(𝑞1, 𝑞2, 𝑡) = 0, leading to a contradiction. 

Therefore, 

0 < 𝑃(𝑞0, 𝑞1, 𝑡) ≤ 𝜑(𝑃(𝑞1, 𝑞2, 𝑡)) ≤ 𝑃(𝑞1, 𝑞2, 𝑡) 

0 < 𝑄(𝑞0, 𝑞1, 𝑡) ≥ 𝜑(𝑄(𝑞1, 𝑞2, 𝑡)) ≥ 𝑄(𝑞1, 𝑞2, 𝑡) 

By repeating this procedure, we conclude that 

0 < 𝑃(𝑞𝑛−1, 𝑞𝑛, 𝑡) ≤ 𝜑(𝑃(𝑞𝑛, 𝑞𝑛+1, 𝑡)) ≤ 𝑃(𝑞𝑛, 𝑞𝑛+1, 𝑡), 

0 < 𝑄(𝑞𝑛−1, 𝑞𝑛, 𝑡) ≥ 𝜑(𝑄(𝑞𝑛, 𝑞𝑛+1, 𝑡)) ≥ 𝑄(𝑞𝑛 , 𝑞𝑛+1, 𝑡) 

For every 𝑛 ∈ ℕ0, in the proof of Theorem 1, we have 

lim
𝑛→∞

𝑃(𝑞𝑛, 𝑞𝑛+1, 𝑡) = 1

lim
𝑛→∞

𝑄(𝑞𝑛 , 𝑞𝑛+1, 𝑡) = 0
                                                       (20) 

Next, we demonstrate that {𝑞𝑛} is a Cauchy sequence in (𝐼, 𝑃, 𝑄, 𝜏, 𝜇). Conversely, if {𝑞𝑛} is not a Cauchy sequence, 

then according to the proof of Theorem 1, we obtain 

 
lim
𝑘→∞

𝑃(𝑞𝑚(𝑘), 𝑞𝑛(𝑘), 𝑡0) = 1 − 𝜀

lim
𝑘→∞

𝑄(𝑞𝑚(𝑘), 𝑞𝑛(𝑘), 𝑡0) = 𝜀
                                                    (21) 

lim
𝑘→∞

𝑃(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0) = 1 − 𝜀

lim
𝑘→∞

𝑄(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0) = 𝜀
                                             (22) 

By applying the contractive conditions (16) & (17) and Lemma 2, we obtain for every k 

𝑚𝑖𝑛{𝑃(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0), 𝑃(ℎ𝑞𝑚(𝑘)−1, 𝑞𝑚(𝑘)−1, 𝑡0), 𝑃(𝑞𝑛(𝑘)−1, ℎ𝑞𝑛(𝑘)−1, 𝑡0)} ≤ 𝜑(𝑃(ℎ𝑞𝑚(𝑘)−1, ℎ𝑞𝑛(𝑘)−1, 𝑡0) 

and 

𝑚𝑎𝑥{𝑄(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0), 𝑄(ℎ𝑞𝑚(𝑘)−1, 𝑞𝑚(𝑘)−1, 𝑡0), 𝑄(𝑞𝑛(𝑘)−1, ℎ𝑞𝑛(𝑘)−1, 𝑡0)} ≤ 𝜑(𝑄(ℎ𝑞𝑚(𝑘)−1, ℎ𝑞𝑛(𝑘)−1, 𝑡0) 
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𝑚𝑖𝑛{𝑃(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0), 𝑃(𝑞𝑚(𝑘), 𝑞𝑚(𝑘)−1, 𝑡0), 𝑃(𝑞𝑛(𝑘)−1, 𝑞𝑛(𝑘), 𝑡0) ≤ 𝜑(𝑃(𝑞𝑚(𝑘), 𝑞𝑛(𝑘), 𝑡0)}

𝑚𝑎𝑥{𝑄(𝑞𝑚(𝑘)−1, 𝑞𝑛(𝑘)−1, 𝑡0), 𝑄(𝑞𝑚(𝑘), 𝑞𝑚(𝑘)−1, 𝑡0), 𝑄(𝑞𝑛(𝑘)−1, 𝑞𝑛(𝑘), 𝑡0) ≤ 𝜑(𝑄(𝑞𝑚(𝑘), 𝑞𝑛(𝑘), 𝑡0)}
 

As 𝑘 → ∞, and by utilizing equations (20)-(22) along with the left-continuity of 𝜑, it can be determined that 

1 − 𝜀 < min{1 − 𝜀, 1,1} ≤ 𝜑(1 − 𝜀) ≤ 1 

and 

𝜀 > 𝑚𝑎𝑥{𝜀, 0,0} ≥ 𝜑(𝜀) ≥ 0  

This implies that 𝜑(1 − 𝜀) = 1 − 𝜀 and 𝜑(𝜀) = 𝜀, which is a contradiction. 

Therefore, the sequence {𝑞𝑛} in (𝐼, 𝑃, 𝑄, 𝜏, 𝜇) must be a Cauchy sequence. Given that (𝐼, 𝑃, 𝑄, 𝜏, 𝜇)  is ℜ-complete, there 

exists an element q in I such that 𝑞𝑛 → 𝑞. According to condition (a), if the function h is continuous, we can deduce 

from the proof of Theorem 1 that 

lim
𝑛→∞

𝑃(𝑞𝑛 , ℎ𝑞, 𝑡) = 1 

and       lim
𝑛→∞

𝑄(𝑞𝑛 , ℎ𝑞, 𝑡) = 0  

which implies that 𝑃(𝑞, ℎ𝑞, 𝑡) = 1 and 𝑄(𝑞, ℎ𝑞, 𝑡) = 0, and hence 𝑞 = ℎ𝑞. 

From condition (b) if ℜ is (P, Q)−self-closed, then there exists a subsequence {𝑞𝑛(𝑘)} ⊆ {𝑞𝑛} such that lim
𝑘→∞

𝑞𝑛(𝑘) = 𝑞 

and 𝑞𝑛(𝑘)ℜ𝑞 for all 𝑘 ∈ ℕ0.  

Assume 𝑞 ≠ ℎ(𝑞). From condition (16) & (17), we can deduce the following 

       𝑚𝑖𝑛{𝑃(𝑞𝑛(𝑘), 𝑞, 𝑡), 𝑃(ℎ𝑞𝑛(𝑘), 𝑞𝑛(𝑘), 𝑡), 𝑃(𝑞, ℎ𝑞, 𝑡)} ≤ 𝜑(𝑃(ℎ𝑞𝑛(𝑘), ℎ𝑞, 𝑡)) 

and    𝑚𝑎𝑥{𝑄(𝑞𝑛(𝑘), 𝑞, 𝑡), 𝑄(ℎ𝑞𝑛(𝑘), 𝑞𝑛(𝑘), 𝑡), 𝑄(𝑞, ℎ𝑞, 𝑡)} ≥ 𝜑(𝑄(ℎ𝑞𝑛(𝑘), ℎ𝑞, 𝑡)) 

Thus,   

𝑚𝑖𝑛{𝑃(𝑞𝑛(𝑘), 𝑞, 𝑡), 𝑃(𝑞𝑛(𝑘)+1, 𝑞𝑛(𝑘), 𝑡), 𝑃(𝑞, ℎ𝑞, 𝑡)} ≤ 𝜑(𝑃(𝑞𝑛(𝑘)+1, ℎ𝑞, 𝑡))

𝑚𝑎𝑥{𝑄(𝑞𝑛(𝑘), 𝑞, 𝑡), 𝑄(𝑞𝑛(𝑘)+1, 𝑞𝑛(𝑘), 𝑡), 𝑄(𝑞, ℎ𝑞, 𝑡)} ≥ 𝜑(𝑄(𝑞𝑛(𝑘)+1, ℎ𝑞, 𝑡))
 

By allowing 𝑘 → ∞ and applying equation (20), we get 

lim
𝑘→∞

𝑃(𝑞𝑛(𝑘), 𝑞, 𝑡) = 1

lim
𝑘→∞

𝑄(𝑞𝑛(𝑘), 𝑞, 𝑡) = 0
 

𝑃(𝑞, ℎ𝑞, 𝑡) = 𝑚𝑖𝑛{1,1, 𝑃(𝑞, ℎ𝑞, 𝑡)} ≤ lim
𝑘→∞

𝜑(𝑃(𝑞𝑛(𝑘)+1, ℎ𝑞, 𝑡))

𝑄(𝑞, ℎ𝑞, 𝑡) = 𝑚𝑎𝑥{0,0, 𝑄(𝑞, ℎ𝑞, 𝑡)} ≥ lim
𝑘→∞

𝜑(𝑄(𝑞𝑛(𝑘)+1, ℎ𝑞, 𝑡))
 

Given the continuity of 𝜑, it follows that 

𝑃(𝑞, ℎ𝑞, 𝑡) ≤ 𝜑(𝑃(𝑞, ℎ𝑞, 𝑡)) < 𝑃(𝑞, ℎ𝑞, 𝑡)

𝑄(𝑞, ℎ𝑞, 𝑡) ≥ 𝜑(𝑄(𝑞, ℎ𝑞, 𝑡)) > 𝑄(𝑞, ℎ𝑞, 𝑡)
 

Therefore, based on Remark 4 (iii), we obtain 𝑃(𝑞, ℎ𝑞, 𝑡) = 1 and 𝑄(𝑞, ℎ𝑞, 𝑡) = 0, as needed. Thus, it follows that ℎ𝑞 =

𝑞. 

Following this, we present the subsequent uniqueness theorem. 

Theorem 4: Assuming the same conditions as Theorem 3, an additional requirement is:  

iv. For every 𝑞, 𝑝 ∈ 𝐹𝑖𝑥(ℎ), there exists a 𝑟 ∈ 𝐼 such that 𝑞ℜ𝑟, 𝑝ℜ𝑟 and 𝑟ℜℎ𝑟. With this condition, the fixed 

point of h is unique. 
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Proof: Based on Theorem 3, 𝐹𝑖𝑥(ℎ) ≠ 𝜙. Let 𝑞, 𝑝 ∈ 𝐹𝑖𝑥(ℎ). According to condition (iv), there exists 𝑟 ∈ 𝐼 such that 

𝑞ℜ𝑟 and 𝑝ℜ𝑟. Define 𝑟𝑛+1 = ℎ(𝑟𝑛) for all 𝑛 ≥ 0 with 𝑟0 = 𝑟. Since 𝑟ℜℎ𝑟, then following the proof of Theorem 3, we 

have 

lim
𝑛→∞

𝑃(𝑟𝑛 , 𝑟𝑛+1, 𝑡) = 1

lim
𝑛→∞

𝑄(𝑟𝑛 , 𝑟𝑛+1, 𝑡) = 0
                                                         (23) 

This indicates that {𝑟𝑛} forms a Cauchy sequence within the space (𝐼, 𝑃, 𝑄, 𝜏, 𝜇). 

We assert that 𝑞 = 𝑝. Since 𝑞ℜ𝑟0 and ℜ is h-closed, it follows by induction that 𝑞ℜ𝑟𝑛 for all 𝑛 ∈ ℕ0. Thus, utilizing 

equation (16) & (17), we obtain 

𝑚𝑖𝑛{𝑃(𝑞, 𝑟𝑛 , 𝑡), 𝑃(ℎ𝑞, 𝑞, 𝑡), 𝑃(𝑟𝑛 , ℎ𝑟𝑛 , 𝑡)} ≤ 𝜑(𝑃(ℎ𝑞, ℎ𝑟𝑛 , 𝑡)) 

⟹                           𝑚𝑖𝑛{𝑃(𝑞, 𝑟𝑛 , 𝑡), 𝑃(𝑞, 𝑞, 𝑡), 𝑃(𝑟𝑛 , 𝑟𝑛+1, 𝑡)} ≤ 𝜑(𝑃(𝑞, 𝑟𝑛+1, 𝑡)) 

⟹                           𝑚𝑖𝑛{𝑃(𝑞, 𝑟𝑛 , 𝑡), 𝑃(𝑟𝑛 , 𝑟𝑛+1, 𝑡)} ≤ 𝜑(𝑃(𝑞, 𝑟𝑛+1, 𝑡)) 

and  

𝑚𝑎𝑥{𝑄(𝑞, 𝑟𝑛 , 𝑡), 𝑄(ℎ𝑞, 𝑞, 𝑡), 𝑄(𝑟𝑛 , ℎ𝑟𝑛 , 𝑡)} ≥ 𝜑(𝑄(ℎ𝑞, ℎ𝑟𝑛 , 𝑡)) 

⟹                           𝑚𝑎𝑥{𝑄(𝑞, 𝑟𝑛 , 𝑡), 𝑄(𝑞, 𝑞, 𝑡), 𝑄(𝑟𝑛 , 𝑟𝑛+1, 𝑡)} ≥ 𝜑(𝑄(𝑞, 𝑟𝑛+1, 𝑡)) 

⟹                           𝑚𝑎𝑥{𝑄(𝑞, 𝑟𝑛 , 𝑡), 𝑄(𝑟𝑛 , 𝑟𝑛+1, 𝑡)} ≥ 𝜑(𝑄(𝑞, 𝑟𝑛+1, 𝑡)) 

Case I: When 𝑚𝑖𝑛{𝑃(𝑞, 𝑟𝑛 , 𝑡), 𝑃(𝑟𝑛 , 𝑟𝑛+1, 𝑡)} = 𝑃(𝑞, 𝑟𝑛 , 𝑡) and 𝑚𝑎𝑥{𝑄(𝑞, 𝑟𝑛 , 𝑡), 𝑄(𝑟𝑛 , 𝑟𝑛+1, 𝑡)} = 𝑄(𝑞, 𝑟𝑛 , 𝑡) for all 𝑛 ≥ 𝑛0, it 

follows that: 

𝑃(𝑞, 𝑟𝑛 , 𝑡) ≤ 𝜑(𝑃(𝑞, 𝑟𝑛+1, 𝑡)) ≤ 𝑃(𝑞, 𝑟𝑛+1, 𝑡)

𝑄(𝑞, 𝑟𝑛 , 𝑡) ≥ 𝜑(𝑄(𝑞, 𝑟𝑛+1, 𝑡)) ≥ 𝑄(𝑞, 𝑟𝑛+1, 𝑡)
 

Thus, {𝑃(𝑞, 𝑟𝑛 , 𝑡)} is non-decreasing and bounded above, and {𝑄(𝑞, 𝑟𝑛 , 𝑡)} is non-increasing and bounded below. 

Therefore, as demonstrated in Theorem 2 

lim
𝑛→∞

𝑃(𝑞, 𝑟𝑛 , 𝑡) = 1

lim
𝑛→∞

𝑄(𝑞, 𝑟𝑛 , 𝑡) = 0
 

⟹                                                                          lim
𝑛→∞

𝑟𝑛 = 𝑝 

Case II: When 𝑚𝑖𝑛{𝑃(𝑞, 𝑟𝑛 , 𝑡), 𝑃(𝑟𝑛 , 𝑟𝑛+1, 𝑡)} = 𝑃(𝑞, 𝑟𝑛+1, 𝑡) and 𝑚𝑎𝑥{𝑄(𝑞, 𝑟𝑛 , 𝑡), 𝑄(𝑟𝑛 , 𝑟𝑛+1, 𝑡)} 

= 𝑄(𝑞, 𝑟𝑛+1, 𝑡) for all 𝑛 ≥ 𝑛0, it follows that: 

𝑃(𝑟𝑛 , 𝑟𝑛+1, 𝑡) ≤ 𝜑(𝑃(𝑞, 𝑟𝑛+1, 𝑡))

𝑄(𝑟𝑛 , 𝑟𝑛+1, 𝑡) ≥ 𝜑(𝑄(𝑞, 𝑟𝑛+1, 𝑡))
 

By letting 𝑛 ⟶ ∞ and applying equation (23), we obtain 

1 ≤ lim
𝑛→∞

𝜑(𝑃(𝑞, 𝑟𝑛+1, 𝑡)) 

Since 𝜑 is continuous, we get 

⟹                                                            1 = lim
𝑛→∞

𝜑(𝑃(𝑞, 𝑟𝑛+1, 𝑡)) 

⟹                                                            1 = lim
𝑛→∞

𝑃(𝑞, 𝑟𝑛+1, 𝑡) 

⟹                                                            lim
𝑛→∞

𝑟𝑛+1 = 𝑞 

and  

0 ≤ lim
𝑛→∞

𝜑(𝑄(𝑞, 𝑟𝑛+1, 𝑡)) 
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Since 𝜑 is continuous, we get 

⟹                                                            0 = lim
𝑛→∞

𝜑(𝑄(𝑞, 𝑟𝑛+1, 𝑡)) 

⟹                                                            0 = lim
𝑛→∞

𝑄(𝑞, 𝑟𝑛+1, 𝑡) 

⟹                                                            lim
𝑛→∞

𝑟𝑛+1 = 𝑞 

Consequently, by considering both cases, we determine that as  

lim
𝑛→∞

𝑟𝑛 = 𝑞                                                                              (24) 

In a similar manner, it can be demonstrated that as 

lim
𝑛→∞

𝑟𝑛 = 𝑝                                                                             (25) 

Given that (𝐼, 𝑃, 𝑄, 𝜏, 𝜇) is a Hausdorff space, we derive from equations (24) and (25) that 𝑞 = 𝑝. This concludes the 

proof. 

By substituting 𝜑(𝑡) = 𝑘𝑡, where 𝑘 ∈ (0,1), in Theorems 3 and 4, we derive the following corollary. 

Corollary 2. Consider (𝐼, 𝑃, 𝑄, 𝜏, 𝜇) as an ℜ−complete non-Archimedean intuitionistic fuzzy metric space with a 

binary relation ℜ. Let ℎ: 𝐼 ⟶ 𝐼 be a function such that there exists 𝑘 ∈ (0,1) and for all 𝑞, 𝑝 ∈ 𝐼 , with 𝑞ℜ𝑝: 

𝑚𝑖𝑛{𝑃(𝑞, 𝑝, 𝑡), 𝑃(ℎ𝑞, 𝑞, 𝑡), 𝑃(𝑝, ℎ𝑝, 𝑡)} ≤ 𝑘𝑃(ℎ𝑞, ℎ𝑝, 𝑡)

𝑚𝑎𝑥{𝑄(𝑞, 𝑝, 𝑡), 𝑄(ℎ𝑞, 𝑞, 𝑡), 𝑄(𝑝, ℎ𝑝, 𝑡)} ≥ 𝑘𝑄(ℎ𝑞, ℎ𝑝, 𝑡)
 

Additionally, the following conditions are holds:  

(i)  there exists a point 𝑞0 ∈ 𝐼 such that 𝑞0ℜℎ𝑞0;  

(ii)  the relation ℜ is both transitive and h-closed;  

(iii)  one of the two conditions is satisfied:  

(a) the function h is continuous, or  

(b) the relation ℜ is (P, Q)-self-closed.  

Under these conditions, the function h has at least one fixed point in the set I. 

Furthermore, if the following condition is satisfied: 

(iv)  for every 𝑞, 𝑝 ∈ 𝐹𝑖𝑥(ℎ), there is a 𝑟 ∈ 𝐼 such that 𝑞ℜ𝑟, 𝑝ℜ𝑟 and 𝑟ℜℎ𝑟. 

Then the fixed point is unique. 

4. Application to Non-Linear Fractional Differential Equations 

In this part, we utilize our primary findings to investigate the existence of solutions to boundary value problems for 

fractional differential equations that incorporate the Caputo fractional derivative. 

Consider 𝐼 = 𝐶([0,1], ℝ), the Banach space with all continuous functions from [0,1] to ℝ, equipped with the norm 

‖𝑞‖∞ = Sup
ȶ∈[0,1]

|𝑥(ȶ)| 

Define 𝑃: 𝐼2 × (0, ∞) → [0,1] and 𝑄: 𝐼2 × (0, ∞) → [0,1] for all 𝑞, 𝑝 ∈ 𝐼, by 

𝑃(𝑞, 𝑝, 𝑡) = 𝑒
−‖𝑞−𝑝‖∞

𝑡
        ∀𝑡 ∈ (0,1) 

𝑄(𝑞, 𝑝, 𝑡) = 1 − 𝑒
−‖𝑞−𝑝‖∞

𝑡
        ∀𝑡 ∈ (0,1) 

It is widely recognized that (𝐼, 𝑃, 𝑄, 𝜏, 𝜇) represents a complete non-Archimedean intuitionistic fuzzy metric space, 

where 𝜏(𝑎, 𝑏) = 𝑎. 𝑏 and 𝜇(𝑎, 𝑏) = 𝑚𝑖𝑛{𝑎, 𝑏} for all 𝑎, 𝑏 ∈ [0,1] (refer to sources ([4],[20]). Let us define a binary 

relation ℜ on 𝐼 by 

𝑞ℜ𝑝 ⇔ 𝑞(ȶ) ≤ 𝑝(ȶ) for all 𝑞, 𝑝 ∈ 𝐼, ȶ ∈ [0,1] 
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Given that (𝐼, 𝑃, 𝑄, 𝜏, 𝜇) represents a complete non-Archimedean intuitionistic fuzzy metric space where 𝑎 ∗ 𝑏 = 𝑎. 𝑏 

and 𝑎 ◊ 𝑏 = 𝑚𝑖𝑛{𝑎, 𝑏} for all 𝑎, 𝑏 ∈ [0,1], it follows that (𝐼, 𝑃, 𝑄, 𝜏, 𝜇) is also an ℜ-complete non-Archimedean 

intuitionistic fuzzy metric space with the same operation 𝜏(𝑎, 𝑏) = 𝑎. 𝑏 and 𝜇(𝑎, 𝑏) = 𝑚𝑖𝑛{𝑎, 𝑏} for all 𝑎, 𝑏 ∈ [0,1]. 

Moreover, it is apparent that ℜ shows transitivity. 

Let's review the fundamental concepts that will be required later. 

Definition 19([10]): For a function u given on the interval [𝑎, 𝑏] the Caputo fractional derivative of function ȗ  order 

𝛽 > 0 is defined by 

( 𝐷
𝑎+
𝛽𝑐 )ȗ(ȶ) =

1

Γ(𝑛 − 𝛽)
∫(ȶ − 𝑠)𝑛−𝛽−1ȗ(𝑛)(𝑛)𝑑𝑠,    (𝑛 − 1 ≤ 𝛽 < 𝑛, 𝑛 = [𝛽] + 1),            (26)

𝑡

𝑎

 

where [𝛽] denotes the integer part of the positive real number β and Γ is a gamma function. 

Consider the boundary value problem for fractional order differential equation given by: 

{
𝐷

0+
𝛽𝑐 (𝑞(ț)) = 𝑓(ȶ, 𝑞(ȶ)), (ȶ ∈ [0,1], 2 < 𝛽 ≤ 3)

𝑞(0) = 𝑐0,   𝑞′(0) = 𝑐0
∗,  𝑞′′(1) = 𝑐1 

        (27) 

where 𝐷
0+
𝛽𝑐  denotes the Caputo fractional derivative of order β, 𝑓: [0,1] ⟶ 𝑅 is a continuous function and 𝑐0, 𝑐0

∗, 𝑐1 are 

real constants. 

Definition 20([1]): A function 𝑞 ∈ 𝑐3([0,1], ℝ) whose β-derivative existing on [0,1] is considered a solution of 

equation (18) if q satisfies 𝐷
0+
𝛽𝑐 (𝑞(ȶ)) = 𝑓(ȶ, 𝑞(ȶ)) on [0, 1] along the conditions 𝑞(0) = 𝑐0,   𝑞′(0) = 𝑐0

∗,  𝑞′′(1) = 𝑐1. 

The subsequent lemma is essential for the result. 

Lemma 3([1]): Consider β within the range 2 < 𝛽 ≤ 3, and let ȗ , a continuous function, ȗ: [0,1] ⟶ ℝ. A function x 

is a solution to the fractional integral equation 

𝑞(ȶ) =
1

Γ(𝛽)
∫ (ȶ + 𝑠)𝛽ȗ(𝑠)

𝑡

0

𝑑𝑠 −
𝑡2

2Γ(𝛽 − 2)
∫ (1 − 𝑠)𝛽−3ȗ(𝑠)𝑑𝑠 + 𝑐0 + 𝑐0

∗ȶ +
𝑐1

2

1

0

ȶ2 

if and only if q is a solution of the fractional boundary value problems 

𝐷
0+
𝛽𝑐 (𝑞(ȶ)) = ȗ(ȶ) 

𝑞(0) = 𝑐0,   𝑞′(0) = 𝑐0
∗,  𝑞′′(1) = 𝑐1 

 𝑞′′(1) = 2𝑐2 

Where,  𝑞′′(1) = 2𝑐2 +
1

Γ(𝛽+2)
∫ (1 − 𝑠)𝛽−3ȗ(𝑠)𝑑𝑠 = 𝑐1, 𝑐𝑖 , 𝑐0

∗ ∈ ℝ, 𝑖 = 0,1,2.
1

0
 

In this section, we present and demonstrate our main result. 

Theorem 5: Assume that  

(i)   

|𝑓(ȶ, 𝑞(ȶ) − 𝑓(ȶ, 𝑝(ȶ))| ≤ 𝜆|𝑞(ȶ) − 𝑝(ȶ)|, where 

   

  0 <
1

𝑘
= 𝜆 (

1

Γ(𝛽+1)
+

1

2Γ(𝛽−1)
) < 1                   (28) 

(ii) there exist 𝑞0 ∈ 𝐼 such that  

𝑞0(ȶ) ≤
1

Γ(𝛽)
∫ (ȶ − 𝑠)𝛽−1ℎ(𝑠, 𝑞0(𝑠))𝑑𝑠

𝑡

0

−
𝑡

2Γ(𝛽 − 2)
∫ (1 − 𝑠)𝛽−3𝑓(𝑠, 𝑞0(𝑠))𝑑𝑠 + 𝑐0 + 𝑐0

∗ȶ +
𝑐1

2
ȶ2

1

0

 

(iii)  The function f non-decreasing with respect to its second variable. 

Consequently, Equation (27) possesses a unique solution within the set I. 

Proof: Let ℋ: 𝐼 ⟶ 𝐼 be defined as follows 
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ℋ𝑞(ȶ) =
1

Γ(𝛽)
∫ (ȶ − 𝑠)𝛽−1𝑓(𝑠, 𝑞(𝑠))𝑑𝑠 −

𝑡

2Γ(𝛽 − 2)
∫ (1 − 𝑠)𝛽−3𝑓(𝑠, 𝑞(𝑠))𝑑𝑠 + 𝑐0 + 𝑐0

∗ȶ +
𝑐1

2
ȶ2

1

0

𝑡

0

 

where, 𝑐1 = 2𝑐2 +
1

Γ(𝛼−2)
∫ (1 − 𝑠)𝛽−3𝑓(𝑠, 𝑞(𝑠))𝑑𝑠,   

1

0
𝑐𝑖 , 𝑐0

∗ȶ ∈ ℝ, (𝑖 = 0,1,2) are constant. 

First, we demonstrate the continuity of ℋ. Consider a sequence {𝑞𝑛} where lim
𝑛⟶∞

𝑞𝑛 = 𝑞 in I. For each ȶ within the 

interval [0,1], the following holds 

|ℋ𝑞𝑛(ȶ) − ℋ𝑞(ȶ)|

≤
1

Γ(𝛽)
∫ (ȶ − 𝑠)𝛽−1|𝑓(𝑠, 𝑞𝑛(𝑠)) − 𝑓(𝑠, 𝑞(𝑠))|𝑑𝑠 +

1

2Γ(𝛽 − 2)

𝑡

0

∫ (1 − 𝑠)𝛽−3|𝑓(𝑠, 𝑞𝑛(𝑠)) − 𝑓(𝑠, 𝑞(𝑠))𝑑𝑠|
1

0

 

Given that f is a continuous function, it follows that 

lim
𝑛⟶∞

‖𝑓(𝑠, 𝑞𝑛(𝑠)) − 𝑓(𝑠, 𝑞(𝑠))‖
∞

= 0 

    ⇔ lim
𝑛⟶∞

‖ℋ𝑞𝑛 − ℋ𝑞‖∞ = 0  

⇔ lim
𝑛→∞

𝑒
−‖ℋ𝑞𝑛−ℋ𝑞‖∞

𝑡 = 1 

    ⇔ lim
𝑛→∞

𝑀(ℋ𝑞𝑛 , ℋ𝑞, 𝑡) = 1 

                             ⇔ lim
𝑛→∞

ℋ𝑞𝑛 = ℋ𝑞 

Therefore, ℋ is continuous. 

Clearly, the fixed points of the operator correspond to the solutions of Equation (27). To demonstrate that ℋ has a 

fixed point, we will apply Theorem 3. 

Thus, we demonstrate that ℋ is a GV-intuitionistic fuzzy ℜ − 𝜑 − contractive mapping. Let 𝑞, 𝑝 ∈ 𝐼, such that 𝑞ℜ𝑝 

and 𝑞(ȶ) ≤ 𝑝(ȶ) for all ȶ ∈ [0,1]. Note that 

|ℋ𝑞(ȶ) − ℋ𝑝(ȶ)| ≤
1

Γ(𝛽)
∫ (ȶ − 𝑠)𝛽−1|𝑓(𝑠, 𝑞(𝑠)) − 𝑓(𝑠, 𝑝(𝑠))|𝑑𝑠 +

ȶ2

2Γ(𝛽 − 2)

𝑡

0

∫ (1 − 𝑠)𝛽−3|𝑓(𝑠, 𝑞(𝑠)) − 𝑓(𝑠, 𝑝(𝑠))|𝑑𝑠
1

0

 

                          ≤
1

Γ(𝛽)
∫ (ȶ − 𝑠)𝛽−1|𝑓(𝑠, 𝑞(𝑠)) − 𝑓(𝑠, 𝑝(𝑠))|𝑑𝑠 +

1

2Γ(𝛽 − 2)

𝑡

0

∫ (1 − 𝑠)𝛽−3|𝑓(𝑠, 𝑞(𝑠)) − 𝑓(𝑠, 𝑝(𝑠))|𝑑𝑠
1

0

 

                          ≤
1

Γ(𝛽)
∫ (ȶ − 𝑠)𝛽−1𝜆|𝑞(𝑠) − 𝑝(𝑠)|𝑑𝑠 +

1

2Γ(𝛽 − 2)

𝑡

0

∫ (1 − 𝑠)𝛽−3𝜆|𝑞(𝑠) − 𝑝(𝑠)|𝑑𝑠
1

0

 

                          ≤
1

Γ(𝛽)
∫ (ȶ − 𝑠)𝛽−1𝜆‖𝑞 − 𝑝‖∞𝑑𝑠 +

1

2Γ(𝛽 − 2)

𝑡

0

∫ (1 − 𝑠)𝛽−3𝜆‖𝑞 − 𝑝‖∞𝑑𝑠
1

0

 

                          ≤
𝜆‖𝑞 − 𝑝‖∞

Γ(𝛽)
∫ (ȶ − 𝑠)𝛽−1𝑑𝑠 +

𝜆‖𝑞 − 𝑝‖∞

2Γ(𝛽 − 2)
∫ (1 − 𝑠)𝛽−3𝑑𝑠

1

0

𝑡

0

 

                          ≤ 𝜆 (
1

Γ(𝛽 + 1)
+

1

2Γ(𝛽 − 1)
) ‖𝑞 − 𝑝‖∞ 

                      =
1

ƙ
‖𝑞 − 𝑝‖∞ 

Thus,   ƙ‖ℋ𝑞 − ℋ𝑝‖∞ ≤ ‖𝑞 − 𝑝‖∞  

This implies   𝑒−
ƙ‖ℋ𝑞−ℋ𝑝‖∞

𝑡 ≥ 𝑒−
ƙ‖𝑞−𝑝‖∞

𝑡  

As a result, 

              𝜑(ℳ(ℋ𝑞, ℋ𝑝, 𝑡)) ≥ ℳ(𝑞, 𝑝, 𝑡) ≥ 𝑚𝑖𝑛{ℳ(𝑞, 𝑝, 𝑡), ℳ(ℋ𝑞, 𝑞, 𝑡), ℳ(𝑝, ℋ𝑝, 𝑡)}, 
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           𝜑(𝒩(ℋ𝑞, ℋ𝑝, 𝑡)) ≤ 𝒩(𝑞, 𝑝, 𝑡) ≤ 𝑚𝑎𝑥{𝒩(𝑞, 𝑝, 𝑡), 𝒩(ℋ𝑞, 𝑞, 𝑡), 𝒩(𝑝, ℋ𝑝, 𝑡)}, 

With 𝜑(ȶ) = ȶƙ and ƙ > 1, this demonstrates that ℋ is a GV-intuitionistic fuzzy ℜ − 𝜑 −contractive mapping. From 

(ii), we deduce that 𝑞0(ȶ)ℜℋ𝑞0(ȶ) for all ȶ ∈ [0,1], hence 𝑞0ℜℋ𝑞0, which satisfies condition (i) of Theorem 3. Given 

𝑞, 𝑝 ∈ 𝐼 with 𝑞(ȶ) ≤ 𝑝(ȶ) for all ȶ ∈ [0,1], and from (iii), considering f is nondecreasing in the second variable, we 

obtain 

ℋ𝑞(ȶ) =
1

Γ(𝛽)
∫ (ȶ − 𝑠)𝛽−1𝑓(𝑠, 𝑞(𝑠))𝑑𝑠 + 𝑐0 + 𝑐0

∗ȶ + 𝑐2ȶ2
𝑡

0

 

             ≤
1

Γ(𝛽)
∫ (ȶ − 𝑠)𝛽−1𝑓(𝑠, 𝑝(𝑠))𝑑𝑠 + 𝑐0 + 𝑐0

∗ȶ + 𝑐2ȶ2
𝑡

0

 

              = ℋ𝑝(ȶ) 

We deduce that ℋ𝑞(ȶ) ≤ ℋ𝑝(ȶ) for all ȶ ∈ [0,1], and consequently ℋ𝑞 ≤ ℋ𝑝 (i.e., 𝑞ℜ𝑝 ⇒ ℋ𝑞ℜℋ𝑝). Therefore, ℜ is 

ℋ-closed, satisfying condition (iii) of Theorem 3. Hence, all the hypotheses of Theorem 3 are true, implying that ℋ 

has a fixed point which is a solution to Equation (27) in 𝐼. Furthermore, if 𝑞, 𝑝 ∈ 𝐼 are two fixed points of ℋ in 𝐼, then 

𝑞 ≤ max {𝑞, 𝑝}, , 𝑝 ≤ max {𝑞, 𝑝}, and 𝑟 = max {𝑞, 𝑝} ∈ 𝐼. Additionally, ℳ(𝑞, 𝑟, 𝑡) > 0, 𝒩(𝑞, 𝑟, 𝑡) < 1 and ℳ(𝑞, 𝑝, 𝑡) > 0, 

𝒩(𝑞, 𝑝, 𝑡) < 1 for all 𝑡 > 0 (according to Definition 4). Therefore, Theorem 4 is also satisfied. Thus, the fixed point of 

ℳand 𝒩 are unique, making the solution to Equation (27) in I unique. This concludes the proof. 

Lastly, we present the following example to support Theorem 5. 

Example 3: Let the boundary value problem associated with the fractional differential equation 

                                                       
𝒟

0+

7
3 𝑞(ȶ) =

2𝑞(ȶ)

3(2 + 𝑞(ȶ))
,   ȶ ∈ [0,1]

𝑞(0) = 0, 𝑞′(0) = 0, 𝑞′′(1) = 2
                                              (29) 

Consider the function  𝑓(ȶ, 𝑞(ȶ)) =
2𝑞(𝑡)

3(2+𝑞(𝑡))
,    (ȶ, 𝑞(ȶ)) ∈ [0,1] × [0, ∞)      

Consider  𝑞(ȶ), 𝑝(ȶ) ∈ [0, ∞) and 𝑡 ∈ [0,1]. Then 

|𝑓(ȶ, 𝑞(ȶ)) − 𝑓(ȶ, 𝑝(ȶ))| =
2

3
|

𝑞(ȶ)

2 + 𝑞(ȶ)
−

𝑝(ȶ)

2 + 𝑝(ȶ)
| 

                                                =
2

3
|

𝑞(ȶ) − 𝑝(ȶ)

(2 + 𝑞(ȶ))(2 + 𝑝(ȶ))
| 

                              ≤
2

3
|𝑞(ȶ) − 𝑝(ȶ)| 

Therefore, condition (i) of Theorem 5 is fulfilled with 𝜆 =
2

3
. 

Next, we verify that 𝜆 [
1

Γ(β+1)
+

1

2Γ(𝛽−1)
] < 1. 

2

3
[ 

1

Γ (
10
3

)
+

1

2Γ (
4
3

)
] =

17

9√𝜋
< 1 

Therefore, equation (28) is valid. By setting 𝑥0 = 0, we then have 

0 ≤
1

Γ (
7
3

)
∫(ȶ − 𝑠)

4
3 𝑓(𝑠, 0)𝑑𝑠 −

𝑡2

2Γ (
1
3

)
∫(1 − 𝑠)−

2
3

𝑡

0

𝑡

0

𝑓(𝑠, 0)𝑑𝑠 +
ȶ2

2
=

ȶ2

2
,      ȶ ∈ [0,1] 

This demonstrates that condition (ii) of Theorem 5 is satisfied. Moreover, if 𝑞 < 𝑝, we deduce that 𝑓(𝑞) ≤ 𝑓(𝑝). 

Consequently, condition (iii) of Theorem 5 is also satisfied. Therefore, Equation (29) has a unique solution over the 

interval [0,1]. 
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5. Conclusion: 

This research has introduced and explored the concept of intuitionistic fuzzy R-ψ-contractive mappings, yielding 

significant results on the existence and uniqueness of fixed points in the context of non-Archimedean intuitionistic 

fuzzy metric spaces. Our findings extend and generalize existing results, providing a more comprehensive framework 

for understanding fixed point theory in intuitionistic fuzzy metric spaces. The illustrative examples presented in this 

paper demonstrate the applicability of our results. Furthermore, we have successfully applied our theoretical findings 

to establish the existence and uniqueness of solutions for Caputo fractional differential equations in the setting of 

intuitionistic fuzzy metric spaces. 
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