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Anomaly detection relates to the difficulty of detecting anomalous inputs from seen samples of 

standard data. Despite recent advances in deep learning for detecting visual anomalies, these 

algorithms are still incapable of deciphering complex images like those encountered in the 

medical business. Medical imaging is essential for diagnosing and treating a vast array of 

conditions, including anomalies detected in 3D Magnetic Resonance Imaging (MRI) data. The 

dependable and accurate detection and classification of anomalies within volumetric MRI scans 

remain challenging for the medical industry. This study presents a novel method for combining 

three potent techniques: 3D U-Net for segmentation, the Convolutional Long Short-Term 

Memory (ConvLSTM) model for temporal processing, and the Shuffled Frog Leaping Algorithm 

(SFLA) for optimization. Utilizing the 3D U-Net architecture, the proposed method efficiently 

segments regions of interest in 3D MRI volumes, allowing for precise anomaly localization. The 

ConvLSTM model incorporates temporal dependencies between successive MRI slices, 

enhancing the accuracy of detecting and classifying dynamic anomalies. Combining the SFLA as 

a metaheuristic optimization instrument significantly improves the efficiency and effectiveness 

of the proposed framework. The SFLA optimizes the network's hyperparameters, improving 

convergence and lowering the danger of training being trapped in local optima. In order to 

calculate the Anomaly Class Weight, the output layer neurons are built to estimate various 

Feature Distribution Similarity values for various characteristics. Extensive experiments were 

conducted on a large dataset of 3D MRI scans with various defects to assess the efficacy of the 

proposed technique. According to the results, the proposed method outperforms standard 

anomaly detection and categorization procedures. The method accomplishes cutting-edge 

precision, sensitivity, and specificity, surpassing existing approaches by a wide margin. 

Keywords:  Deep learning, Anomaly detection, 3D MRI, ConvLSTM, SFLA, 3D U-Net. 

 

1. Introduction 

The main goal of anomaly detection is to locate data samples that do not fit the overall data distribution [1]. Anomalies 

can appear for several reasons, such as noise in the data-capture technique, changes in the underlying phenomenon, 

or a result of new or unusual circumstances in the environment being recorded. Therefore, one of the most essential 

tasks in interpreting medical images is identifying anomalies [2].  Understanding "typical" data samples improves 

the capacity to identify "unusual" ones, a critical component in the application of deep learning models [3]. Predicting 

the model's behavior becomes complicated when an input considerably deviates from the training data [4,5]. This 

trait is vital for high-stakes applications, such as medical decision support systems, where the capacity to recognize 

aberrant data is crucial. A key use of anomaly detection is the detection of anomalous events. For instance, identifying 

various microscopy datasets is time- and money-consuming in pathology due to the different variations of cells and 

tissues that require expert understanding. Medical image analysis is essential for identifying and comprehending a 
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variety of disorders. MRI stands out as a potent tool for obtaining precise three-dimensional (3D) [6] information on 

anatomical structures among the many imaging modalities available. Medical diagnosis and treatment planning are 

impossible without using MRI, enabling professionals to analyze inside organs and tissues without causing harm. 

However, deciphering 3D MRI data can be difficult, particularly when identifying and categorizing image anomalies 

or abnormalities.  

 The complex spatial information in 3D volumes is frequently difficult to handle using conventional image 

processing techniques. Advanced computational models that can automatically detect and classify anomalies with 

high accuracy and efficiency are thus becoming more and more necessary. Medical image segmentation, which needs 

extracting the pixels of organs or lesions from background medical images like CT or MRI scans to offer critical 

information on the shapes and sizes of these organs, is one of the most challenging tasks in medical image analysis 

[32]. Many scholars have proposed a variety of technologically advanced automatic segmentation techniques. Earlier 

systems were constructed using conventional techniques like edge detection filters and mathematical techniques. 

This work proposes a novel technique for automatically segmenting tumorous tissue areas in medical images utilizing 

a multimodal 3D U-Net.Making the operations of Conv-LSTM [7] expands this capability to spatial data. When 

describing changes in visual patterns over time, such as in video categorization and gesture recognition [8], Conv-

LSTM has proven to be quite successful. We propose using Conv-LSTM to "scan" through an imaging volume for the 

presence of disease without the need for expert annotations of diseased regions, as opposed to extracting 

spatiotemporal patterns from time series image data. We use the SFLA to enhance performance and fine-tune the 

model's parameters. Our 3D U-Net and ConvLSTM-based anomaly detection and classification system are based on 

frogs' social behavior. SFLA [9] is a meta-heuristic optimization algorithm that effectively searches the solution space 

to discover the ideal parameter configuration. This enables us to improve generalization and convergence on 

unknown data. 

The major contributions of the paper as follows, 

• The suggested method effectively divides regions of interest into 3D MRI volumes using the 3D U-Net 

architecture, enabling accurate anomaly localization.  

• The ConvLSTM model improves the accuracy of identifying and categorizing dynamic anomalies by 

incorporating temporal relationships between subsequent MRI slices. 

• The suggested framework is substantially more efficient and effective when using the SFLA as a metaheuristic 

optimization tool. The network's hyperparameters are adjusted by the SFLA, which boosts convergence and 

lowers the chance that training will become trapped in local optima.  

• In order to calculate the Anomaly Class Weight, the output layer neurons are built to estimate various Feature 

Distribution Similarity values for various characteristics.  

• Several tests were run on an extensive dataset of 3D MRI images containing various anomalies to see how 

practical the suggested approach was. 

 

The article's format places a detailed introduction to anomaly detection in Section I and illustrations from the 

medical field. Section 2 goes to great length about all relevant research and approaches available in the literature. 

Section 3 covers the operation of the suggested anomaly detection in medical images. The experimental findings 

are described in Section 4, together with a thorough analysis. Finally, Section 5 presents a conclusion for the entire 

paper. 

2. Literature Review 

Asif et al., [10] ADAM optimizer model for classifying brain images uses many pre-trained models like NasNet 

Large, Xception, DenseNet121, etc., to extract the features. The features are retrieved and utilized to train an ADAM 

optimizer on the CNN model to achieve classification. Vidyarthi et al. [11] present a cumulative variance-based 

feature selection approach to categorize different grades of malignant brain tumors. The technique extracts the 

features, uses Cumulative Variance Method (CVM) to select the best features, and then classifies them with KNN, 

NN, and multiclass SVM. Using X-ray-based deep learning algorithms, Rahman et al. [12] published a thorough 

survey for the automatic detection of COVID-19. The authors examined the performance of popular deep 

algorithms, the diversity of the datasets, and image processing techniques. With an overall accuracy of 87.3%, In 

order to find pneumothoraxes in chest X-rays, Park et al. [13] used a 26-layer YOLO model. Tolkachev et al. [14] 

use of UNet and several classification networks for pneumo-thorax segmentation is another well-known example 
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of their work. They conducted their investigation using the most current Kaggle challenge dataset and came up with 

a Dice coefficient of 0.8574. Table 1 shows the list of abbreviations and acronyms 

 

Zhao et al. [15] showed how context data from symmetric regions may effectively improve the feature 

representation of anomaly candidate regions. This augmentation method enhanced performance for detecting chest 

anomalies, especially in conditions with little supervision. However, this method's placement accuracy needed to 

be improved, and the earlier box creation process slowed down the model's reasoning speed. The heuristic red fox 

optimization technique, which Antoni et al. [16] presented for application in medical image processing, allowed for 

the unsupervised selection of the optimal threshold and demonstrated promising results for lung image 

segmentation and detection.  

 

In their study, Marimont et al. [17] employed a PixelSNAIL and explored various restorations by adjusting 

the sampling temperature and assigning appropriate weights to them. Meanwhile, Esser et al. [18] found that 

PixelSNAIL outperforms autoregressive transformers in simulating the probability density estimate of the data 

based on recent advancements in computer vision research. To achieve a more refined reconstruction, Jun et al. 

[19] emphasized the importance of accurately assessing the latent variable probability, which informs the selection 

of values to be resampled for higher-quality reconstruction. 

Choromanski et al. [20] offer a technique for unsupervised anomaly identification and segmentation using 

transformers to solve these issues. Performers are used to learn the distribution of brain imaging data in this 

method. This study expands on the specifics of the experiments we carried out in Pinaya et al. [21], where we 

developed and assessed a robust technique and compared it to contemporary advanced unsupervised algorithms 

for performance on synthetic and natural datasets. In addition, we assess how well our approach performs in 

segmenting and detecting anomalies in 3D brain data. 

 

 Sekhar et al. [22] present the GoogleNet transfer learning model for categorizing distinct tumor 

classifications. The model performs classification using SVM, KNN, and SoftMax algorithms and feature extraction 

using a pre-trained CNN model. In Kujur et al. [23], which considers models like S-CNN, an in-depth examination 

of several CNN models is drawn. The technique compares the effectiveness of alternative strategies using two sets 

of brain image data. However, Meissen et al. [24] have demonstrated that a straightforward baseline can outperform 

most autoencoder-based UAD techniques. They show that simple thresholding-based algorithms can detect 

hyperintense brain tumors and multiple sclerosis lesions more effectively than most UAD methods that rely on 

healthy data for training. They merely perform histogram equalization preprocessing and use the FLAIR modality. 

 

2.1 Limitations of Existing System 

• Finding anomalies in medical images might have severe ethical repercussions. Potential false positives or 

false negatives in the system could result in inaccurate diagnoses or pointless treatments. 

• Expanding the current system to recognize a wider variety of abnormalities might be challenging because it 

may only be intended to identify particular illnesses or anomalies. 

• Various things, including patient mobility, equipment constraints, and other technical problems, can cause 

noise and artifacts in 3D MRI images. These artifacts may prevent abnormalities from being identified and 

categorized. 

• Unbalanced datasets, in which the quantity of standard samples far outweighs that of aberrant ones, 

frequently make anomaly detection in medical imaging difficult. This imbalance may produce biased results 

and subpar classification performance for rare abnormalities. 

• The current approach may rely on expensive and time-consuming expert annotations for training. Complex 

3D MRI scans require specialized annotation methods, which can induce inter-observer variability. 

 

2.2 Problem Identification 

• The current technology may have trouble accurately spotting irregularities in 3D MRI medical images. 

Medical picture anomalies can be subtle and difficult to spot, resulting in false negatives or false positives 

that severely influence patient diagnosis and treatment planning. 
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• The current approach cannot generalize across various MRI datasets or modalities. This lack of 

generalization could restrict its usefulness and necessitate time-consuming retraining when used on fresh 

datasets. 

• For MRI images to be of higher quality and to have noise artifacts eliminated, preprocessing is essential. 

Possible areas for improvement in the current system's preprocessing methods could produce subpar results 

for anomaly detection. 

• A crucial step in the anomaly detection process is segmentation. The current system may use old or ineffective 

segmentation techniques that need to precisely identify regions of interest, which reduces the accuracy of 

subsequent anomaly identification. 

Table 1. List of abbreviations and acronyms 

Abbreviation Description Abbreviation Description 

MRI Magnetic Resonance 

Imaging 

KNN K-Nearest Neighbours 

Algorithm 

ConvLSTM Convolutional Long 

Short-Term Memory 

NN Neural Network 

SFLA Shuffled Frog Leaping 

Algorithm 

SVM Support vector 

machine 

CT Computerized 

tomography 

YOLO You only look once  

ADAM Adaptive Moment 

Estimation 

S-CNN Supervised 

Convolutional Neural 

Network 

CNN Convolutional Neural 

Network 

UAD Unsupervised Anomaly 

Detection 

CVM Cumulative Variance 

Method 

FLAIR Fluid-Attenuated 

Inversion Recovery 

SegAE Segmentation Auto-

Encoder 

GAN Generative Adversarial 

Network 

cuDNN CUDA Deep Neural 

Network 

  

 

3. Proposed Methodology 

In this section, we look into a novel strategy that combines these three powerful tools. The recommended technique 

successfully splits regions of interest into 3D MRI volumes by exploiting the 3D U-Net architecture, enabling precise 

anomaly localization. The ConvLSTM model incorporates temporal dependencies between successive MRI slices, 

enhancing the accuracy of detecting and classifying dynamic anomalies. Combining the SFLA as a metaheuristic 

optimization instrument significantly improves the efficiency .The SFLA fine-tunes the network's hyperparameters, 

improving convergence and reducing the risk of training being stuck in local optima. Figure 1 shows the block diagram 

of the ConvLSTM method for Anomaly detection in medical Images. 
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Figure 1. Block diagram of the ConvLSTM method for anomaly detection in medical images 

 

3.1 Image Pre-processing 

 

The medical image under consideration has been read to enhance the image's quality. The method begins by setting 

up a normalisation window of size x, which encompasses K hops for any given pixel. The standard deviation value is 

measured in each of the window's four additional sections. Second, the area with the lowest pixel standard deviation 

is chosen. The method modifies the pixel value to normalize the pixel based on the estimated Mean Standard Value 

(MSV) derived from selected region pixels. This will be repeated in iterations for the specified number of hops, k. 

Segmentation has been done using this normalized image. 

 

3.2 3 D U-Net-based Segmented  

 

A pipeline for segmenting medical images must include the neural network’s design and related hyperparameters. 

For semantic segmentation, a range of deep learning architectures are available, each fusing performance, resilience, 

and efficiency in a particular way. The U-Net is a preferred and promising option [25-26], featuring an agreeable 

trade-off between performance and variability. To minimize needless parameter inflation brought on by more 

sophisticated designs, we chose the classic 3D U-Net as the essential building element of our technique [27]. We 

chose a design that could support a patch with the measurements 160x160x80 with a single channel of normalized 

Hounsfield units (Hus). Our selected architecture’s last layer generated a mask with four channels and a size of 

160x160x80. These probabilities were normalized using the SoftMax function to provide a balanced exponential 

correction. We used transposed convolution to handle down-sampling and maximum pooling to manage up-

sampling. At its lowest resolution, the architecture displayed 512 feature maps, and at its most significant level, 32 

feature maps. Except for the convolutions related to up-sampling and down-sampling, which used a kernel size of 

2x2x2 with a stride of 2x2x2, all convolutional operations used a kernel size of 3x3x3 with a stride of 1x1x1. To stabilize 

the network’s training procedure, batch normalization was successively applied after each convolutional block. Refer 

to Figure 2 for a representation of the architecture’s structure. 
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Figure 2. Standard architecture of 3D U-Net  

 

When segmenting medical images, a noteworthy bias emerges in the distribution of classes throughout the semantic 

annotation process, frequently distributed towards the background class. The Tversky index [28] was combined with 

categorical cross-entropy to incorporate this innate tendency, resulting in the composite loss function used 

throughout the model training procedure (1). 

total Tversky CCELoss Loss Loss= +     (1) 

1 . .

N
c

Tversky

c c c c

TP
Loss N

TP FN FP =

= −
+ +

    (2) 

, ,

1

log( )
N

CCE o c o c

c

Loss Y p
=

= −      (3) 

 

The Tversky index (2), an asymmetrical similarity metric used to compare the segmented region with the ground 

truth, was altered by our team. These changes improve the capacity to balance false positive and false negative rates 

by considering different classifications. In machine learning, the cross-entropy loss function—often written as (3)—

is popular. It gauges the entropy between these distributions by quantifying the overall difference between the real 

and expected distributions. We use the binary indicator ,o cx  to assess the precision of class label c about observation 

o. Additionally, we use the categorical cross-entropy, meant by the term “multi-class adjustment,” to accommodate 

several categories. The variable represents the estimated likelihood that observation o belongs to class ,o cp . 

 

We started using an initial weight decay of 0.001 and the Adam optimization technique to speed up the model 

fitting process. After 15 consecutive epochs, if the training loss had not decreased, we implemented a dynamic 

response by 0.1-fold, reducing the learning rate. A 1e-5 learning rate was established as the minimum. We used the 

early ending training strategy, which caused the training process to cease after 100 epochs without a fitting loss 

decline, to reduce the possibility of overfitting. A maximum of 1000 epochs could be used for training the neural 

network model. In this context, an epoch is defined as the iteration through 150 training batches as opposed to the 

conventional notion of an epoch being a single run through the complete dataset. 
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The benefits of 3D U-Net for anomaly detection are as follows: 

• Compared to manually created feature-based techniques, the 3D U-Net’s deep architecture can automatically 

learn complicated patterns and distinctive features from volumetric data. 

• The U-Net design improves anomaly segmentation accuracy by incorporating multi-scale features 

throughout the up-sampling process. 

• The 3D U-Net can process various volumetric data types frequently found in industrial and medical 

applications since it can accommodate multiple input sizes. 

 

3.3 Classification using ConvLSTM 

 

The suggested method successfully captures spatial information and temporal dependencies inside the 3D MRI image 

sequences using ConvLSTM’s spatiotemporal features. To extract geographical data and analyse temporal 

dependencies, the architecture combines LSTM-based layers with convolutional layers. The system learns to 

discriminate between regular and irregular patterns by training on a sizable dataset of annotated 3D MRI images. 

 

Combining the advantages of a CNN with an LSTM, a unique subclass of LSTMs called ConvLSTMs [29] was 

developed to model medical images data accurately. Like the LSTM, the ConvLSTM can retain or discard information 

from the previous cell state while it updates the current cell state. The ConvLSTM accomplishes these transitions 

from input to state and state through convolutional architectures instead of the LSTM’s reliance on internal matrix 

multiplications. ConvLSTM cells can keep the data’s original dimensions as they pass through, preventing it from 

being compressed into a one-dimensional feature vector, because to this convolutional method. As a result, the 

ConvLSTM is skilled at processing collections of input images that are either two-dimensional or three-dimensional. 

Equations (4) through (9) describe the ConvLSTM processes as follows: 

1 1( * * )t Si t hi t xi t ii S h x b − −= + + +W W W    (4) 

1 1( * * )t Sr t hr t xr t rr S h x b − −= + + +W W W    (5) 

1( * * )t So t ho t xo t oo S h x b −= + + +W W W    (6) 

1tanh( * * )t hS t xS t SS h x b−= + +W W     (7) 

1 (1 ) tt t t tS f S f S−= + −      (8) 

tanh( )t t th o S=      (9) 

Where I stands for the input gate, r for the forget gate, o for the output gate, tS  is the candidate cell state, S is the 

cell state, h is the hidden state, b is the bias, and , , , , , , , , , n T

Si hi Sr hr xr So ho xo hS xS

W W W W W W W W W W  is a 

logistic sigmoid W  function, respectively. Figure 3 represent the additional connections between a ConvLSTM cell 

and an LSTM cell. Both the current and prior cell stacks are where these connections come from. 

 
Figure 3. Architecture for ConvLSTM memory  
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3.4 SFLA  

 

By incorporating knowledge from frogs’ social interactions, the SFLA imitates natural processes. Using sophisticated 

optimization techniques, this method enables exploration through parameter space to quickly find the best solutions. 

The technique seeks to iteratively optimize the selection of features and model parameters to differentiate accurately 

between normal and abnormal image regions in the context of anomaly detection and classification in 3D MRI 

images. 

 

Eusuff and Lansey invented the SFLA in 2006 [30]. The evolutionary process of SFLA combines a focused 

exploitation mechanism with a thorough exploration mechanism, much like other algorithms in the memetic lineage. 

A randomly generated population is first produced, subjected to analysis, and then sorted to organize it. Individuals 

inside each memeplex compete to hold the highest position locally or worldwide. The entire population is reorganized 

after a definite amount of local evolution cycles to facilitate meme transmission. Up until the halting criteria are met, 

these processes are repeated. [30]. The top candidate, or “frog,” from each memeplex remains stationary during each 

iteration of the standard SFLA algorithm. However, this may result in local optima that occur early in the optimization 

process, trapping the algorithm and perhaps leading to premature termination. This addition enables the algorithm 

to escape from less-than-ideal solutions, reducing the chance of becoming stale and improving its capacity to address 

such problems successfully.  

 

Each frog in the procedure stands in for an n-dimensional vector, or ,1 ,2 ,3 ,[ , , ,..., ]i i i i i nY y y y y= , in the 

context of an optimization problem with n control parameters (Figure 4). The Latin-hypercube sampling strategy is 

used to generate N frogs at the start of the optimisation phase to ensure that the whole design space may be 

thoroughly explored. The total number of frogs produced by this arrangement is N = m * p. For instance, {

1 2, ,..., mS S S }, { 1 4 7 2, , ,Y Y Y S }, { 2 5 8 3, ,Y Y Y and S }, and { 3 6 9, ,Y Y Y }; because all Xi has been sorted, the Nelder-Mead 

technique determines that each memeplex contains n + 1 frogs [17]. In memeplexes, the partitioning process is 

followed by a local search. To get started, we give Xb, k, the top frog in the memeplex, a randomly generated vector 

with upper and lower bounds set to a range of one-tenth. 

'

, ,

1
[ ( , ),..., ( , )]

10
b k b kY Y rand lb ub rand lb ub= +    (10) 
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Figure 4. System flow of proposed  

The new frog's objective function value is assessed. If it outperforms the original frog, ,b kY is swapped out for
'

,b kY . 

After the most prominent frog in the kth memeplex receives an update, a subset of the frog population is chosen to 

construct a sub-memeplex. The triangle probability function calculates the likelihood of selection for each frog in the 

memeplex. The degree to which these frogs accomplish the memeplex's desired goals impacts the selection process' 

outcomes. 

, 2( 1 ) / ( 1), 1,2,3,...,i kP p i p p i p= + − + =    (11) 

Where (I, ,i kP ) is the probability that a frog will be selected from the kth memeplex, and (i) is the frog’s rating. Within 

the sub-memeplex, the two frogs with the highest and lowest goal values are referred to as ,b kY  and ,w kY , respectively. 

Like the PSO algorithm’s guiding principles, the least privileged frog learns from the best frog in its sub-memeplex 

and the best frog overall. This is a reflection of the transfer of knowledge. Mathematical changes are made to the least 

successful frog’s position as follows: 

, , , ,

'

, ,

[ ( ) (1 ) ( )]b k w k b overall w k

w k w k

v S w Y Y w Y Y

Y Y v

=  − + −  −

= +
   (12) 

Let S be the predetermined step size, and W be a random weight between [0, 1]. We determine whether the new 

,b overallY  location is inside the planned area after acquiring it. If so, we assess its objective worth. We update the 

ranking of the worst frog once more if this value does not improve over the previous objective value for that specific 
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frog. Instead of the best frog within the sub-memeplex, this version uses the position of the best frog globally, 

designated as 
'

,w kY . 

, ,

'

, ,

( )b overall w k

w k w k

v S w Y Y

Y Y v

=   −

= +
     (13) 

The objective value of the newly chosen position 
'

,w kY  is reassessed whether it lies within the designated design space. 

If neither of these alternatives improves the objective value, the settings of the least successful frog are changed 

following: 
'

, [ ( , ),..., ( , )]w kY rand lb ub rand lb ub=     (14) 

The population is then randomly distributed and shifted to the following iteration once the local search procedure 

has repeated t times. The stop requirement is reached after all of these steps have been completed. 

 

4. Result and Discussions 

Using various different classes with differing restrictions, the proposed ConvLSTM-based anomaly detection and 

classification model's performance is assessed for 3D MRI images. This section discusses the outcomes obtained in 

each test situation. In this research using, the existing systems are CVM, Segmentation Auto-Encoder (SegAE), 

Generative Adversarial Network (GAN), and LSTM. Further research and development of this strategy should 

produce even more impressive effects as technology advances, enhancing clinical decision-making, early anomaly 

detection, and better patient outcomes in medical imaging. The Brats data set is utilised by the approach to assess 

performance. When evaluating the performance of the models, which are evaluated based on a number of different 

parameters and the data set's three tumour types, the limitations are indicated in Table 2. Figure 5 shows the 3D MRI 

images. 

 

Table 2. Evaluation details for brats data 

Factor  Value 

Data Source Brats 2019 

No of Image Class 3 

Total Images 3000 

Platform  Python  

 

4.1 Experimental Setup 

The Python 3.6.9 programming language, PyTorch 1.6 deep learning framework, CUDA 10.0 GPU acceleration, and 

cuDNN 7.6.5 library are all used in the experimental configuration. A computer system with an Intel(R) Core(TM) 

i7-1065G7 CPU and a GeForce GTX Titan Xp 440.100 GPU is used to conduct the model's learning, assessment, and 

outcome analysis. The essential clock speed of the CPU is 1.30 GHz, and it has a maximum turbo boost speed of 1.50 

GHz. 
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Figure 5. 3D MRI medical images 

4.2 Performance Metrics 

 

Performance measurements are necessary to assess the classifiers’ prediction performances. Although accuracy is 

one of the most frequently used measures, it may yield inaccurate results if the data’s class distribution is unbalanced. 

Even in class imbalances, performance metrics like precision, F1 score, specificity, sensitivity, and response time can 

be valuable tools for assessing the classifier’s capacity to distinguish between numerous classes. TP, FP, FN, and TN 

stand for True Positives, False Positives, False Negatives, and True Negatives, respectively, in the confusion matrix.  

Dice Similarity Coefficient (DSC): Equation (15) can be used to determine the dice similarity coefficient (DSC), which 

is used to compare real tumour and non-tumor pixels with anticipated tumour and non-tumor pixels. 

2
100

2

TP
DSC

FP TP FN
= 

+ +
        (15) 

JACCARD Similarity Index (JSI): The JACCARD similarity index (JSI), which is determined using Equation (16), is 

used to determine how similar the real tumour pixels and anticipated tumour pixels are. 

100
TP

JSI
TP FN FP

= 
+ +

        (16) 

TRUE Positive Rate (TPR): TPR is an indicator of sensitivity, and by predicting the actual anomalous region 

abnormal, the anomalous region detection results can be confirmed 

TP
TPR

TP FN
=

+
         (17) 

FALSE Positive Rate (FPR): Equation (18) is used to calculate the ratio of incorrectly identified to correctly identified 

pixels, often known as the false positive rate (FPR): 

FP
FPR

FP TN
=

+
         (18) 

Accuracy: The ability of a artificial intelligence model to recognise and categorise abnormal structures, lesions, or 

anomalies found in 3D MRI data is referred to as "accuracy". The accuracy score assesses how successfully the model 
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distinguishes between normal and abnormal regions in 3D MRI data, assisting in the early identification and 

treatment of medical disorders. 

( )

( )

TP TN
Accuracy

TP FP TN FN

+
=

+ + +
       (19)

 
4.2.1 Dice Similarity Coefficient (DSC) Analysis 

 

Table 3. DSC analysis of ConvLSTM technique using existing systems 

Number 

of data 

from 

Dataset 

CVM LSTM SegAE GAN ConvLSTM 

 

100 75.45 83.45 79.56 86.56 91.23 

200 76.12 83.99 80.56 87.12 91.99 

300 77.78 84.98 81.23 88.99 92.34 

400 78.45 84.99 81.99 89.45 93.89 

500 78.11 85.12 82.76 89.77 94.44 

 

 

Figure 6 and Table 3 show a comparison of the DSC gained by the ConvLSTM technology vs competing alternatives. 

The graphical representation depicts the efficacy and DSC gains enabled by deep learning. For example, when 

analysing DSC values across 100 data points, the CVM, LSTM, SegAE, and GAN models obtain 75.45%, 83.45%, 

79.56%, and 86.56% DSC, respectively, compared to the astounding 91.23% precision of the ConvLSTM model. When 

using a variety of datasets, the ConvLSTM model emerges as the clear winner. Notably, 94.44% with 500 data points, 

the ConvLSTM model outperforms the CVM, LSTM, SegAE, and GAN models, yielding DSC scores of 78.11%, 85.12%, 

82.76%, and 89.77%, respectively. 

 
Figure 6. DSC analysis of the ConvLSTM technique with existing systems 
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4.2.2 Jaccard Similarity Coefficient (JSC) Analysis 

Table 4. JSC analysis of the ConvLSTM technique with existing systems 

Number 

of data 

from 

Dataset 

CVM LSTM SegAE GAN ConvLSTM 

 

100 70.12 75.12 80.34 85.12 92.15 

200 71.45 76.66 81.33 86.56 93.78 

300 72.34 77.77 82.78 88.99 94.19 

400 73.33 78.12 83.11 89.45 95.66 

500 74.45 79.45 83.99 90.33 96.12 

 

The JSC of the ConvLSTM methodology is compared to that of other methods in Figure 7 and Table 4. The graph 

demonstrates how the deep learning approach has improved JSC and efficiency. For instance, the JSC of the CVM, 

LSTM, SegAE, and GAN models with 100 data is 70.12%, 75.12%, 80.34%, and 85.12%, respectively, as opposed to 

the JSC of the ConvLSTM model, which is 92.15%. With diverse data, the ConvLSTM S model has had the best 

performance. ConvLSTM exhibits a JSC of 96.12% under 500 data, compared to sensitivity values of 74.45%, 79.45%, 

83.99%, and 90.33% for CVM, LSTM, SegAE, and GAN. 

 
Figure 7. JSC analysis of the ConvLSTM technique with existing systems 

4.2.3 True Positive Rate (TPR) Analysis 

Table 5. TPR analysis of the ConvLSTM technique with existing systems 

Number 

of data 

from 

Dataset 

CVM LSTM SegAE GAN ConvLSTM 

 

100 68.12 78.45 73.19 83.88 91.45 

200 69.45 79.12 74.56 84.78 92.88 

300 70.23 80.45 75.55 85.55 93.56 

400 71.11 81.66 76.12 86.12 94.55 

500 72.34 82.45 77.44 87.77 95.77 
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The TPR of the ConvLSTM methodology is compared to that of other methods in Figure 8 and Table 5. The graph 

demonstrates how the deep learning method is more effective with TPR. For instance, the TPR values of the CVM, 

LSTM, SegAE, and GAN models for 100 data are 68.12%, 78.45%, 73.19%, and 83.88%, respectively, as contrasted to 

the TPR of the ConvLSTM model, which is 91.45%. With diverse data, the ConvLSTM S model has had the best 

performance. ConvLSTM has a specificity of 95.77% for 500 data points, compared to TPR values of 72.34%, 82.45%, 

77.44%, and 87.77% for CVM, LSTM, SegAE, and GAN. 

 
Figure 8. TPR analysis of the ConvLSTM technique with existing systems 

 

4.2.4 Predicted Time Delay (PTD) Analysis 

Table 6. PTD analysis of the ConvLSTM technique with existing systems 

Number 

of data 

from 

Dataset 

CVM LSTM SegAE GAN ConvLSTM 

 

100 13.334 10.456 7.678 4.134 1.675 

200 13.765 10.778 7.119 4.998 2.456 

300 14.786 11.234 8.234 5.987 2.998 

400 14.991 11.567 8.998 5.119 3.456 

500 15.223 12.987 9.115 6.564 3.987 

 

The suggested ConvLSTM methodology's Predicted time delay is compared to existing approaches in Table 6 and 

Figure 9, where the ConvLSTM technique outperforms all the others. For instance, the suggested ConvLSTM 

methodology predict 100 data in just 1.675ms as opposed to the 13.334ms, 10.456ms, 7.678ms, and 4.134ms required 

by the CVM, LSTM, SegAE, and GAN existing methods. Similar to this, the proposed ConvLSTM strategy predict 500 

data in 3.987ms as opposed to 15.223ms, 12.987ms, 9.115ms, and 6.564ms for existing techniques like CVM, LSTM, 

SegAE, and GAN.  
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Figure 9. PTD analysis of the ConvLSTM technique with existing systems 

 

4.2.5 False Positive Rate (FPR) Analysis 

Table 7. FPR analysis of the ConvLSTM technique with existing systems 

Number 

of data 

from 

Dataset 

CVM LSTM SegAE GAN ConvLSTM 

 

100 37.937 35.314 32.029 29.728 25.029 

200 37.425 35.829 32.627 29.525 26.526 

300 38.536 35.637 33.324 30.672 26.828 

400 38.626 36.453 33.526 31.829 27.526 

500 38.425 36.938 34.121 30.232 27.321 

 

 
Figure 10. FPR analysis of the ConvLSTM technique with existing systems 

Figure 10 and Table 7 display an FPR comparison of the FFNN-CQNGT strategy with other well-known methods. The 

deep learning technique has an enhanced performance while reducing FPR, as shown in the graph. For example, the 
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FFNN-CQNGT model's FPR value for 100 data is 25.029%, while the FPR values for the CVM, LSTM, SegAE, and 

GAN models are 37.937%, 35.314%, 32.029%, 29.728%, respectively. The FFNN-CQNGT model, however, has 

demonstrated its best performance for various data sizes with low FPR values. In a similar vein, for 500 data, the 

FPR value for the FFNN-CQNGT is 27.321%, whereas, for the CVM, LSTM, SegAE, and GAN models, it is 38.425%, 

36.938%, 34.121% and 30.232%, respectively. 

 

4.2.6 Accuracy Analysis 

Table 8. Accuracy analysis of the ConvLSTM technique with existing systems 

Number 

of data 

from 

Dataset 

CVM LSTM SegAE GAN ConvLSTM 

 

100 80.12 90.23 85.56 94.91 96.13 

200 81.34 91.22 86.12 94.99 97.77 

300 82.99 92.76 87.34 95.13 98.45 

400 83.67 93.45 88.98 95.67 98.99 

500 84.44 94.87 89.12 95.98 99.12 

 

 
Figure 11. Accuracy analysis of the ConvLSTM technique with existing systems 

 

The accuracy of the ConvLSTM methodology is compared to that of other methods in Figure 11 and Table 8. The 

graph demonstrates how the deep learning method increases accuracy and efficiency. For example, the accuracy of 

the CVM, LSTM, SegAE, and GAN models with 100 data is 80.12%, 90.23%, 85.56%, and 94.91%, respectively, while 

the accuracy of the ConvLSTM model is 96.13%. With diverse data, the ConvLSTM S model has had the best 

performance. ConvLSTM has an accuracy of 99.12% for 500 data points, compared to accuracy values of 84.44%, 

94.87%, 89.12%, and 95.98% for CVM, LSTM, SegAE, and GAN. 

 

4.2.7 ROC Curve Analysis 

An evaluation statistic that takes into account classification performance (normal vs. abnormal) across all decision 

thresholds is the Area Under the Curve of the Receiver Operating Characteristic (ROC AUC) (Figure 12). Because of 

this, the performance of the models may be evaluated ''probabilistically'' and without bias, eliminating the 

requirement to select a threshold for the projected abnormality scores (Table 9).  
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Table 9. ROC curve analysis for ConvLSTM method  

False 

positive 

Rate 

Random 

classifier 

CVM LSTM SegAE GAN Proposed 

ConvLSTM 

 

0 0 0 0 0 0 0 

0.1 0.1 0.41 0.59 0.64 0.61 0.78 

0.2 0.2 0.62 0.62 0.78 0.73 0.83 

0.3 0.3 0.75 0.78 0.77 0.77 0.86 

0.4 0.4 0.82 0.81 0.77 0.79 0.90 

0.5 0.5 0.84 0.83 0.81 0.80 0.92 

0.6 0.6 0.90 0.85 0.85 0.86 0.95 

0.7 0.7 0.92 0.89 0.90 0.91 0.98 

0.8 0.8 0.94 0.93 0.95 0.97 0.98 

0.9 0.9 0.98 0.95 0.98 0.99 0.99 

1.0 1.0 0.99 0.99 0.99 0.99 0.99 

   

 
Figure 12. ROC curve analysis for ConvLSTM method  

 

5. Conclusions 

In conclusion, this study integrates a 3D U-Net model, ConvLSTM architecture, and the ground-breaking SFLA to 

propose a novel and effective method for segmented anomaly identification and classification in 3D MRI data. The 

outcomes showed how well this hybrid methodology worked to locate and classify anomalies in intricate 3D MRI 

data. The model produced remarkable segmentation performance by utilizing the 3D U-Net's capabilities, 

successfully outlining regions of interest, and improving the subsequent anomaly detection procedure. ConvLSTM 

architecture was incorporated to take advantage of the temporal correlations in sequential MRI scans, allowing the 

model to capture complex patterns and dynamic changes in the data. An optimization layer was added to the model 

using the SFLA, accelerating convergence and optimizing model parameters for better anomaly classification 

accuracy. The model was able to produce better outcomes with fewer iterations because of the addition of this creative 

method. The suggested method has great promise for advancing medical imaging analysis, notably in 3D MRI image 

anomaly identification and classification. A strong and efficient solution is provided by integrating deep learning 

methods with optimization approaches described in this paper, with potential applications in numerous medical 

specialties and diagnostic procedures. The suggested framework ConvLSTM experimental results demonstrate 

exceptional performance: precision of 94.44%, f-measure of 97.12%, accuracy of 99.12%, sensitivity of 96.12%, 

specificity of 95.77%, and a execution time of 3.987ms. Further research and development of this strategy should 
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produce even more impressive effects as technology advances, enhancing clinical decision-making, early anomaly 

detection, and better patient outcomes in medical imaging. 
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