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Introduction: A serious consequence of diabetes, diabetic retinopathy (DR) damages the 

retinal tissues besides can cause severe vision loss or complete blindness in some people. The 

only way to slow or stop the worsening of this ailment is to catch it early. The minor signs of DR 

might be difficult to discern on one's own, making early detection a challenge. An innovative 

approach to DR detection is shown. 

Objectives: In this study, which utilises an Extreme Learning Machine (ELM) that has been 

optimised utilising an Improved Logical Whale Optimisation Algorithm (ILWOA). In order to 

improve classification accuracy, convergence speed, and robustness, the ILWOA adjusts the 

parameters of the ELM model. 

Methods: Two benchmark datasets, EyePACS and APTOS, are used to test the methodology, 

making sure the model can be used for various real-world data circumstances. Overcoming issues 

like overfitting and sensitivity to parameter initialisation, the suggested method uses 

sophisticated optimisation techniques to circumvent the shortcomings of conventional ELM 

models. The ILWOA-optimized ELM achieves better performance metrics and surpasses existing 

approaches in detecting different stages of DR, according to the experimental data. The approach 

is also flexible and scalable, so it can handle massive ophthalmic datasets.  

Conclusions: This study makes a substantial influence to the area of automated healthcare 

diagnostics by developing an AI-driven system for the identification of diabetic retinopathy that 

is dependable, efficient, and scalable. To further enhance the proposed framework's applicability 

in clinical applications, future efforts should focus on studying real-time implementation and 

multi-modal data integration. 

Keywords: Diabetic Retinopathy; Extreme Learning Machine; Improved Logical Whale 

Optimization Algorithm; Scalability; Large-scale ophthalmic datasets. 

 

INTRODUCTION 

Diabetic retinopathy is among the most serious eye illnesses associated with diabetes, which has led to a remarkable 

increase in the number of persons diagnosed with the disease in recent decades [1]. In addition, the majority of cases 

of blindness in middle-aged adults are caused by diabetic retinopathy [2]. DR can lead to diabetes. This is due to the 

fact that the retina of the eye can be damaged by certain eye injuries [3]. Digital retinal imaging can be used to identify 
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diabetic retinopathy [4], and fundus examination is thought to be a good way to find aberrant symptoms in the eyes 

of diabetes patients [5].  

Despite ongoing efforts, even for highly qualified clinicians, early detection of diabetic retinopathy is a time-

consuming process, which can lead to treatment delays, misunderstandings, etc. [6]. The need for a reliable 

automated system to diagnose diabetic retinopathy has been acknowledged. Diabetic retinopathy and normal retinal 

imaging are the primary foci of our research [7]. Efforts that used machine learning and picture feature extraction in 

the past were successful [8]. Classifiers utilised for the job support vector machine (SVM), k-nearest neighbours 

(KNN) procedure, etc., while features utilised for the task include things like blood vessel detection, micro-

aneurysms, red lesions, and hard exudates [9]. A huge percentage of cases end up being normal, despite a lot of time 

spent diagnosing normal cases [10], and none of the handmade features can cover all the signs of diabetic retinopathy 

in the photos. As a result, the autonomous diagnostic system has few real-world clinical uses. Elevated blood sugar 

levels are a symptom of diabetes, a metabolic disorder. The World Health Organisation estimates that 642 million 

people in 2015 [11, 12].  

There are five categories of DR based on the severity of the disease: normal, mild, moderate, severe, and proliferative. 

Minimal enlargement of the retinal blood vessels causes mild diabetic retinopathy, the first stage of the development 

of DR [13]. Swelling and distorting of the blood vessels linked to the retina causes moderate DR [14]. When the blood 

arteries that supply the retina become severely clogged, a condition known as severe DR develops. Retinal 

proliferative DR develops when tiny blood capillaries in the retina get clogged, leading to the formation of new vessels 

and potential retinal injury [15]. There has been prior work on using ML and DL to classify fundus images of DR. This 

dataset was taken from the DR1 and MESSIDOR databases. A resultant accuracy of 74.04% was achieved in the study 

[16]. 

Incorporating augmentation and doing continuous evaluations yield the greatest outcomes for the model when 

applied to unseen datasets that are distinct from the EyePACS and APTOS datasets. To determine the model's 

generalisability, it is vital to continuously test it on varied datasets. In order to detect possible overfitting and guide 

changes to training methods, regular performance evaluations are essential [17]. To further reduce the likelihood of 

overfitting, data augmentation during training can be used to expose the model to more variances, which could make 

it more resilient to data that has never been seen before. For applications such as diabetic retinopathy diagnosis, it is 

essential to evaluate a model's generalisability and robustness by testing it on unseen datasets that are different from 

the EyePACS and APTOS datasets [18].  

DR is a major cause of avoidable worldwide; this project aims to develop a highly precise and efficient approach for 

detecting it. In order to intervene promptly and enhance patient outcomes, early detection of DR is essential. 

Problems with scalability, parameter sensitivity, and overfitting are some of the obstacles that current methods must 

overcome before they may be used effectively in clinical settings. Utilising an Extreme Learning Machine (ELM) that 

has been fine-tuned using the Improved Logical Whale Optimisation Algorithm (ILWOA), this research presents a 

new framework. By improving convergence speed, accuracy, and robustness, the ILWOA aims to overcome the 

drawbacks of conventional optimisation methods. The generalisability of the methodology is ensured by evaluating 

it on the EyePACS and APTOS datasets, which are well-known for their diversified and large-scale ophthalmic data. 

The goal of this work to improve the accessibility of trustworthy DR screening tools and obtain better performance 

in categorising different phases of DR by fine-tuning the parameters of the ELM model. This will contribute to the 

advancement of automated healthcare diagnostics. 

RELATED WORKS 

The goal of Minarno et al. [19] is to use CNNs for DR classification; specifically, they want to optimise their 

performance by adopting the InceptionV3 architecture. Using the APTOS 2019 Blindness Finding dataset as a case 

study, this research investigates how various data augmentation and preprocessing strategies affect classification 

accuracy. To improve model generalisability and reduce overfitting, data pretreatment and augmentation are 

essential deep learning procedures. The research trains the InceptionV3 model with the help of preprocessing and 

data augmentation. The model outperforms models trained without data augmentation, with results showing an 

accuracy of 86.5% on training data and 82.73% on test data. Performance graphs showing a significant drop in test 

accuracy compared to training accuracy further prove that overfitting occurs in the lack of data augmentation. The 
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significance of customised preprocessing and augmentation methods in strengthening the predictive capacity and 

resilience of CNN models for DR finding is emphasised in this study. 

The ResViT FusionNet model, developed by Ikram and Imran [20], combines the thorough knowledge offered by 

Vision Transformers (ViTs) with the powerful feature extraction capabilities of Convolutional Neural Networks 

(CNNs), notably ResNet50. Several preprocessing methods, including data augmentation, were used to make sure 

the datasets were balanced and to improve the presentation of the models. In an effort to make the model more 

generalisable and resilient, these methods rescaling pixel values, and rotation. Furthermore, to utilised Explainable 

AI (XAI) practices to enhance the model's forecasts by making them more visible and interpretable, particularly in 

clinical contexts. In order to understand the model's forecasts, LIME was employed. Then, heatmaps were generated 

which showed which parts of the fundus images were most important for the classification decisions. Healthcare 

providers can better grasp the elements impacting the forecasts and have more faith in the model with the help of 

these graphic explanations. When compared to top CNNs and baseline ViT models, ResViT FusionNet performs far 

better in experiments. With scores of 0.8944 for MCC, 0.8935 for Kappa, 0.9300 for Recall, 0.9275 for F1 Score, 

0.9301 for Accuracy, and a Jaccard Index of 0.8749, the model demonstrated remarkable performance in evaluation 

measures. 

An innovative massive retinal feature aggregation network (MRFANet) for precise multi-lesion diabetic retinopathy 

segmentation was suggested by Zhou and Zhang [21]. It is capable of making end-to-end pixel-level forecasts for 

various sorts of lesions by aggregating huge retinopathy features. To used a strategy to improve semantic 

representations, sequential dilated linkages to achieve hierarchical context feature extractions, and last, to aggregated 

the huge features to forecast the final segmentations. When approaches, the suggested method performs admirably 

in experiments run on the IDRiD and DDR datasets, with AUC scores of 0.7566 and 0.3286 for soft exudate 

segmentation on the IDRiD dataset and 0.3286 for the DDR dataset, respectively. The method also achieved top 

performance in all test scenarios when evaluating generalisation performance. 

In order to effectively detect DR in both sequential and non-sequential fundus pictures, the model presented by 

Henge et al. [22] has 172 weighted layers. A multi-layered transfer learning method is employed, with 86 layers 

dedicated to processing colour fundus images and another 86 layers devoted to processing greyscale images. In order 

to handle different data matrices and incorporate global besides specialised features, the model goes through rigorous 

pre-processing and testing processes, with eight layers of level. The performance is enhanced by the chi-square 

testing process, which refines cases. By utilising multi-decision hybrid approaches, the model surpasses other current 

models with a detection accuracy of 98.1%. 

Using StyleGAN3, Das, & Walia [23] have created synthetic DR1 pictures that are diverse and characterised by 

microaneurysms. The goal is to improve supervised classifier performance and deal with data shortage. To trained 

the model using a dataset of 2,602 DR1 pictures and then evaluated it using a battery of quantitative metrics, such as 

FID, KID, and EQ-T and EQ-R, which measure equivariance with respect to translation and rotation, respectively. 

Human Turing tests were one kind of qualitative evaluation; in these tests, qualified ophthalmologists would judge 

how lifelike computer-generated pictures appeared. The image quality was further confirmed using spectral analysis. 

Compared to the mean FID of 21.18 (95 percent obtained by bootstrap resampling, the model's final FID score of 

17.29 was better. The model was able to generate very accurate visuals in human Turing tests, with the exception of 

some small artefacts along the edges. This research provides strong evidence that synthetic DR1 images created by 

StyleGAN3 can greatly improve the accuracy of DR early detection when used to enrich training datasets. 

2.1. Problems statement 

A. Performance on Unseen Datasets 

1) Generalization Ability 

By successfully identifying key features associated with diabetic retinopathy on unseen datasets, a model trained on 

EyePACS and APTOS datasets has learnt to do more than just memorise the training data. The model seems to have 

captured the fundamental characteristics of the disease if it can generalise. 
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2) Variability in Data 

If the unseen datasets differ significantly from the training datasets in terms of image quality, acquisition methods, 

or demographic characteristics (e.g., age, ethnicity), the model's performance can suffer. The model's properties may 

not be applicable across all populations or imaging settings, which could explain this drop. 

B. Evidence of Overfitting 

1) Training Versus Validation Performance 

If the unseen datasets differ significantly from the training datasets in terms of image quality, acquisition methods, 

or demographic characteristics (e.g., age, ethnicity), the model's performance can suffer. The model's properties may 

not be applicable across all populations or imaging settings, which could explain this drop. 

2) Learning Curves Analysis 

Examining learning curves can provide insights into overfitting. A significant gap between accuracy, particularly 

when the training accuracy continues to improve while suggests overfitting. 

3) Performance Metrics 

Metrics ROC curve on unseen datasets can help evaluate the model’s effectiveness. A notable drop in these metrics 

compared to training metrics may signal overfitting. 

PROPOSED METHODOLOGY 

In this section, detection of DR is carried out by advanced deep learning model and it is graphically shown in Figure 

1, where each of its block is mentioned in the upcoming sub-section. 

 

Figure 1: Workflow of the Research Model 

3.1. Dataset Integration 

Providing comprehensive details about the division of the EyePACS and APTOS datasets [24], the specific training 

cum testing splits, filtering criteria, preprocessing steps, and final dataset statistics is essential for replicability and 

understanding the model’s presentation which will help to enhance the reliability of the findings and supports future 

research efforts in diabetic DR. 
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The EyePACS dataset fundus images used for DR detection, typically labeled according to harshness levels ranging 

from 0 which considered as no-DR to 4 which considered as proliferative-DR. It contains a diverse set of images 

representing various demographics and clinical conditions. The APTOS dataset consists of labeled fundus images for 

diabetic retinopathy detection. It includes images with a similar grading system but may vary in quality and 

acquisition methods. 

3.1.1. Training, Testing and Validation Sets and Subsets 

This section articulated divisions of datasets based on training, and testing sets and supporting subsets along with its 

validations. Often, a common tactic is to use 70-80% of the data for training, 10-15% for validation, besides the 

residual 10-15% for testing. In sampling, it has ensured that each subset reflects the overall distribution of diabetic 

retinopathy grades, stratified sampling employed, which maintains the proportion of each class in all subsets. 

3.1.2. Image Selection and Filtering 

In training and testing, the specific criteria initiated for selecting images from the EyePACS and APTOS through main 

and sub-clusters-based quality control and exclusion of anomalies. Images are controlled the filtering process based 

on quality metrics such as resolution, clarity, reflection-rate and lighting. In the basic stage of input, exclude 

anomalies such as artifacts, poor lighting, and low-resolution issues and applied augmentation and normalization 

techniques to the images before training the data. In normalization adjusted pixel values to a standard range, typically 

(0, 1) to ensure consistency across images. In augmentation, the dual-image multilayer ResNet algorithmic sequences 

are used to implement the image pre-processing techniques. The fundus-colored and black-and-white images are 

resized by 312×312×3 data matrices for each image, and various data augmentation techniques, including zooming 

(z), trimming (t), rotary motion (rm), horizontal spin (hs), vertical spin (vs), breadth move (bm), and height move 

(hm), are integrated.  

3.1.3. Dataset Size, Diversity and Final Dataset Composition 

In test cases, the total sum of images used from each dataset and their distribution across different. Data about the 

demographic diversity such as age, ethnicity of the images provided. The final composition of dataset initiated with 

balancing classes and ensured uniformity in preprocessing, and considered the number of training 70-80%, 

validation 10-15%, besides testing 10-15% of images, as well as their corresponding labels and classes. 

3.2. Prediction using ELM 

In this work, the prediction of DR is carried out by optimized ELM model [25], where the classic ELM model's basic 

design, which consists of three crucial layers. These layers consist of an output layer (y) with m neurons to represent 

the m output variables, a hidden layer with l neurons, and an input layer (x) with n neurons to characterise the n 

input variables. 𝑊ij stands for the connection weight that neuron in the input neuron in the hidden layer in this 

context, whereas 𝛽jk stands for the connection weight that connects layer [26]. The training dataset containing "Q" 

samples, the "X" and "Y" input and output matrices, and the "b" bias for the hidden layer are further essential 

elements. These components' mathematical formulations are defined by equations (1) through (3), which together 

make up the activation function abbreviated as 𝑔(·). 

𝜔 = [

𝜔11 𝜔12
⋯ 𝜔1𝑛

𝜔21 𝜔22
⋯ 𝜔2𝑛

⋮
𝜔𝑙1

⋮
𝜔𝑙1

⋱
⋯

⋮
𝜔𝑙𝑛

]

𝑙×𝑛

 (1) 

𝛽 = [

𝛽11 𝛽12 ⋯ 𝛽1𝑛

𝛽21 𝛽22 ⋯ 𝛽2𝑛

⋮
𝛽𝑙1

⋮
𝛽𝑙1

⋱
⋯

⋮
𝛽𝑙𝑛

]

𝑙×𝑚

 (2) 

𝑏 = [

𝑏1

𝑏2

⋮
𝑏𝑙

]

𝑙×1

  (3) 
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Equation (4) may be used to determine the ELM neural network's output Y: 

Υ =

[
 
 
 
 
∑ 𝛽𝑖1𝑔(𝜔𝑖𝑥𝑗 + 𝑏𝑖)

𝑙
𝑖=1

∑ 𝛽𝑖2𝑔(𝜔𝑖𝑥𝑗 + 𝑏𝑖)
𝑙
𝑖=1

⋮
∑ 𝛽𝑖𝑚𝑔(𝜔𝑖𝑥𝑗 + 𝑏𝑖)

𝑙
𝑖=1 ]

 
 
 
 

𝑚×𝑙

 (4) 

Where H is the ELM neural network's hidden layer output matrix, as illustrated in Equation (5): 

𝐻 = [

𝑔(𝜔1. 𝑥1 + 𝑏1) 𝑔(𝜔2. 𝑥1 + 𝑏2) 𝑔(𝜔𝑙 . 𝑥1 + 𝑏𝑙)

𝑔(𝜔1. 𝑥2 + 𝑏1) 𝑔(𝜔2. 𝑥1 + 𝑏2) 𝑔(𝜔𝑙 . 𝑥2 + 𝑏𝑙)
⋮

𝑔(𝜔1. 𝑥𝑄 + 𝑏1)

⋯
𝑔(𝜔2. 𝑥𝑄 + 𝑏2)

⋮
𝑔(𝜔𝑙 . 𝑥𝑄 + 𝑏𝑙)

]

𝑄×𝑙

 (5) 

Equation (6)'s least squares solution leads to the connection weights that join the hidden layer and output layer. 

‖𝐻𝛽 − Υ𝑇‖𝛽   
𝑚𝑖𝑛  (6) 

The response may be stated as follows: 

𝛽 = 𝐻+Υ𝑇  (7) 

Algorithm 1 provides an illustration of the ELM algorithm. 

Algorithm 1: ELM algorithmic procedure 

Step 1: There are different numbers of neurons in the three layers symbolised by the letters "n," "l," and "m," 

which are the layers, respectively. Additionally, random numbers are utilised to initialise the weight connection 

(𝝎) between the l and the n as well as the bias (b) of the l. 

Step 2: The hidden layer output matrix, abbreviated as "H," is generated when the activation 

function for the hidden layer neurons, indicated as "g(x)," has been specified. 

Step 3: The connection weight that connects an output layers to the layer that is hidden is calculated using the 

equation 𝜷= H+YT. 

Neural network technology, a ground-breaking development in artificial intelligence, is used to estimate the severity 

of the DR. Rapid learning, effective processing, and strong generalisation skills are just a few of the benefits provided 

by the ELM, a single hidden-layer feedforward neural network. However, ELM's variable number of l neurons and 

the setting of connection weights and thresholds at random may make predictions less precise. Our main goal has 

been to improve ELM's DR prediction performance by using the improved whale optimisation approach in order to 

overcome these restrictions. 

3.3. Hyper-parameter tuning using ILWOA  

An innovative algorithm for optimising population intelligence, the whale optimisation algorithm (WOA) [27] takes 

its cues from the three primary categories of humpback whale foraging behaviour: The first is swimming and 

foraging; the second is surrounding prey; and the third is attacking. The regulating coefficient A determines foraging 

behaviour and surrounding predators, with A taking values in the variety [−2, 2]. A s When 0 ≤ |A| ≤ 1, the algorithm 

achieves a predation apparatus; when 1 ≤ |A| ≤ 2, the procedure achieves a mechanism.  

(1) Swim away encirclement. It is assumed in the mathematical model that all individual whales swim towards the 

optimal location, and that the target prey is the optimal solution in the present generation of whales. 

𝑋(𝑡 + 1) = 𝑋∗(𝑡) − 𝐴 × |𝐶 × 𝑋∗(𝑡) − 𝑋(𝑡)| (8) 

where X(t) X^* (t) represents the ideal placement of whales in populace, A and C stand for the adjustment coefficient, 

and represents the position of separate whales in the first-generation populace. Here are the particular expressions: 

𝐴 = 2𝑎 × 𝑟1 − 𝑎 (9) 
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𝐶 = 2 × 𝑟2 (10) 

where a represents the junction factor that reductions linearly from 2 to 0, and 𝑟1, 𝑟2 symbolises a random number 

among [0, 1]. The specific appearance is as shadows: 

𝑎 = 2 − 2 ×
𝑡

𝑡𝑚𝑎𝑥
 (11) 

where 𝑡 signifies the number of current recapitulations. 𝑡𝑚𝑎𝑥 represents the extreme sum of iterations. 

(2) Surround predation. The following expression updates the position when a humpback whale spirals up to attack 

after seeing prey.: 

𝑋(𝑡 + 1) = 𝑋∗(𝑡) + 𝐷𝑝 × 𝑒𝑏×𝑙 ×  𝑐𝑜𝑠(2 × 𝜋 × 𝑙) (12) 

the shape of the defined coefficient b, besides l is a random sum between -1 and 1. 𝐷𝑝 denotes the distance among a 

whale current optimal individual, as uttered by the following appearance: 

𝐷𝑝 = |𝑋∗(𝑡) − 𝑋(𝑡)| (13) 

The whale must swim away from its target in order to encircle it as it spirals around it. In order to depict this 

procedure, the researchers from Mirjalili hypothesised that the mathematical model represents the 50% chance of a 

humpback whale selecting -surround and surround predation.: 

𝑋(𝑡 + 1) = {
𝑋∗(𝑡) − 𝐴 × |𝐶 × 𝑋∗(𝑡) − 𝑋(𝑡)|           𝑝 < 0.5

𝑋∗(𝑡) + 𝐷𝑝 × 𝑒𝑏×𝑙 × 𝑐𝑜𝑠(2 × 𝜋 × 𝑙)   𝑝 ≥ 0.5
 (14) 

(3) Searching for prey. To circle and encircle their prey, whales move probabilistically when the absolute value of A 

is between 0 and 1. A typical mathematical follows: when 1 < |A| ≤ 2, the humpback whale chooses a random populace 

as prey for roundup instead of ideal those: 

𝑋(𝑡 +  1)  =  𝑋𝑟𝑎𝑛𝑑(𝑡)  −  𝐴 × |𝑋𝑟𝑎𝑛𝑑(𝑡) −  𝑋(𝑡)| (15) 

where 𝑋𝑟𝑎𝑛𝑑(𝑡) shows where one whale from the t generation population happens to be at any given time. Using 

chaotic mapping to initialise tactics for populations. Using better logistic chaos mapping, the whale population 

strategy is initiated. Using a random distribution of whale populations in the original algorithm made the initial 

populations less diverse and more unevenly distributed, which slowed down the algorithm's convergence and reduced 

its convergence accuracy. This, in turn, reduced the algorithm's search performance and made robot path planning 

slower and less accurate. To start the whale population out on the right foot, increase its diversity, and boost the 

algorithm's complete particular exploration capacity within a certain range, to apply chaotic mapping with ergodicity 

[27]. The algorithm is subjected to logistic chaos mapping, a technique commonly employed to initialise populations 

in intelligent bionic algorithms. There is a noticeable lack of improvement in population diversity, and the evenly 

distributed around the two ends of the interval [0, 1]. In contrast, the distribution. 

There is less variation between the percentages of the various regions on the interval [0, 1] and the enhanced logistic 

chaotic mapping values, and the initialised particles are more uniformly dispersed. To enhance the original 

distribution of whale populations, the first stage of the whale optimisation method introduces the chaotic 

arrangement produced by the enhanced logistic chaos mapping into persons. This sequence then generates the 

individual positions.  

Using nonlinear convergence factors as a balancing method is next covered. The initial whale optimisation method 

controlled the algorithm's local and global search competences with the balance parameter A. Expanding the 

algorithm's portion of global exploration improves its global exploration capability, which was previously lacking due 

to the original algorithm's inadequate global search capabilities. The algorithm's global exploration capability has 

been strengthened after multiple experiments were conducted to increase the A-value to 1.3, resulting in a 15% 

improvement in the percentage. The linear factor determines the value of A. Weak global exploration ability, 

accuracy, and sluggish algorithm convergence are caused by the linear reduction of 𝑎 from 2 to 0. In order to slow 

down the rate of decrease of the improved 𝑎 value compared to the original 𝑎 value at the beginning of the iteration, 
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a nonlinear convergence method is utilised. Iteratively decreasing the iteration enhances the local search competence 

and speeds up the convergence of the procedure, while using larger values at the repetition increases the global 

exploration capability and search accuracy. 

While the nonlinear factorial balancing strategy does enhance the procedure's global search performance, it hinders 

the algorithm's local search capability and reduces the line accuracy of the robot path planning due to the random 

numbers affecting the value of A in Equations (9) and (10). Hence, to enhance the algorithm's local search 

capabilities, a weighting approach is incorporated into the site update formula for both global and local nonlinear 

factors. The next step is to modify the location update approach using the Corsi variant. After the aforementioned 

strategy improvement, the WOA is updated with the new position. However, instead of actively updating the target 

position after each iteration, it relies on the new position. As a result, the robot is prone to falling into local optimum 

in late iterations and eventually resorting to local planning. In light of this, the Corsi variation technique is 

implemented to update the target position through random perturbations; this enhances the algorithm's search 

capabilities and accuracy while preventing it from sliding into a local optimum. 

RESULTS AND DISCUSSION 

Research for the proposed classical was conducted using Python's deep learning toolbox and Google Colab. The 

NVIDIA Quadro P4000, a graphics card with 8 GB of RAM, was utilised as the GPU for both testing and training. To 

assess the suggested models, to divided the benchmark datasets into a training set besides a test set, and then used a 

validation method to train and test the models. Several hyper-parameters need to be set in order for the suggested 

architecture to be employed throughout the prediction process. In order to get the most out of the architecture, this 

is necessary. These hyperparameters include batch size, learning rate, and epochs. 

4.1. Performance Metrics 

Popular assessment criteria such as accuracy, ROC, and F1 score were used to assess our approach. These 

measurements are defined in connection to TPs, FPs, TNs, and FNs, or true positives and false negatives, 

correspondingly. 

The percentage of instances that are accurately predicted sum of instances is called accuracy. It can be stated 

mathematically in the following way: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (16) 

Accuracy is the percentage of true positives relative to the total sum of positives (including false positives and 

correctly classified samples), where n is the number of positives. It can be stated mathematically in the following way: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (17) 

The percentage of identified relative to the total sum of positive samples is called recall. Here is the mathematical 

expression: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (18) 

The F1 score, which is usually falls between 0.0 and 1.0. An improved model's performance is score, which shows a 

better balance among recall and precision. It can be stated mathematically in the following way: 

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
=

2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
 (19) 

An important measure for assessing model presentation, ROC AUC shows how well the model performs in normal 

and attack conditions when it comes to categorisation. A model is considered effective if its ROC value is high. 

Additionally, to take into account sensitivity and specificity, which are the same as recall. 

4.2. Validation analysis of proposed classical on Two datasets 

Table 1 besides Figure 2 delivers the experimental study of proposed model on EyePACS in terms of different metrics.  
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Table 1: Validation analysis of projected classical on EyePACS 

Models Accuracy Precision Recall F1 score 

XGBoost 0.90 0.91 0.91 0.90 

MLP 0.91 0.94 0.93 0.93 

ELM 0.95 0.96 0.97 0.94 

ELM-ILWOA 0.98 0.98 0.99 0.98 

 

Validation analysis of EyePACS dataset, comparing classifiers based on Accuracy, Precision, Recall, besides F1-score. 

The XGBoost Precision of 0.91, Recall of 0.91, F1-score of 0.90, demonstrating a reliable but moderate presentation. 

The MLP model improves with an Accuracy of 0.91, Precision of 0.94, Recall of 0.93, and an F1-score of 0.93, 

indicating better classification effectiveness. The ELM classifier further Precision of 0.96, Recall of 0.97, and an F1-

score of 0.94, reflecting a more robust predictive capability. The proposed ELM-ILWOA model outperforms all 

others, achieving the highest Recall of 0.99, besides an F1-score of 0.98, signifying superior classification 

presentation with minimal misclassification errors. 

 

Figure 2: Graphical Comparison of wished-for classical on First dataset 

Table 2 and Figure 3 provides the comparative investigation of projected model with existing techniques on APTOS.  

Table 2: Validation Analysis of projected classical on proposed model on second dataset 

Classifier Accuracy Precision Recall F1 score 

XGBoost 0.9559 0.9258 0.9559 0.8956 

MLP 0.9692 0.9418 0.9692 0.9059 

ELM 0.9714 0.9634 0.9714 0.9192 

ELM-ILWOA 0.9803 0.9704 0.9873 0.9336 

 

Validation analysis of model on the second dataset, evaluating classifiers based on Accuracy, Precision, Recall, 

besides F1-score. The XGBoost classifier achieves an Accuracy of 0.9559, Precision of 0.9258, Recall of 0.9559, 

besides an F1-score of 0.8956, showing competitive but slightly lower performance. The MLP model improves upon 

XGBoost Accuracy of 0.9692, Precision of 0.9418, Recall of 0.9692, besides an F1-score of 0.9059, demonstrating 

enhanced classification capability. The ELM classifier further optimizes performance, achieving 0.9714 Accuracy, 

0.9634 Precision, 0.9714 Recall, besides 0.9192 F1-score, indicating a more balanced and robust classification. The 
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proposed ELM-ILWOA model outperforms all others, Accuracy of 0.9803, Precision of 0.9704, Recall of 0.9873, 

besides F1-score of 0.9336, signifying superior predictive performance with minimal misclassification errors. 

 

Figure 3: Visual Analysis of various models on APTOS 

4.3. Analysis of proposed classical on combined dataset  

Table 3 and Figure 4 gives the experimental enquiry of projected classical with existing techniques in terms of diverse 

metrics by combining two datasets such as EyePACS and APTOS.  

Table 3: Comparative analysis of proposed model on combined datasets 

Model Accuracy Precision Recall F1 

XGBoost 0.94 0.93 0.93 0.94 

MLP 0.96 0.95 0.94 0.95 

ELM 0.97 0.97 0.96 0.97 

ELM-ILWOA 0.99 0.99 0.98 0.98 

 

 

Figure 4: Visual Representation of various models on Combined dataset. 
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A comparative analysis of the projected model on combined datasets using key performance metrics: score. The 

XGBoost model achieves an Accuracy of 0.93, besides an F1-score of 0.94, representative strong presentation 

compared to other models. MLP improves upon XGBoost, attaining Recall of 0.94, besides an F1-score of 0.95, 

reflecting enhanced predictive capability. ELM further optimizes Accuracy of 0.97, Precision of 0.97, Recall of 0.96, 

and an F1-score of 0.97, demonstrating a classification. The proposed ELM-ILWOA model outperforms all others, 

achieving an Recall of 0.98, besides F1-score of 0.98, signifying superior classification presentation with minimal 

misclassifications. 

CONCLUSION 

The improved logical whale optimisation algorithm (ILWOA) fine-tuned Extreme Learning Machine (ELM) is used 

in this study to diagnose diabetic retinopathy (DR). Using the EyePACS and APTOS datasets for testing, the suggested 

strategy tackles the urgent requirement for effective and precise DR detection. The method improves the ELM 

classifier's capacity to distinguish between diverse phases of DR by using ILWOA, which allows for optimal parameter 

adjustment. The experimental consequences show that the ILWOA-optimized ELM model outperforms the 

conventional techniques in terms of resilience, convergence speed, and classification accuracy. Using the EyePACS 

and APTOS datasets demonstrates how well the model works with large-scale ophthalmic data in the actual world. 

The algorithm can be fine-tuned to optimise its hyperparameters, which makes it reliable and scalable for use in 

clinical settings. In order to improve patient outcomes and prevent vision loss, this work adds to the expanding area 

of AI-based healthcare solutions by providing a dependable tool for early DR identification. To increase the reach 

and influence of this groundbreaking approach, future studies can investigate ways to improve feature extraction, 

integrate data from several modalities, and use it in real-time. 
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