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ECR is a crucial strategy for enhancing the overall carrying capacity of rail transportation. 

However, the operational cost is significantly affected by the arrival time of empty containers. 

When empty containers arrive too early, additional inventory costs are incurred due to idle 

storage, whereas late arrivals result in opportunity losses. To improve the punctuality of empty 

container arrival times, this study designs a transportation scheme based on container type 

substitution. This scheme not only significantly enhances the overall transportation efficiency of 

the railway system but also further reduces transportation costs. First, a container empty 

repositioning model based on time windows and container type substitution is constructed. 

Second, a genetic algorithm is employed to solve the model and determine the optimal 

substitution strategy. Finally, the effectiveness and unique advantages of the proposed model 

and algorithm are validated using a case study of a railway freight station with eight container 

service points. Experimental results demonstrate that the model effectively addresses the ECR 

problem and yields the optimal repositioning scheme. Under container type substitution, the 

total cost of ECR is reduced by 11.1% compared to the non-substitution scenario, while 

inventory costs and opportunity loss costs are reduced by 22.3%. Clearly, container type 

substitution can lower transportation costs and improve transportation efficiency. 

Keywords:  ECR; Container Type Substitution; Time Window; Genetic Algorithm. 

 

1. Introduction 

Rail freight plays a strategically important role in China's transportation industry, with container 

transportation being particularly critical under the framework of the Belt and Road Initiative. However, imbalances 

in economic development between the northern and southern regions and disparities in regional economic levels 

have led to significant demand for railway ECR. ECR not only consumes railway transport capacity but also 

imposes additional costs on enterprises, including vehicle rental, marshalling services, locomotive traction, hauling, 

and track usage fees, substantially increasing operational expenses. Therefore, it is imperative to develop efficient, 

economical, and reasonable solutions for railway ECR. 

Currently, China’s railway container transportation primarily employs two modes: direct trains and ordinary 

freight trains (Yang, 2019). However, the coverage of direct trains is limited, and ordinary freight trains must share 
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journeys with other cargo and undergo intermediate station sorting, resulting in longer transport times and lower 

efficiency (Guo, 2011). Additionally, imbalances in container flow and the extensive railway network inevitably lead 

to extra sorting and waiting times during repositioning, making it challenging to meet customers’ container 

demands promptly (Yang, 2019). To address this issue, China Railway Corporation (now China State Railway 

Group Co., Ltd.) has established railway container hub stations in various locations. These hubs utilize block train 

operations for full-train transportation and return ECR while promoting container substitution strategies under 

suitable conditions to accelerate turnover and improve utilization efficiency. 

Although various models and algorithms have been proposed for ECR, they are predominantly based on 

deterministic scenarios and fail to fully account for the combined impact of time-window constraints and container 

substitution in railway environments. To address this research gap, this study introduces a container substitution 

strategy while considering the time-window requirements at demand stations. The goal is to reduce additional costs 

caused by early or delayed container arrivals and optimize the allocation of empty container resources. 

Furthermore, to address challenges posed by the extensive scale and limited accessibility of the railway 

transportation network, a genetic algorithm is employed to solve the proposed model. 

The contributions and innovations of this study are as follows: 

(1) Combining time-window constraints and container substitution strategies to highlight the impact of 

varying time periods and container types on ECR costs. 

(2) Developing an optimization model based on a genetic algorithm within the railway transportation 

environment to comprehensively solve complex transport routes and repositioning demands. 

(3) Validating, from both theoretical and practical perspectives, that the proposed optimization scheme can 

significantly reduce operational costs and enhance railway transport efficiency, providing feasible pathways and 

reference value for future research on railway ECR. 

The remainder of this paper is organized as follows: Section 2 reviews related studies on ECR under 

deterministic and uncertain environments, foldable containers, and China’s railway container express system. 

Section 3 presents the proposed railway ECR model based on time-window constraints and container substitution, 

along with the corresponding algorithm. Section 4 validates and analyzes the model and algorithm through 

simulation case studies. Finally, Section 5 concludes the paper and discusses directions for future research. 

2. Literature Review 

ECR has become an increasingly prominent issue in the field of transportation and logistics due to imbalances 

in international trade and regional economic disparities. Existing studies have approached this problem from 

various perspectives, including different transportation modes (e.g., maritime and rail) and optimization techniques 

(e.g., deterministic and stochastic models, multi-objective optimization, time-window constraints, and container 

substitution strategies), aiming to reduce costs and enhance transportation efficiency. However, there remain 

significant research gaps and limitations that warrant further exploration. 

2.1 Initial Exploration of Single-Mode Transportation and Deterministic Problems 

Early research primarily focused on optimizing ECR under deterministic conditions for single-mode 

transportation. Meng et al. (2011) proposed a mixed-integer linear programming model to design a hub-and-spoke 

container liner shipping service network, addressing multi-port calling issues. Song et al. (2012) investigated 

multi-route, multi-ship, and multi-voyage maritime ECR problems, employing a two-stage solution approach 

combining shortest path algorithms and heuristics to improve computational efficiency. Zheng et al. (2015) explored 

inter-company coordination in liner shipping and proposed a two-stage optimization method for ECR. 

While these studies laid the groundwork for addressing deterministic ECR problems, their simplified 

assumptions (e.g., neglecting uncertainties and focusing on single-mode transportation) limited their applicability 

to real-world complex transportation scenarios. These foundational works provide essential modeling frameworks 

and optimization ideas for this study but require extensions to account for demand fluctuations, transit time 

variability, and resource constraints. 
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2.2 Advanced Research on Uncertainty and Multi-Objective Optimization 

To better reflect real-world transportation conditions, researchers have incorporated uncertainty and 

multi-objective optimization into the study of ECR. Dong et al. (2009) examined dynamic and uncertain conditions, 

addressing multi-ship, multi-port, and multi-voyage ECR using genetic algorithms. Liu et al. (2022) integrated 

uncertain laden and empty container demands into liner shipping network optimization. Duan et al. (2012, 2015) 

addressed uncertainties in empty container supply, demand, and transit times, validating their models' 

effectiveness. Song et al. (2022) tackled demand and supply uncertainties in multi-port environments using particle 

swarm optimization algorithms. Li et al. (2022) introduced robust stochastic optimization to address demand and 

carbon trading price uncertainties. Bakir et al. (2022) employed a rolling time-domain framework to account for 

future demand fluctuations. Feng et al. (2024) focused on the coordination of bulk cargo transportation and ECR, 

optimizing leasing decisions under uncertain demand. Song et al. (2022) approached ECR from an inventory control 

perspective, incorporating spatial imbalances, dynamic operations, and leasing phenomena under uncertainty. 

These studies have broadened the scope and depth of research on ECR, incorporating more realistic 

complexities into their models. However, the majority of these efforts have concentrated on maritime 

transportation, with limited exploration of how to effectively address uncertainty factors in railway systems. 

Additionally, while some studies have considered time constraints, in-depth research on strict or flexible 

time-window requirements in railway systems remains insufficient. 

2.3 Optimization of Time-Window Constraints and Repositioning Strategies 

In practice, demand stations often impose time-window constraints on empty container arrivals. Yang et al. 

(2021) introduced time-window constraints, pick-up and delivery orders, and multi-container configurations into 

container transportation problems, solving them with mixed-integer programming models. Liu et al. (2022) 

incorporated time-window constraints in liner shipping routes affected by disruptions, using adaptive mutation 

particle swarm optimization. Min et al. (2012) addressed time-window-induced accumulation costs and opportunity 

losses in maritime ECR using an improved genetic simulated annealing algorithm. 

However, these studies on time-window constraints primarily focus on maritime scenarios, with limited 

attention to the unique operational modes and constraints of railway transportation. Furthermore, the potential 

impacts of container substitution strategies on repositioning costs and efficiency under time-window constraints 

remain underexplored. 

2.4 Exploration of Substitution Strategies such as Foldable Containers 

To improve resource utilization, some studies have introduced foldable containers to reduce repositioning and 

storage costs. Moon et al. (2013) validated the economic feasibility of foldable containers in maritime ECR. Zhang et 

al. (2022) and Wang et al. (2024) examined the application of foldable containers in river-sea intermodal transport 

and hub location problems, demonstrating the cost-reduction and efficiency-enhancing potential of such 

substitution strategies. 

While container substitution strategies have been studied in maritime contexts, their application to railway 

transportation, particularly under time-window and uncertainty considerations, remains a research gap. Existing 

studies lack a systematic exploration of substitution strategies combined with time-window constraints and transit 

time uncertainties in the context of China's railway systems. 

2.5 Current Status and Limitations in the Context of China's Railways 

In China's railway sector, Li (2018) categorized the development of rail express services and proposed 

strategies based on transport and cargo organization. Song et al. (2022) developed a model for maximizing railway 

enterprise revenue by optimizing the joint transportation of empty and loaded containers using passenger trains. 

Duan et al. (2011, 2012, 2015)extensively studied priority rankings for suitable cargo (2012), technical station 

operations (2011), and time-window constraints (2015). Xia et al. (2023) proposed an integer linear programming 

model to optimize repositioning under daily demand fluctuations. 

While these studies offer valuable references for railway container repositioning, they often focus on single 

dimensions, such as time-window constraints, uncertainties, or substitution strategies, without integrating these 

aspects into a comprehensive framework. There is a lack of research addressing the combined effects of 
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time-window requirements, transit time uncertainties, and substitution strategies to reduce costs and enhance 

efficiency. 

2.6 Research Gaps and Directions 

In summary, while existing research has expanded the understanding of ECR, several gaps remain: 

(1) Most studies focus on maritime transportation, with relatively few addressing railway container 

repositioning, particularly in the context of China's rail express services. 

(2) While uncertainty has been extensively studied, systematic models incorporating time-window 

requirements and transit time variability in railway scenarios are scarce. 

(3) Although substitution strategies such as foldable containers have shown potential benefits, their integration 

with railway-specific time-window and uncertainty factors remains unexplored. 

This study aims to address these gaps by developing an optimization model that integrates transit time 

uncertainty, time-window constraints, and substitution strategies in the context of China's railway transportation 

system. The proposed model will be solved using intelligent optimization algorithms, offering new theoretical, 

methodological, and practical insights into railway container repositioning. 

3. Modeling 

3.1. Description of the Problem 

In a railway container transportation network, there are n container demand stations and m container supply 

stations, with supply and demand exhibiting spatial and temporal imbalances. The network provides several types of 

empty containers (assumed to be k types in total), each with different sizes or functionalities suitable for varying 

cargo loading requirements. 

Time-Window Constraints: In practical transportation scenarios, each demand station has specific 

requirements for the arrival times of empty containers. Early arrivals incur additional storage costs (e.g., occupying 

space and requiring additional labor for maintenance), while late arrivals may prevent customers from loading or 

shipping on time, reducing the reputation of the transportation company and resulting in opportunity costs or 

potential revenue losses. 

Container Type Substitution: Due to regional economic disparities and variations in industrial structures, the 

types and inventory levels of empty containers at different stations are often unbalanced. Some stations may have a 

surplus of certain container types, while others face severe shortages. When the required type of empty container is 

unavailable at the target demand station or must be transported from a distant supply station, this can lead to high 

transportation costs or failure to meet the time-window requirements. To improve resource utilization efficiency, a 

"container substitution" strategy can be adopted, allowing compatible or similar container types to replace the 

originally required type, provided they meet the actual loading requirements. 

For instance, as illustrated in Figure 1, a railway container transportation network comprises stations A1, A2, 

and A3, which handle containers, and two types of containers, U1 and U2. During a specific time period, demand 

station A1 urgently requires U1 containers. If U1 containers can only be transported from a distant supply station, A3, 

and cannot arrive on time, while a closer supply station, A2, has surplus U2 containers that can meet the loading 

requirements of A1, substituting U2 for U1 would satisfy the time-window requirements and reduce transportation 

costs. 

A1

A3A2

Route 1

Route 2

 
Figure 1: Railway container transportation network diagram 
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3.2. Model Assumptions 

The railway transportation system is a complex network composed of various forms of transportation 

organizations. Given the specific characteristics and constraints of container transportation, it is essential to 

simplify the model to capture the general aspects of the problem when establishing a railway ECR model. This paper 

adopts the following assumptions and principles: 

(1) Container Types: Only two types of containers (U1 and U2) are considered for repositioning, with no 

consideration of transshipment scenarios. 

(2) Transportation Vehicles: It is assumed that there are always sufficient transportation vehicles available to 

ensure immediate loading of empty containers. 

(3) Single Transportation Mode: Only railway transportation between container stations is considered, as it is 

currently the primary mode of ECR in railway systems. 

(4) Cost Simplification: Costs such as empty container handling fees, locomotive traction fees, and vehicle 

service fees are aggregated into the transportation costs at each origin-destination (OD) container handling station. 

3.3. Symbolic Description 

S: The set of empty container supply stations. 

D: The set of empty container demand stations. 

U: The set of empty container types. 

E: The set of directed edges, E S D=  , That is DjSiEji  ,,),( . 

k : The empty container type, and k U . 

k

ia : The number of empty containers of the type k  contained in the empty container supply station i . 

k

jb : The number of empty containers of the type k  required by the empty container demand station j . 

k

ja : The empty container substitution factor, if the empty container needed by the demand station j  can be 

substituted by a different type of empty container at the supply station, then 1k

ja = , otherwise 0k

ja = . 

j

k : The substitution cost when the substitution coefficient 1k

ja = . 

k

ijc : The cost of transporting empty containers of type k  per unit from station i  to station j . 

,k k

j je l  
: The time window of the demand for empty containers k  at station j . 

k

it : The departure time of the empty container at the station i . 

k

ijt : The travel time of the container k  from the station i  to the station j . 

k

jT : The actual time of arrival of the empty container of type k  at station j , 
k k k

i ij jt t T+ = . 

k

ju : The backlog cost incurred by an empty container that arrives at the station j  earlier than the time 

window. 

k

jv : The cost of losses incurred by empty containers arriving at the station j  later than the time window. 

k

ijx : The number of empty containers of type k  repositioning from station i  to station j . 
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3.3. Objective Function Establishment 

Establish the objective function as equation (1)~(6) 

( )    ( )min max ,0 max ,0k k k k k k k k k k

ij ij ij ij j j j j j j

i j k i j k

x c x u e T v T l
 

+ + − + − 
 
               (1) 

s.t. k k

ij j

i

x M                                            (2) 

k k

ij i

j k

x a                                           (3) 

k k

ij j

i k

x b                                           (4) 

k k

ij ijx r                                                (5) 

0k

ijx   and an integer                                  (6) 

Where: M denotes the number of empty containers of type k  at station i ; 
k

ijr  is the transport capacity on the 

path ),( ji  in terms of the number of containers. 

Equation (1) is the objective function, which consists of three parts: container allocation cost, container type 

substitution cost, early arrival inventory, and late arrival penalty cost; 

Equation (2) represents the empty container substitution constraint, which indicates that the number of empty 

containers of container type k  from station i  to station j  where substitution occurs is less than or equal to the 

number of empty containers of type k  at station i  multiplied by the substitution factor. 

Equation (3) represents the empty container supply constraint, indicating that the number of container-type k  

empty containers from station i  to station j  where the allocation occurs is less than or equal to the supply of 

station i  type k  empty containers; 

Equation (4) represents the empty container demand constraint, which indicates that the number of container 

type k  empty containers for which an allocation occurs from station i  to station j  is greater than or equal to the 

demand for type k  empty containers at station j ; 

Equation (5) represents the route capacity constraint, which indicates that the number of empty containers of 

container type k  for which an allocation occurs from station i  to station j is less than or equal to the capacity of 

the containers on the transportation path ),( ji ;  

Equation (6) is a variable declaration indicating that the number of empty containers of container type k  for 

which an allocation occurs from station i  to station j  is greater than or equal to zero and an integer. 

4. Algorithmic Solving 

The Genetic Algorithm (GA) was proposed by American scientist Holland in 1975. This algorithm is an adaptive 

stochastic search optimization method based on the simulation of natural evolution and selection mechanisms. 

Through operations such as genetic encoding, population generation, fitness calculation, selection, crossover, and 

mutation, genetic algorithm iteratively filters out relatively optimal solutions within the model. Genetic algorithms 

are widely applied to complex and nonlinear optimization problems and typically achieve satisfactory computational 

results. 
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4.1. Initial Population 

For the transportation problem, Real-valued encoding is used to generate an initial feasible solution. A certain 

number of chromosomes are randomly generated, with each chromosome representing a feasible solution to the 

problem. All individuals form a population. The transportation problem is represented using a matrix, and each 

chromosome  is composed of two parts: pX  and pY . 

11 12 1

21 22 2

1 2

n

n

p

m m mn

x x x

x x x
X

x x x

 
 
 =
 
 
 

                                       (7) 

11 12 1

21 22 2

1 2

n

n

p

m m mn

x x x

x x x
Y

x x x

 
 
 =
 
 
 

                                 (8) 

Where m is the number of supply stations and n is the number of demand stations; pX  represents the Pth 

chromosome, and ijx  is the chromosome gene in the matrix, which represents the number of type k containers 

allocated from supply station i to demand station j; pY  represents the Pth chromosome, and ijy  in the matrix is a 

chromosome gene indicating the number of containers in the substitution from supply station i to demand station j. 

4.2. Fitness Function 

The fitness of a chromosome is evaluated using the objective function value, denoted as eval ( pC ), which 

represents the fitness function value of chromosome pC . The fitness function for the model is expressed as follows 

(Equation 9): 

( )    ( )( ) max ,0 max ,0k k k k k k k k k k

p ij ij ij ij j j j j j j

i j k i j k

eval C x c x u e T v T l
 

= + + − + − 
 
 

       

(9) 

4.3. Selecting Operation 

Based on the fitness of each individual, the cumulative probability for each individual is calculated, and the 

roulette wheel method is used to select individuals for the next generation. The probability of an individual being 

selected is proportional to its fitness value. Chromosomes with higher fitness scores have a greater likelihood of 

being selected. The probability ( )iP x  of selecting a chromosome is given by: 

1

( )
( )

( )

i
i N

j

j

f x
P x

f x
=

=


                                        (10) 

where ( )iP x  is the probability of selecting a chromosome, ( )if x  is the fitness value of chromosome ix , and 

N is the total number of chromosomes in the population. 

4.4. Crossover Operation 

A parameter cP  is defined to represent the probability of crossover. Chromosomes 1X  and 2X  are 

randomly selected as parent chromosomes for crossover based on the crossover probability cP , where ijX X=（ ）. 

pC
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For each pair, a random number R is generated within the range (0, 1). If cR P , the following method is used to 

generate offspring chromosomes 3X  and 4X : 

+X X R X X=  −（ ）3 1 2 1
                                   (11) 

+X X R X X=  −（ ）4 2 1 2
                                   (12) 

Then, the feasibility of each offspring is verified. If all offspring are feasible, they replace their parent 

chromosomes. If any offspring are infeasible, only the feasible offspring are retained. Subsequently, new random 

numbers are generated, and the crossover operation is repeated until the required number of feasible offspring is 

obtained or a predefined iteration limit is reached. 

4.5. Variation Operation 

Define mP  as the probability of mutation. Suppose a chromosome pC  consists of genes 1 2 nC C C， ， , where 

each gene iC  must satisfy i i ilb C ub  , with ilb   as the lower bound and iub   as the upper bound. 

For each chromosome in the population, genes are randomly selected for mutation based on the mutation 

probability mP . 

Thus, the gene iC  undergoes mutation with a probability of mP . 

'

i iC C =                                         (13) 

Where 
'

iC the new gene is after the mutation, 
iC  is the pre-mutation gene, and   is a randomly varying 

quantity that determines the range of variation in gene values. 

Here,
 

'

iC  represents the mutated gene, 
iC  is the original gene before mutation, and   is a random 

variable within the interval [−d,d], determining the range of gene mutation. 

If the mutated gene exceeds the defined boundaries, boundary adjustments are applied: 

If '

i iC lb , set '

i iC lb=  (lower bound). 

If '

i iC ub , set '

i iC ub=  (upper bound). 

The mutated gene value then replaces the original gene, forming a new chromosome. 

4.6. Algorithm Steps 

The genetic algorithm operates by initializing a population, evaluating fitness, and iteratively performing 

selection, crossover, and mutation operations. Once the stopping condition is met, the individual with the best 

fitness is output as the feasible solution. The basic flowchart of the algorithm is shown in Figure 2, and the steps are 

as follows: 

(1) Initialization: Generate a set number of individuals as the initial population. 

(2) Fitness Evaluation: Evaluate each individual in the population based on the objective function of the 

problem and calculate its fitness value. 

(3) Iteration and Update: Perform selection, crossover, and mutation operations during each iteration and 

update the current population. 
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(4) Stopping Condition: Stop the iteration when the maximum number of iterations or the fitness threshold is 

reached. 

(5) Output Results: The individual with the highest fitness is output as the optimal feasible solution for the 

ECR problem. 

Check termination 

condition

Start

Encoding and setting 

parameters

Generate initial 

population

Calculate fitness function

O
utput the optim

al 

solution

E
ndYes

Selection

Crossover

MutationNo

 

Figure 2. Genetic algorithm flowchart 

5. Algorithm Analysis 

5.1. Case Date  

A railroad bureau has 8 stations for container business, 4 stations for the railroad empty container supply 

station, A1, A2, A3, and A4; 4 stations need containers to meet the transport, for the empty container demand station 

B1, B2, B3, and B4. There are two types of containers, U1 and U2, and U2 is considered as a substitute in case of 

insufficient U1. The example solution considers two cases of container substitution and no substitution. A planned 

period of empty container supply station information is shown in Table 1, empty container demand station 

information is shown in Table 2, and Table 3 for the supply station and the demand station between the traveling 

time, ECR cost as shown in Table 4, Table 5 for the cost of substitution for U2 substitution of U1 cost. 

Consider a railway bureau with eight stations handling container operations. Among these, four stations serve 

as railway empty container supply stations, denoted as A1, A2, A3, and A4, while the remaining four stations act as 

empty container demand stations, denoted as B1, B2, B3, and B4. Two types of containers, U1 and U2, are available, 

and U2 can be used as a substitute when U1 is insufficient. The case study examines two scenarios: with and without 

container substitution. During a specific planning period, the information on empty container supply stations is 

provided in Table 1, while Table 2 lists the information for empty container demand stations. Table 3 presents the 

transit times between supply and demand stations, Table 4 provides the ECR costs, and Table 6 specifies the 

substitution costs for using U2 as a replacement for U1. 

Table 1. Information on empty container supply station 

Supply station A1 A2 A3 A4 

container type U1 U2 U1 U2 U1 U2 U1 U2 

Supply of container types/CTN 32 23 17 16 15 24 21 35 

departure time 2:00 2:00 3:00 3:00 8:00 8:00 7:00 7:00 

 

 

 

 



142  

 

 

J INFORM SYSTEMS ENG, 10(16s) 

Table 2. Information on empty container demand station 

Demand 

Station 

container 

type 

Empty 

container 

demand/CTN 

Time window 

Early arrival 

cost/(CNY/(CTN

•h)) 

Late arrival 

cost/(CNY/(CTN 

•h)) 

B1 
U1 30 [12：00，19：00] 3 5 

U2 21 [11：00，17：00] 5 7 

B2 
U1 18 [20：00，23：00] 3 5 

U2 10 [19：00，23：00] 5 7 

B3 
U1 15 [11：00，12：00] 3 5 

U2 12 [12：00，24：00] 5 7 

B4 
U1 19 [14：00，21：00] 3 5 

U2 15 [15：00，22：00] 5 7 

                  

Table 3. Travel time between supply and demand stations (h) 

Supply station 
Demand station 

B1 B2 B3 B4 

A1 24  19  15  19  

A2 17  18  10  7  

A3 11  2  6  15  

A4 5  12  6  10  

 

Table 4. ECR cost (CNY/CTN) 

Supply station 
Demand station 

B1 B2 B3 B4 

A1 244/366 187/281 149/224 193/290 

A2 167/250 183/275 99/149 70/105 

A3 107/161 22/33 63/95 155/233 

A4 45/68 119/179 60/90 99/149 

1 Figures before "/" indicate U1 repositioning costs; figures after "/" indicate U2 repositioning costs. 

 

Table 5. Empty container substitution cost (CNY/CTN) 

Supply station 
Demand station 

B1 B2 B3 B4 

A1 366 281 224 290 

A2 250 275 149 105 

A3 161 33 95 233 
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A4 68 179 90 149 

5.2. Solution Process 

Using the genetic algorithm solution steps, ECR was performed for an 8-station network. When the initial 

population size Np=500N, crossover probability Pc=0.8, mutation probability Pm=0.1, and the number of algorithm 

iterations gen=1000, the performance was found to be optimal. Computer simulations were conducted using Python 

software, and the convergence behavior of the algorithm under scenarios with and without container substitution is 

shown in Figure 3. As observed in the figure, the algorithm exhibits a fast convergence rate, with significant 

convergence occurring around the 200th generation. The convergence speed in the scenario without container 

substitution is faster compared to the scenario with substitution. 

 

(a)                                   (b)                      

Figure 3. Iterative convergence diagram of the genetic algorithm: (a) Iterative convergence diagram of the 

algorithm under empty container substitution; (b) Iterative convergence plot of the algorithm under empty 

container non-substitution. 

A computer simulation of the above example is carried out to analyze the results of the calculations in terms of 

the repositioning scheme corresponding to one of the solutions. 
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Based on the results of Python operations, the cost of each part of the optimal solution in the case of 

substitution and non-substitution of empty containers is obtained as shown in Table 6, and the repositioning 

scenarios are shown in Tables 7 and 8. 

Table 6. Cost of each part of the optimal solution for substitution and non-substitution cases       (CNY) 

  f1 f2 f3 F 

Type of container substitution 12066 1639 1305 15010 

Type of container non-substitution 15206 0 1679 16885 

 

Table 7. Repositioning scheme under the substitution of container types                         (CTN) 

Handling 

station 

Repositioning of U1 containers Repositioning of U2 containers U2 Substitute U1 container 

B1 B2 B3 B4 B1 B2 B3 B4 B1 B2 B3 B4 

A1 0 2 0 4 0 0 2 4 0 0 0 0 

A2 1 1 6 9 2 0 3 9 0 0 0 2 
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A3 1 13 1 0 9 5 7 0 0 2 1 0 

A4 12 0 5 4 10 5 0 2 16 0 2 0 

 

Table 8. Repositioning scheme under the non-substitution of container types                     (CTN) 

Handling 

station 

Repositioning of U1 containers Repositioning of U2 containers 

B1 B2 B3 B4 B1 B2 B3 B4 

A1 12 9 5 3 0 0 0 0 

A2 7 4 0 6 0 0 0 15 

A3 1 3 10 1 0 10 0 0 

A4 10 2 0 9 21 0 12 0 

5.3. Analysis of Results 

The simulation case study was solved using Python, effectively validating the rationality of the model and 

algorithm. The optimization of railway ECR was conducted considering time-window constraints and container 

substitution, resulting in an optimal repositioning scheme that satisfies the objective function and its constraints. 

Multiple computer simulations were conducted to verify the feasibility of the proposed scheme. The key parameters 

for the genetic algorithm were set as follows: initial population size Np=500, crossover probability Pc=0.8, mutation 

probability Pm=0.1, and the number of algorithm iterations gen=1000. Notably, the solution began to converge 

significantly around the 200th iteration. 

(1) Heuristic Algorithm Efficiency 

The genetic algorithm is a heuristic algorithm that seeks the optimal solution within the current population in 

each iteration. However, in an uncertain environment, the railway ECR optimization problem cannot guarantee that 

every solution obtained is the global optimum. Therefore, the case study was run 30 times randomly, and a scatter 

plot of the objective function values from these 30 runs was generated to observe the variations between the results 

with and without container substitution, as shown in Figure 4. From the figure, it can be observed that the optimal 

objective values obtained from 30 Python simulation runs exhibit minimal differences and fluctuate uniformly 

around a straight line. This indicates that the proposed transportation scheme is reasonable and demonstrates good 

stability. 

In conclusion, the feasibility of the model has been validated, and multiple trials confirmed the effectiveness of 

the genetic algorithm in solving the proposed model. 

 

 

(a)                                     (b) 

Figure 4.Scatterplot of objective function values for 30 runs of the algorithm: (a) Scattered distribution of 

objective function values under empty container substitution;(b) Scattered distribution of objective function values 

under empty container no-substitution. 
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(2) Routing Analysis 

The transportation paths for ECR under scenarios with and without substitution are illustrated in Figure 3. 

Circles represent supply or demand station points, and directed lines represent ECR paths. Blue lines indicate the 

repositioning paths for U1 containers, green lines represent the repositioning paths for U2 containers, and red lines 

show the paths where U2 substitutes for U1 containers. Taking station A2 as an example under the container 

substitution scenario, this supply station transports both U1 and U2 containers to demand stations B1, B3, and B4, 

while only U2 containers are transported to B2. Additionally, U2 containers are used as substitutes for U1 containers 

in the repositioning to B4. 

From the ECR path diagram, it is evident that the transportation scheme does not involve detours, indicating 

that the scheme is reasonable. In the non-substitution scenario, there are instances of long-distance transportation, 

such as the repositioning of U1 containers from supply station A1 to demand station B1, which represents the longest 

distance between two stations. However, in the substitution scenario, no such long-distance repositioning occurs. 

Clearly, container substitution reduces long-distance transportation and optimizes the transportation paths. 

 

(a)                                        (b) 

Figure 3. Empty container transportation route map: (a) Transportation path diagram with container 

substitution;(b) Transportation path diagram non-container substitution 

(3) Optimal Objective Value and Cost Comparison 

To evaluate the effectiveness of the container type substitution strategy, the model was run under two scenarios: 

with substitution and without substitution. Table 9 presents the optimal solution for a typical case and compares the 

average costs over 30 random iterations for each scenario. It was observed that introducing container substitution 

reduced the total transportation cost from 16,885 CNY to 15,010 CNY, achieving an 11.1% cost reduction. The results 

of multiple random experiments (container type substitution average: 15,254 CNY vs. without container type 

substitution average: 16,912 CNY) further demonstrate that the container type substitution strategy maintains a cost 

advantage under various disturbance conditions. 

Table 9. Comparison of optimal solution costs between container substitution and non-substitution scenarios 

(CNY) 

Scenarios Optimal cost  Average value over 30 random runs  

Type of container 

substitution 
15010 15254 

Type of container 

non-substitution 
16885 16912 

Reduction rate -11.10% -9.80% 
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Notably, in this case, there were five instances where U2 containers were substituted for U1 containers, incurring 

a substitution cost of 1,639 CNY. While the substitution cost accounts for a small proportion of the overall cost 

savings, it significantly enhanced flexible optimization at critical stations or during key time periods. This indicates 

that the container type substitution strategy allows for greater flexibility in equipment type allocation, particularly in 

situations where certain container types are scarce or long-distance transportation is uneconomical, delivering 

substantial economic benefits. 

(4) Impact of Time Window Constraints 

In ECR, some containers may arrive at demand stations either earlier or later than required, incurring 

inventory costs or opportunity loss costs, respectively. Table 10 presents the additional costs caused by time-window 

violations for the same case. 

Table 10. Comparison of time-window constraint costs between container substitution and non-substitution 

scenarios 

Scenarios 
Early arrival 

count 

Late arrival 

count 

Additional costs for 

early and late arrivals 

Type of container 

substitution 
4 6 1305 

Type of container 

non-substitution 
5 5 1679 

Reduction rate     -22.30% 

 

As shown in the table, while the container type substitution scheme also involves early and late arrivals, the 

additional costs amount to only 1,305 CNY, compared to 1,679 CNY for the non-substitution scheme, representing a 

22.3% difference. This indicates that container substitution enables certain key demand stations to utilize containers 

from closer or more flexible sources, thereby reducing waiting or storage times and effectively lowering 

time-window violation costs. 

6. Discussion 

In this study, we developed a railway ECR optimization model based on time-window constraints and container 

substitution, solved using a genetic algorithm. Through experimental simulations, we demonstrated the 

effectiveness of the genetic algorithm in addressing the ECR problem, identifying near-optimal repositioning 

schemes. Comparing scenarios with and without container substitution, we found that container substitution 

effectively reduces total repositioning costs and transportation expenses. Additionally, analyzing the arrival times 

within the specified time windows, we observed that most repositioning schemes ensured empty containers arrived 

within the time window, though a small number exceeded the time constraints. Therefore, to meet customer 

container timing requirements and minimize inventory and opportunity loss costs, further optimization is necessary 

to ensure that empty containers arrive within the specified time window as much as possible. 

There is limited research on railway container substitution. Among the existing studies, Zhang (2015), Chang 

(2008), Qiao (2010), and Fan et al. (2015) investigated substitution between 20-foot and 40-foot containers. These 

studies concluded that container substitution can effectively reduce repositioning costs and improve transportation 

efficiency, which aligns with the findings of this study. Min et al. (2012) constructed a shipping container 

repositioning model with time-window constraints, aiming to minimize total costs. They introduced simulated 

annealing into the genetic algorithm to solve the model, and their case studies indicated that early and late arrivals 

of containers at ports incur costs. Similarly, Hu et al. (2020) considered time-window costs and minimum empty 

container clearance requirements between stations, constructing a bi-level programming model to optimize ECR. 

Their results showed that the cost of meeting minimum clearance requirements is negatively correlated with unit 

inventory and opportunity loss costs within the time window. 
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This study incorporates practical considerations and general characteristics of railway container types to 

analyze substitution among different containers. Additionally, the study accounts for time-window requirements, 

demonstrating that container substitution can effectively address scenarios where insufficient container availability 

or long-distance repositioning increases transportation costs. To ensure customer container timing requirements 

are met and to minimize early inventory and late opportunity loss costs, the repositioning scheme must be optimized 

to ensure container arrivals within the specified time window. 

The railway ECR problem is a complex issue involving multiple factors. This study explored the uncertainty of 

demand timing, but the ECR system is a dynamic and uncertain complex system. In actual repositioning activities, 

parameters such as container demand and supply quantities, timing, and internal system influencing factors are 

often uncertain. Moreover, unexpected events during repositioning, such as delays caused by weather, container 

damage, or operational errors, may disrupt the execution of repositioning plans. These uncertainties often hinder 

the smooth execution of repositioning schemes as planned. Therefore, when studying and optimizing the railway 

ECR system, it is essential to account for and address these uncertainties to enhance the system's flexibility and 

robustness and ensure efficient repositioning operations. 

Numerous uncertainties influence the railway ECR problem. This study focused on the uncertainty of demand 

timing and optimized repositioning schemes using container substitution to address customer timing requirements. 

Future research will further explore uncertainties related to transit times and uncertain optimization methods. 

7. Conclusions 

Efficient container transportation plays a vital role in supporting economic development, but imbalances in 

supply and demand across regions result in significant ECR challenges. This study proposes a robust optimization 

model for ECR that incorporates time window constraints and container type substitution. Employing a genetic 

algorithm, the model effectively solves the problem and offers optimal substitution strategies, as demonstrated 

through computational experiments. 

The results reveal that the container type substitution approach not only reduces transportation costs by 11.1% 

compared to non-substitution but also minimizes inventory and opportunity costs by 22.3%. The substitution 

strategy proves particularly effective in mitigating logistical inefficiencies, such as long-distance transport, by 

enabling flexible container usage based on cargo characteristics. This adaptability enhances the robustness and 

efficiency of the transportation network, particularly in scenarios where specific container types are in limited 

supply or economically impractical for certain routes. 

Furthermore, the study highlights that a well-designed transportation plan prioritizes timely container arrivals 

within prescribed time windows, thereby reducing early-arrival inventory costs and late-arrival opportunity losses. 

The findings also emphasize the importance of dynamic adjustments to container allocation strategies to 

accommodate uncertainties in demand and transport conditions. 

In summary, the integration of container type substitution in repositioning strategies provides a promising 

pathway to optimize operational efficiency, lower costs, and improve service reliability in railway container logistics. 

Future research may explore the scalability of this approach in larger networks and under varying demand scenarios 

to further generalize its applicability. 
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