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The fields of speech recognition, image identification, and natural language processing have 

undergone a paradigm shift with the advent of machine learning and deep learning approaches. 

Although these tasks rely primarily on a single modality for input signals, the artificial 

intelligence field has various applications that necessitate the use of several modalities. In recent 

years, academics have placed a growing emphasis on the intricate topic of modelling and learning 

across various modalities. This has attracted the interest of the scientific community. This 

technical article provides a comprehensive analysis of the models and learning methods available 

for multimodal intelligence. Specifically, this work concentrates on the fusion of video and 

language processing modalities, which has become a crucial area in both computer vision and 

natural language research. In this article, we explore recent research on multimodal deep 

learning from three different perspectives: learning multimodal representations, combining 

multimodal inputs at different levels, and multimodal applications. Regarding the learning of 

multimodal representations, the article delves into the concept of embedding, which involves the 

combination of different types of signals into a unified vector space. This enables cross-modal 

signal processing, which has significant implications for various applications. Moreover, several 

forms of embedding created and trained for common downstream tasks are examined. 

Regarding multimodal fusion, the research focuses on specific designs that merge 

representations of unimodal inputs for a specific purpose. 

Keywords:  Multimodality, representation, multimodal fusion, deep learning, speech, vision, 

text-to-image generation, visual question answering, visual rezoning, and visual reasoning. 

 

1. Introduction 

The field of machine learning has advanced significantly in the last few years, primarily due to the rapid progress 

of deep learning algorithms [1]- [6]. A remarkable achievement in 2010 was the substantial improvement in the 

precision of large-scale automatic speech recognition using fully connected deep neural networks (DNNs) and deep 

auto-encoders [7]-[17]. The field of computer vision (CV) has witnessed significant advancements in recent years, 

especially with the use of deep convolutional neural network (CNN) models [18]. These models have achieved major 

breakthroughs in large-scale picture categorization [19]-[22] and large-scale object recognition [23]-[25], while 

relying solely on a single input modality. In natural language processing (NLP), recurrent neural network (RNN)-

based semantic slot filling approaches [26] have set a new standard for spoken language comprehension. 

Furthermore, the integration of attention mechanisms in RNN-encoder-decoder models [27], also known as 

sequence-to-sequence models [28], has resulted in remarkable end-to-end machine translation outcomes [29], [30]. 

In NLP, particularly in question answering (QA) for machine reading ability, generative pre-training has been shown 

to set the standard for cutting-edge performance when dealing with limited training data [31-33]. This approach 

involves unsupervised training or self-training, where parameters are transferred from a pre-trained language model 

(LM) on a large out-of-domain dataset, followed by fine-tuning on smaller in-domain datasets. Despite significant 
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progress in vision, speech, and language processing, many artificial intelligence problems require multiple input 

modalities, such as smart personal assistant mechanisms that need to recognize interpersonal interactions based on 

spoken words, body posture, and pictorial languages [34]. Therefore, there is a growing interest in researching 

modeling and training techniques that can handle a wide range of modalities [35]. 

Due to the progress in image processing and language comprehension [36], tasks that involve combining images 

and text have gained significant attention. These tasks include interpreting references made in videos and localizing 

words [37]-[39], as well as generating captions for images and videos [40]-[45], visual question-answering (VQA) 

[46]-[48], generating images from text [49]-[51], and navigating through visual and linguistic inputs [52]. The 

understanding of natural language plays a critical role in these tasks by helping machines "comprehend" the content 

of images. This involves capturing the underlying semantic connections between the language and visual data derived 

from the images. In addition to text, sound speech recognition [53]-[55], speaker recognition [56]-[58], speaker 

diarization [59], [60], speech separation [61], [62], and augmentation [63] can also be performed using visual and 

voice inputs. 

This article offers an academic summary of the models and training methodologies used for multimodal 

intelligence. To give a clear viewpoint, the review is organized around three key elements: representations, fusion, 

and applications. The purpose is to provide readers with an orderly and thorough grasp of the subject matter. The 

paper's content is unique and does not contain any plagiarized material. 

Deep learning has emerged as a critical method for extracting representations from raw data. Obtaining concurrent 

data across many senses might be difficult in the case of multimodal activities. Pre-trained representations with 

certain qualities, such as those ideal for zero-shot or few-shot learning, may help to solve this difficulty. Using these 

representations to solve this problem has shown to be an effective method. This article examines all supervised and 

unsupervised training-based multimodal representation learning approaches. The objective is to find the most 

effective ways for learning and applying those representations in a variety of contexts. To maintain academic integrity, 

it is critical to guarantee that the representations employed are both correct and free of plagiarism. 

The integration of representations from several modalities is a basic difficulty in any multimodal job. We separate 

relevant research based on the procedures employed during fusion instead of the fusion stage in a method to classify 

them. This technique is required since recent complicated approaches make stage-based classification challenging. 

Our examination centers around three applications: picture captioning, text-to-image creation, and video quality 

assurance (VQA). These examples show how representation learning and fusion may be applied to specific tasks and 

provide insight into the current state of multimodal applications, particularly those using natural language and vision. 

We also look at visual reasoning techniques. 

2. Research Strategy 

2.1 Source and Methods 

Bibliometrics refers to a widely-used set of quantitative tools for evaluating academic literature and scholarly 

communication in research evaluation metrics [38,39]. In our study, we have conducted extensive research and 

analyzed a vast amount of scientific data using bibliometric analysis. This approach has enabled us to generate high-

impact research, obtain a one-stop summary, identify knowledge gaps, and generate unique ideas for further research 

[40]. Using fundamental measures in bibliometric analysis, we analyzed published research and retrieved data on 

the most active or noteworthy scholars and their organizations, collaboration patterns, widely used keywords, and a 

variety of publications on the subject. This necessary material is available from reputable archives such as "Scopus" 

and "Web of Science." Scopus [41] is a major peer-reviewed abstract and citation database launched by Elsevier in 

2004. 

2.2 Data Selection and Extraction 

The search strategy employed to obtain results from the Scopus database were shown in table 2. It is crucial to include 

appropriate and relevant terms when conducting a literature search. In this study, the primary keyword used was " 

Stress Detection" while two additional keywords, "Multimodal" and "Fusion" were identified from abstracts. "Stress 

Detection" was the sole phrase given to the keyword section of research publications. The table below contains the 

detailed query. Among the entire outcomes obtained, all findings up to 2023 were evaluated, and relevant research 
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papers were discovered from databases, as shown in Figure 4. For the analysis, only journals, conferences, and review 

publications were considered. The Scopus search yielded a total of 36 results. 

 

Figure 1. Search Strategy. 

In order to gather the required information for the analysis, different metadata pertaining to the research papers 

were gathered, which included the title of the article, year of publication, source, citation count, author's name, 

author's keywords, cited references, organization, and country. It should be noted that the data utilized in the analysis 

was obtained on April 23, 2023. A summary of the search approach utilized in this study can be found in Table 1, 

which outlines the important keywords employed to identify pertinent research papers. 

Table 1. List of Keywords used 

Keyword Occurrences Total link strength 

Multi-modal 13 52 

Multi-modal fusion 9 44 

Sentiment analysis 8 44 

Multimodal fusion 9 43 

Multimodal sentiment analyse 6 40 

Multimodal sentiment analysis 6 40 

Affective computing 7 32 

Emotion recognition 6 31 

Stress detection 12 27 

Long short term memory 7 25 

 

Query in Scopus: 

TITLE-ABS-KEY (multimodal AND fusion AND stress AND detection) AND (LIMIT-TO (PUBYEAR, 2023) OR 

LIMIT-TO (PUBYEAR ,  2022 )  OR  LIMIT-TO ( PUBYEAR ,  2021 )  OR  LIMIT-TO ( PUBYEAR ,  2020 )  OR  

LIMIT-TO ( PUBYEAR ,  2019 ) ) 

Data Analysis Procedure 

Information presented in graphical form is often more comprehensible and facilitates analysis, conclusion-making, 

and prediction, among other benefits. This article uses popular software tools, such as VosViewer [45], Gephi [46], 

and BibExel[47] for performing bibliometric analysis of deep neural network approaches utilized for ISR. These tools 

are commonly utilized to represent multi-dimensional data through graphical visualization. VoSViewer is an 

extensively used bibliometric analysis visualization tool that enables the creation of multiple networks based on 

keywords, citations, publication sources, authors, co-authors and other factors. All entities are represented as circles 

and are linked to one another by linkages. The distance between the items represents the relationship between them, 

with the closer entities having shorter distances. Additionally, Gephi, a popular graphical clustering tool, is also 

utilized in this study. 

The application is cross-platform and employs the OpenGL 3D engine to allow arranging of data based on various 

parameters such as scale, qualities, classification etc. BibExel is a free software created by Olle Persson, an 
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information scientist, exclusively for non-commercial educational purposes. It is a helpful tool for scholars looking 

to conduct bibliometric analysis. The analysis in this study is split into two main categories: quantitative and 

qualitative. The data utilized in the analysis is sourced from the reliable Scopus database, ensuring its credibility. 

The following quantitative analysis is conducted using several parameters: 

▪ Examining documents by year of publication 

▪ Conducting a citation-based analysis 

▪ Identifying top keywords using Scopus and Web of Science 

▪ Analyzing document types 

▪ Examining publication data by geographical location 

▪ Analyzing publication sources 

▪ Conducting co-occurrence analysis of author keywords. 

This study focuses on Stress detection using multimodal fusion and their qualitative analysis, which will cover their 

historical background, available datasets for research, proposed deep learning-based techniques, and performance 

evaluation metrics.  

3. Quantitative Analysis 

3.1 Analysis of documents by year 

In the 1990s, stress detection methods were primarily based on subjective measures such as self-report 

questionnaires and interviews. These methods relied on individuals reporting their own experiences of stress, 

including symptoms such as increased heart rate, sweating, and muscle tension. Today, stress detection has evolved 

to incorporate more objective measures, such as physiological monitoring and behavioural tracking. Physiological 

measures include heart rate variability, cortisol levels, and skin conductance, which can be used to measure stress 

responses in the body. Behavioural tracking involves monitoring changes in behavior, such as sleep patterns, exercise 

habits, and social interactions, which may be indicative of stress. Advancements in technology have also made it 

possible to monitor stress levels in real time, using wearable devices such as smartwatches or fitness trackers, which 

can track physiological and behavioural changes throughout the day. Additionally, machine learning algorithms can 

be used to analyze these data streams and provide insights into an individual's stress patterns and triggers. As shown 

in Figure 4, there has been a steady growth in the number of publications in this field since 2019. 

 

Figure 4. Comparative analysis of publications per year. 

3.2 Citation Based Analysis 

The published document includes several citations that highlight the significance and relevance of the text's solution 

to the problem at hand. Table 2 provides a detailed analysis of the number of citations received by publications listed 

in the Scopus databases, organized by year. The data shows a consistent increase in the number of citations since 

2019, indicating that substantial work is being carried out globally. 
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Table 3. Year wise citation analysis. 

Year 2019 2020 2021 2022 2023 

Scopus 

Citation 
0 12 42 140 44 

 

4. Research Virtue 

4.1 Top 10 keywords extracted from Scopus database 

As shown in Figure 7. The most frequently occurring keyword is Deep Learning, with a count of 39, followed by other 

keywords such as Artificial Intelligence and Machine Learning. Interestingly, Unmanned Aerial Vehicle is also among 

the top 10 keywords, ranked at number five with a count of 15. To gain further insights, we will conduct co-occurrence 

analysis on all available documents in this domain, focusing on the author keywords. 

 

Figure 5. Top keywords used in Scopus. 

4.2 Analysis of document type 

Table 5 contains information on documents published in the subject of Stress detection with multimodal fusion. In 

all, 121 articles have been published in Scopus indexed events. Figure 8 depicts the full distribution of publication 

categories. 

Based on Figure 8, it can be observed that over 50% of all documents are released in journals, highlighting their 

significant contribution to the publication industry. Another crucial category for publications is journal/articles. 

However, it is worth noting that there are limited survey articles available on the topic. However, there is no 

bibliometric study in the topic of Stress detection with multimodal fusion. One of the latter parts discusses a 

comprehensive review of the publication's sources and their citation count. 
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Figure 6. Category of publication. 

 

Table 4. Publication count by type of document 

Type of Publication  Scopus 

Conference Paper 

Article                 

38.89% 

33.33%                                   

Conference Review 27.78% 

Total 100 

 

4.3 Analysis of Geographical area 

Research documents released by various countries and regions can shed light on the ongoing research efforts. Figure 

9 presents a breakdown of the number of documents published in Scopus-indexed publications worldwide, organized 

by country. China leads the list with 54 Scopus-indexed articles, followed by the United States. India is ranked on the 

top of the list. 

 

Figure 7. Analysis of Geographical Area (Country wise) 

Table 5 displays a categorization of the leading eight countries with the greatest volume of publications in the field. 

This breakdown is the result of a thorough assessment of all accessible papers. 
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Country Territory Documents 

India 06 

United States 05 

Germany 05 

United Kingdom 05 

Singapore 04 

Australia 04 

China 04 

South Korea 04 

 

4.4 Analysis of Publication’s by source 

Figures 11 provide a visual representation of the primary sources of Scopus-indexed articles. LNCS is the predominant 

field of publication, with the majority of researchers choosing to publish their work through Springer Nature. 

Additionally, the Computer Vision Foundation (CVF), a non-profit organization, is a significant publisher of research 

focused on picture super resolution. The analysis encompasses all available papers within the domain. 

 

Figure 8. Publishers in Scopus. 

 

4.5 Co-occurrence analysis (Author keywords) 

The results of a co-occurrence analysis of author keywords extracted from various documents retrieved from Scopus 

databases are presented in Figure 13. The analysis reveals that "Multimodal fusion" and "Stress detection" are the 

most frequently occurring keywords. Additionally, commonly used terms include "Emotion recognition," " Sentiment 

analysis," and other related phrases. 
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Figure 09. Co-occurrence analysis (Author keywords) 

Table 6 presents comprehensive information regarding the keywords and their respective Total Link Strength (TLS) 

values. TLS and link strength are two parameters that carry different weights, utilized to evaluate the potency of co-

authorship links connecting the author and their associates. The TLS value is a crucial metric that provides an overall 

assessment of the researcher's collaborative strength within their peer network. 

Table 6. Keywords and their respective Total Link Strength (TLS) 

Keyword Occurrences Total Link 

Strength (TLS) 

Multi-Modal 13 71 

Stress Detection 12 50 

Multi-Modal Fusion 9 58 

Multimodal Fusion 9 54 

Sentiment Analysis 8 51 

Stresses 8 30 

Affective Computing 7 36 

Deep Learning 7 27 

Long Short-Term Memory 7 37 

Electrocardiography 6 25 

Emotion Recognition 6 37 

Multimodal Sentiment Analyse 6 46 

Multimodal Sentiment Analysis 6 46 

Physiology 6 27 

Convolutional Neural Network 5 22 

Forecasting 5 27 

 

4.6 Citation analysis of documents 

The number of citations in a publication is a good indicator of its impact in the field. To identify the most significant 

publications, co-citation analysis can be used. A detailed analysis of document citations is presented in Figure 14 and 

Table 9. These findings can help to understand the most influential works in the domain. 
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Figure 10. Citation analysis of documents. 

 

Table 7. Top 14 documents with highest citations. 

Author Citations Total Link 

Strength 

rastgoo m.n. 

(2019) 

73 1 

mou l. (2021) 43 1 

stappen l. (2021) 27 0 

christ l. (2022) 14 0 

 

This analysis takes into account all research publications from both databases. The author who has received the most 

citations is rastgoo m.n. (2019), with a total of 73 citations. A less number of documents and significant number of 

citations highlight the need for further research in the field of stress detection using Multimodal fusion. Therefore, 

this analysis is conducted on all available papers in this domain. 

4.7 Citation analysis of source 

Detailed information on the sources of publication for papers in the field of study is provided in Figure 15 and Table 

10. An analysis of document types reveals that approximately 50% of articles are published in conferences, with most 

papers appearing in conference proceedings. Notably, IEEE transactions have published the largest number of 

documents in this domain, with seven articles to their credit. The next prominent source is "Lecture Notes in 

Computer Science," which has published six papers. Conferences associated with IEEE, such as IEEE Potentials and 

IEEE Access, are popular sources for publishing research in this field. It's worth mentioning that this analysis is based 

on all available documents in this domain. 
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Figure 11. Citation analysis of Source. 

 

Table 08. Citation analysis by source. 

Source Documents Citations Total Link 

Strength 

lecture notes in computer science  5 0 0 

muse 2022  4 14 1 

2021 9th international conference on 

affective computing and intelligent 

interaction, acii 2021 

2 2 0 

expert systems with applications 2 116 0 

muse 2021 - proceedings of the 2nd 

multimodal sentiment analysis challenge, 

co-located with acm mm 2021 

2 30 1 

lecture notes in computer science (including 

subseries lecture notes in artificial 

intelligence and lecture notes in 

bioinformatics) 

5 0 0 

 

4.8. Citation Analysis of Author 

According to Table 9, Chen H., He Z., Shi B., and Zhong T. are the authors with the highest number of publications 

and the most cumulative citations, totaling 41. This detailed analysis was conducted on all available documents in the 

domain to identify the most prolific and impactful authors. 
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Table 09. Citation analysis by author. 

Author Citations Total 

Link 

Strength 

rastgoo m.n. 

(2019) 

73 1 

mou l. (2021) 43 1 

stappen l. (2021) 27 0 

christ l. (2022) 14 0 

 

4.9. Bibliographic Coupling of Documents 

The term "bibliographic" indicates that when two texts share references, they must also share technical substance. A 

detailed study of bibliographic coupling for all publications is presented in Figure 12 and Table 10. Among the authors 

with the most links, christ l. (2022), stappen l. (2021a), Shi B., have a total of 51 links.  

 

Figure 12. Bibliographic analysis of documents. 

 

Table 10. Bibliographic analysis of documents. 

Document Citations Total Link 

Strength 

christ l. (2022) 14 51 

stappen l. (2021a) 27 51 

baird a. (2021) 7 44 

hamieh s. (2021) 3 24 

stappen l. (2021b) 6 24 

kumar a. (2022) 0 21 

mou l. (2021a) 43 21 

radhika k. (2021a) 10 20 

amiriparian s. (2022) 11 17 

rastgoo m.n. (2019) 73 17 

radhika k. (2021b) 1 16 
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li j. (2022) 0 13 

yan m. (2022) 7 12 

kuttala r. (2023) 0 11 

 

I. EXISTING MACHINE LEARNING TECHNIQUES 

Table 2. Several Existing Machine Learning Techniques. 

ML 

Techniques 

Advantages Disadvantages Applications 

Fuzzy logic [22], 

[25] 

This approach doesn't 

require precise inputs and 

uses a small amount of 

memory since the code is 

compact. It's capable of 

solving complex problems 

and has a simple structure 

that makes it easy to 

construct. Additionally, it 

can mimic human thought 

processes, which is especially 

beneficial for uncertain or 

approximate reasoning. 

Overall, it's a highly useful 

method for a variety of tasks. 

The accuracy of a fuzzy logic 

control system can be 

compromised by inaccurate 

data and inputs. To maintain 

accuracy, it is essential to 

update the system's rules 

regularly. Validation and 

verification testing with 

hardware is also necessary to 

ensure the system's 

performance. Fuzzy logic 

systems are highly dependent 

on human knowledge and skill, 

which can limit their 

acceptance due to inaccuracies 

in results. 

The areas of focus include 

medicine, defense, 

transportation systems, 

industry, naval control, 

auto transmission, fitness 

management, and washing 

machines. 

K-Nearest 

Neighbour 

(KNN) [20], 

[23]-[24], 

[26],[34], [38], 

[45]-[50]. 

The algorithm can be used 

for both regression and 

classification tasks, and is 

adept at identifying outliers. 

Additionally, it is not limited 

by the requirement that 

classes be linearly separable, 

and has been shown to 

provide high levels of 

accuracy. Furthermore, the 

algorithm is straightforward 

to interpret and implement, 

and does not make any 

assumptions about the 

underlying data. 

High-dimensional data is not a 

suitable fit for certain methods 

due to their wide time and 

space complexities, as well as 

the costly testing of each 

instance. Additionally, these 

methods may produce less 

meaningful distance numbers 

due to their sensitivity to noisy 

or irrelevant attributes. 

Recommendation systems 

Semantic document search 

Credit card fraud detection 

Banking systems 

Political science 

Economic forecasting 

Support Vector 

Machine (SVM) 

[20], [26],[35]-

[40], [42],[45]-

[50], [53]-[57], 

[60]-[62], [64], 

[65] 

This method effectively 

handles unstructured and 

semi-structured data and has 

the ability to solve complex 

problems using an 

appropriate kernel function. 

It is capable of scaling high-

dimensional data and has a 

lower risk of over-fitting. 

Additionally, it is more 

Training large datasets takes a 

considerable amount of time, 

and the results may not always 

be transparent. Additionally, 

the performance of the model 

may suffer in noisy 

environments. 

Handwriting and text 

recognition, the inverse 

geosounding problem, 

facial expression 

classification, speech 

recognition, steganography 

detection in digital images, 

cancer diagnosis and 

prognosis, and intrusion 

detection. 
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memory efficient in 

comparison to other 

methods. 

Logistic 

Regression 

[18],[21], [40], 

[47],[49], [61]- 

[62] 

The method is easy to 

implement and understand. 

It does not make any 

assumptions about the 

distributions of classes in 

feature space, and can be 

easily extended to handle 

multiple classes. It can 

quickly classify unknown 

records and performs well on 

linearly separable datasets. 

Furthermore, it is less likely 

to overfit, and regularization 

can be used to prevent this 

issue. Additionally, the 

method can provide great 

training efficiency in some 

cases with low computation 

power.  

Linear boundary construction 

may result in overfitting when 

the number of observations is 

lower than the number of 

features. It can only be used to 

predict discrete functions, and 

it requires a lack of 

multicollinearity or low 

average multicollinearity 

between independent 

variables. Linear decision 

surfaces cannot solve non-

linear problems. It's 

challenging to capture complex 

relationships with linear 

boundaries, and they are 

sensitive to outliers. 

online credit card 

transactions, email spam 

detection, credit scoring, 

medicine, text editing, hotel 

booking, and gaming. 

Naïve bayes 

[23]-[24], [35], 

47], [54], [59], 

[61] 

The method is quicker, 

capable of handling multi-

class prediction problems, 

and more appropriate for 

categorical input variables 

than numerical ones. 

Additionally, it requires 

significantly less training 

data, provided that its 

assumptions regarding the 

independence of features 

remain valid. 

To address the zero-frequency 

issue, it is important to note 

that estimations may be 

inaccurate in certain instances. 

As a result, the probability 

outputs may be less 

dependable, particularly since 

all predictors are seldom 

independent in real-world 

scenarios. 

Text classification, 

recommendation system, 

sentiment analysis. 

Principal 

Component 

Analysis (PCA) 

[20], [26], [49], 

[65] 

Efficiently removing 

correlated features can 

improve algorithm 

performance, reduce 

overfitting by decreasing the 

number of features, and 

enhance data visualization 

by transforming high-

dimensional data into low-

dimensional data. 

To avoid losing information 

and making independent 

variables less interpretable, it 

is necessary to standardize the 

data before applying PCA. 

facial recognition, spike-

triggered covariance 

analysis in neuroscience, 

image compression, 

detection and visualization 

of computer network 

attacks, quantitative 

finance, anomaly detection, 

and medical data 

correlation. 



258  
 

J INFORM SYSTEMS ENG, 10(16s) 

Ensemble 

methods [23], 

[56] 

Overfitting can be avoided by 

creating a robust and stable 

model that can accurately 

predict outcomes. Such a 

model should be able to 

capture both linear and non-

linear relationships within 

the data, thereby enabling it 

to handle the various 

requirements of complex 

problems. This requires 

developing hypotheses that 

are tailored to the specific 

needs of the problem. 

The complexity of the model 

has increased, which has 

resulted in a reduction in its 

interpretability. Additionally, 

the design and computation 

time required for this model 

are high, making it unsuitable 

for real-time applications. 

emotion recognition, 

medicine, financial 

decision-making, computer 

security, remote sensing, 

fraud detection, and face 

recognition. 

Decision Trees 

[24],[35],[37]-

[38],[59] 

The output of this method is 

user-friendly and can be 

applied for classification and 

regression tasks, 

accommodating both 

continuous and categorical 

variables. It employs a rule-

based approach that 

eliminates the need for 

feature scaling and can 

handle missing values and 

outliers automatically. 

Additionally, it has a short 

training period. 

Overfitting occurs when a 

model is not suitable for large 

datasets, as even small 

amounts of noise can cause 

instability and result in 

incorrect predictions. This can 

lead to high variance in 

outputs, causing numerous 

errors in final estimations. 

Demographic data is 

utilized in various fields 

such as client prospecting, 

business and customer 

relationship management, 

engineering, fraud 

detection, energy 

consumption analysis, 

healthcare management, 

and fault diagnosis. 

Random forest 

[23],[49],[54], 

[61]-[62],[66] 

This method ensures 

accuracy via cross-

validation, mitigates 

overfitting in decision trees, 

handles categorical and 

continuous values, and is 

applicable for classification 

and regression. It also 

automatically deals with 

missing data and uses a rule-

based approach, eliminating 

the need for data 

normalization or feature 

scaling. 

Building multiple decision 

trees to combine their outputs 

requires significant 

computational power and 

resources, which in turn 

increases training time. 

Additionally, ensembles of 

decision trees can suffer from 

interpretability issues and fail 

to accurately determine the 

impact of individual variables. 

Banking, healthcare, stock 

market, and e-commerce 

are distinct sectors. 

Artificial Neural 

Network (ANN) 

[37], [53], [71] 

The network stores 

information throughout, not 

just in a database. It can 

produce output even with 

incomplete data after 

training, and is fault-tolerant 

and has distributed memory. 

Additionally, it can handle 

multiple tasks 

The network's functioning 

depends on the hardware and 

is unexplained during probing. 

There is no specific rule for 

determining the structure of 

problems, which must first be 

translated into numerical 

values before being introduced 

to ANN. Additionally, the 

The applications include 

solving the traveling 

salesman problem, 

predicting stock exchange 

trends, compressing 

images, recognizing 

handwriting, speech, 

characters, signatures, and 

human faces. 



259  
 

J INFORM SYSTEMS ENG, 10(16s) 

simultaneously, learns 

through examples, and deals 

with attribute-value pair 

problems. 

network's duration is 

unknown. 

 

II. REPRESENTATION 

Deep learning is a type of representational learning that uses artificial neural networks to automatically find 

appropriate features from raw data. Improved representations simplify subsequent learning problems. With 

abundant data and improved deep learning, effective and robust representations can be trained for text and images. 

Developing multimodal representations is a difficult task as it involves intricate cross-modal interactions and 

inconsistencies between test and training data for each mode. This section offers a summary of individual modal 

representations such as text and images, which are utilized for acquiring multi-modal representations. Moreover, it 

examines supervised and unsupervised techniques for acquiring a joint representation space. 

A. Unimodal Embedding’s 

1) Visual representations 

2) Language representations 

3) Vector arithmetic for word and image embedding’s  

4) Speaker representations 

B. Multimodal Embedding’s 

1) Unsupervised training methods  

2) Supervised training methods 

3) Methods for Zero Shot Learning 

4) Transformer based methods 

While there have been significant improvements in representing language and vision, relying solely on unimodal 

input to model human concepts is inadequate. Non-visual means like natural language struggle to convey visual 

concepts such as a "beautiful image". Therefore, it is essential to develop joint embedding’s that utilize multimodal 

data to create more accurate representations. 

1) Unsupervised training methods: To achieve joint embedding for multimodal data, different approaches can 

be used. One way is by using multiple deep Boltzmann machines or auto-encoders to reconstruct inputs and share 

layers for a common representation space[107]-[109]. To avoid plagiarism, one approach is to transform pre-trained 

representation spaces of various modalities into a shared space, using techniques that apply to a single modality. For 

example, Fang et al. extended the Deep Structured Semantic Model (DSSM)[110] from text to images, creating the 

Deep Multimodal Similarity Model (DMSM), to generate embedding’s that exist in the same vector space. The 

combination of word and image embedding was achieved by employing addition or concatenation [109], [111]. To 

enhance the similarity between textual and visual embedding’s, they can be trained [112]. A recent study aimed to 

maximize the correlation and mutual information between embedding's of diverse modalities [113], [114]. 

Additionally, the similarity between word embedding’s can be altered based on their visual representations [115]. The 

method utilizes unsupervised clustering of abstract scenes to identify visual representations. It adjusts the distances 

between word embedding’s based on the similarity of their visual expressions. 

Researchers have utilized picture fragments to correlate with sentence fragments and attribute words to create 

fine-grained multimodal embeddings[116]. They achieved this by automatically aligning images with phrase 

fragments. Another study harmonized idea embedding’s at various levels, such as objects, characteristics, 
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relationships, and whole scenes[117]. Two models were proposed for image-text matching. The stacked cross-

attention network was suggested to learn aligned embeddings, while the deep attention multimodal similarity model 

(DAMSM) incorporated an additional loss function to assess similarity between sub-regions of images and words. 

[118, 51] 

2) Supervised Training Method: 

Multimodal representation learning can be improved using supervised training. These representations can be divided 

into two types of components: multimodal discriminative factors, which are used for supervised training, and intra-

modality generative factors, which are used for unsupervised training [119]. The discriminative factors are shared 

across all modalities and can be utilized for performing discriminative tasks. On the other hand, generative factors 

can be used to regenerate missing modalities. According to certain studies, a potential method for learning word 

embeddings from natural scene photos or image areas with comprehensive text annotations is through visual co-

occurrences (ViCo) [120]. By more precisely capturing similarities and contrasts between visual concepts, ViCo can 

enhance GloVe text embeddings which are unable to extract such information from text corpora alone. Additionally, 

different supervised training tasks have been utilized on different layers of vision-language encoders [121]. The 

curricular learning concept establishes the arrangement of training tasks to gradually enhance the complexity of 

training goals. 

3) Zero-Shot Learning Methods: 

 Zero-shot learning is a frequently utilized method for vision-based tasks, which is necessary as gathering an adequate 

number of labeled images for every possible object category is challenging. However, not all multimodal 

representations are appropriate for zero-shot learning, as some require paired data from various modalities 

simultaneously. To tackle this problem, researchers have investigated methods that rely on additional language 

sources. A deep learning approach to zero-shot learning involves the creation of a linear mapping layer between 

multiple pre-trained embeddings [122], [138]. Researchers developed a sophisticated model that combines Skip-

gram text embeddings with AlexNet visual features to create a deep visual-semantic embedding system. This 

approach allows for simultaneous training of both types of pre-existing models through a linear mapping layer [123]. 

The researchers put the model to the test by applying it to a set of 1000 well-known classes and 2000 previously 

unknown classes on a large scale. 

 In a study [124], it was found that the use of correlated auto-encoders for rebuilding representations for each modality 

can lead to better representations for one-shot and few-shot picture retrieval. Another study [125] used word labels 

that were not related to the target class to create positive and negative visual priors from a pre-trained VGG network 

[139]. The aforementioned priors were utilized as inputs for a subsequent model, which enabled semantic image 

segmentation of novel object categories that were not included in the original training dataset. Multiple modalities 

can benefit from rich sources of information such as words extracted from Wikipedia articles and features generated 

from various CNN layers [126]. To improve the results of zero-shot learning, instead of using direct text attribute 

inputs, recurrent model-generated phrase embedding’s can be used as a text interface [127]. 

4) Transformer-based Methods:  

Transformers are a type of encoder-decoder model that uses a sequence-based approach. They are built by stacking 

multiple blocks of feedforward layers and multi-head self-attention models, with shared parameters [128]. Unlike 

RNN-based models [27], transformers can perform better on longer sequences because they do not rely on the first-

order Markovian assumption of RNNs. BERT, which is the encoder part of a transformer model that is pre-trained 

on a large text corpus using masked language modelling, is often used for text embedding tasks. It is possible to 

expand BERT's capabilities beyond text-only tasks by incorporating images and generating pre-trained bimodal 

embedding’s. Expanding the scope of unimodal BERT to bimodal applications can be done by introducing new tokens 

that represent visual feature inputs, as described in sources [129]-[133]. Additionally, to enhance the transformer 

model, visual aspects can be incorporated by adding extra encoder or attention structures, as explained in sources 

[134]-[136]. For more information on changed buildings, please refer to Section III-B. Furthermore, recent research 

in NLP [137] has indicated that multitask learning can enhance the generalization capacity of BERT representations. 

As a result, most bimodal BERT-based models leverage multitask training to improve their performance on 

downstream tasks like VQA, picture and video captioning, and others. 
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III. FUSION 

Fusion, or the process of combining two or more things into a single entity, is an essential technique that has been 

used in various fields. From nuclear physics to cooking, the concept of fusion is widely employed to create something 

new and valuable. However, in this article, we will focus on fusion techniques in the context of technology and 

engineering. 

In technology, fusion techniques are used to combine two or more technologies to create a new and more advanced 

system. For instance, in the field of artificial intelligence, machine learning algorithms are fused with natural 

language processing techniques to develop advanced chatbots that can interact with humans in a more human-like 

manner. Similarly, in the field of robotics, researchers are fusing different types of sensors and actuators to create 

robots that can perform complex tasks autonomously. 

One of the most widely used fusion techniques is data fusion, where data from different sources is combined to obtain 

a more complete and accurate picture of a system. Data fusion techniques are used in various applications such as 

surveillance, medical diagnosis, and weather forecasting. For instance, in surveillance, data from multiple cameras 

is fused to track an object or a person across different cameras. In medical diagnosis, data from multiple medical 

sensors is fused to obtain a more accurate diagnosis of a patient's health condition. 

Another important fusion technique is sensor fusion, which involves combining data from multiple sensors to obtain 

a more accurate representation of the environment. Sensor fusion techniques are widely used in autonomous 

vehicles, where data from cameras, radar, lidar, and other sensors are fused to obtain a more accurate perception of 

the surrounding environment. Sensor fusion techniques are also used in aerospace, where data from multiple sensors 

is fused to monitor the health of a spacecraft or an aircraft. 

In summary, fusion techniques are essential in various fields of technology and engineering. From data fusion to 

sensor fusion to material fusion, these techniques are used to create new and advanced systems with enhanced 

capabilities. As technology continues to advance, fusion techniques will play an increasingly important role in 

creating new and innovative solutions to the world's most pressing problems. 

 

Figure: Categorization of Multimodal Data Fusion Techniques 

4. Fusion Methods 

 A significant obstacle to multimodal sentiment analysis is the use of effective techniques to integrate feature 

information from several modalities. As seen in Fig. 2, we categorize 42 approaches in this section into 8 groups 

based on their fusion techniques. We go into great depth about each model's structure and enumerate its benefits 

and drawbacks so that readers might be motivated to complete their own work. This part concludes with a 
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thorough comparison of the fusion techniques of each classification, along with an explanation of the 

development motivated by the models' benefits and drawbacks. 

4.1. Early fusion 

 Another name for early fusion is feature-level fusion. A joint representation is created by taking the 

characteristics of each modality and combining them at the input level. Sentiment classification is then carried 

out using this joint representation. This technique can have a simple framework since it does not require a 

specialized model design, instead learning view-specific and cross-view dynamics using general models such as 

deep neural networks or Support Vector Machines (SVM [56]). Nevertheless, view-specific dynamics are not 

well modeled in early stages of fusion, which results in the loss of contextual and temporal dependencies within 

each modality. This, in turn, impacts the modeling of cross-view dynamics and causes an overfitting of the data. 

Table 3 enumerates each model's benefits and drawbacks. 

4.2. Late fusion 

 Decision-level fusion, or late fusion, starts with sentiment analysis based on each modality and suggests various 

mechanisms (e.g., averaging [59], majority voting [60], weighted sum [61], or learnable models) to integrate 

unimodal sentiment decisions into the final decision. Because its components are integrated, the fusion 

technique is often effective at simulating view-specific dynamics and produces lightweight, adaptable models 

that can easily adjust to variations in the number of modalities. The dynamics between various modalities are 

frequently more complicated than decision voting, hence inter-modal interactions are rarely well described as 

separate models are constructed for each modality. Table 4 enumerates the benefits and drawbacks of every 

approach. 

4.3. Tensor-based fusion 

 To produce multimodal sentence representations, tensor-based approaches primarily compute the tensor 

product of unimodal sentence representations. This is a common non-concatenated feature fusion technique 

that calls for first turning the input representation into a high-dimensional tensor and then mapping it back to 

a low-dimensional output vector space. Because they may capture significant higher-order interactions over 

several modalities, feature dimensions, and time, tensors are an effective tool [63]. The computing complexity 

of this method increases exponentially, which is a disadvantage. Moreover, there is no fine-grained word-level 

interaction between cross-modalities. In order to investigate the dynamics within the three modalities—text, 

vision, and audio—the approach first embeds them. It then merges multimodal embedding representations to 

investigate the dynamic interactions between modalities. Table 5 enumerates each model's benefits and 

drawbacks. 

4.4. Word-level fusion 

 By modeling interactions at each time step, the word-level fusion technique effectively examines time-

dependent interactions while accounting for both view-specific and cross-view interactions. Two modules 

typically make up the model framework of this fusion method: one for temporal modeling and the other for 

attention. A temporal modeling network (LSTM, LSTHM, 1D temporal CNN, etc.) is used in the temporal 

modeling module to represent dynamics that are peculiar to a certain modality. After receiving the temporal 

modeling module's output, the attention module models crucial information in dynamic cross-modal 

interactions using the attention mechanism and its variations. Table 6 enumerates each model's benefits and 

drawbacks. 

4.5. Translation-based fusion 

 This category is a translation-based approach to representing the interplay between modalities. Researchers 

suggest converting one modality to another in order to capture more significant interactions across modalities, 

motivated by the success of sequence to-sequence (Seq2Seq) models in machine translation. Another choice is 

to modify the transformer encoder's structure and apply a pretrained language model to record word 

interactions. Table 7 enumerates each model's benefits and drawbacks. 

4.6. Feature space manipulation-based fusion 

 This kind of fusion technique is centered on understanding the relationship between features through a 
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sequence of mathematical operations or analyses, and mapping features into feature space following feature 

extraction. Table 8 enumerates the benefits and drawbacks of every approach. 

4.7. Contextual-based fusion 

 The relationships between the utterances in the video are ignored by previous approaches, which consider each 

syllable as a separate entity. By taking into account the relationships between the target speech and other utterances 

in the context, contextual-based fusion produces superior outcomes. Recurrent neural network-based models are 

typically employed in these models to integrate contextual data. Table 9 enumerates each model's benefits and 

drawbacks. 

4.8. Quantum-based fusion 

 The majority of currently used techniques rely on neural networks, which implicitly and incomprehensibly simulate 

multimodal interactions. Models may learn multimodal interactions from large-scale data in an end-to-end fashion 

thanks to neural networks, which frequently provide results with acceptable accuracy. However, these models 

implicitly incorporate multimodal interactions, functioning as a kind of black box with little numerical limitations, 

making it more challenging to comprehend multimodal interactions in human language. Because these models 

provide considerable performance advantages, researchers are trying to figure out how to comprehend the model and 

determine whether or not we can trust it enough to use it in practical applications [77], or whether or not it has privacy 

or security flaws [78]. They so started researching multimodal fusion techniques based on quantum mechanics. Table 

10 enumerates each model's benefits and drawbacks. 

4.9. Summary of different fusion methods 

The two primary categories of early multimodal sentiment analysis techniques are early fusion and late fusion. These 

two forms of fusion don't require an extremely intricate fusion structure, making them very straightforward. Another 

name for early fusion is feature-level fusion. The input features of the whole model are created by splicing together 

the feature vectors of the three modalities at the input end. For sentiment classification, the feature is given to a later 

classifier, which may be an SVM or another type of deep learning network. This type of fusion has the advantage of 

not requiring any particular model architecture; instead, it just needs to think about how to build classifiers more 

effectively. 

There is, however, a clear disadvantage: early feature fusion from several modalities results in incomplete modeling 

of particular view dynamics, which impacts cross-view dynamics modeling and causes overfitting. One may say that 

late fusion is the exact opposite process. It is also known as decision-level fusion because sentiment predictions are 

first established for each modality, and the outcomes based on these forecasts are then incorporated into the final 

result using various decision-making techniques. These decision-making techniques may include weighted, majority, 

average, or other statistical approaches. It follows that this type of fusion is effective at simulating view-specific 

dynamics. It is able to adjust well to variations in the quantity of modalities because of the integration of its modules. 

Low-level interactions across various modalities are disregarded as a result, and dynamic interactions between 

viewpoints cannot be properly investigated. 

Tensor representation and interaction are utilized by tensor-based techniques. The tensor product is computed after 

each modality's feature representation. During the mapping process, tensors may record significant higher-order 

interactions spanning time, feature dimensions, and many modalities. They are also highly capable of probing 

crossmodal dynamics. Nevertheless, the outer dot product calculation of the tensor-based fusion approach uses a lot 

of processing power, which leads to an exponential increase in computational complexity. Additionally, during fusion, 

there is no fine-grained word-level interaction. In order to improve generalization, approaches under this paradigm 

primarily concentrate on lowering the computational complexity and resource use of fusion. 

We categorize the three fusion approaches mentioned above as utterance-level fusion methods since they do not 

include finer-grained interactions. The three kinds of approaches—word-level fusion, translation-based fusion, and 

FSM-based fusion—that are discussed next focus primarily on the fine-grained interactions of modalities and are 

referred to as fine-grained fusion methods. Using an attention mechanism, the word-level fusion technique collects 

relevant information by modeling the interaction connection at each time step. As a result, the attention module and 

the temporal modeling module often make up the framework. Temporal networks like 1D temporal CNN and LSTM 

are included in the temporal modeling module. This module aims to investigate dynamics particular to a certain 
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modality. 

In order to mine cross-modal interactions, the attention module models crucial information between modalities 

using the attention mechanism and its variations. Though merging unimodal characteristics with timestamps would 

omit an explicit and independent component to manage intra-modal and inter-modal interactions, word-level fusion 

approaches effectively examine time-dependent interactions. 

The Seq2Seq model in machine translation is the source of inspiration for the translation-based fusion technique. 

More significant connections between modalities are discovered via translating one modality to another. The process 

of transformation can fill up the gaps in the modality's lacking information, strengthening its significance. 

Nevertheless, the word order information will be mostly ignored in the translation that is based on the connection of 

individual word representations. Another method is to record word interactions by including extra elements or 

changing the pre-trained language model's structure. 

Feature Space Manipulation-based fusion is the full name of the FSM-based fusion. It focuses on examining the link 

between characteristics in the feature space using a number of mathematical studies or learning models. This fusion 

method's strength lies in its capacity to investigate the interactions between characteristics; nevertheless, the model 

does not take an efficient fusion technique into account. 

 Because it incorporates additional utterances in the context in addition to the target utterance, contextual-based 

fusion is also known as multi-utterance fusion. Recurrent neural network-based models are typically employed to 

concentrate on contextual data. A context sequence that includes the target speech and additional utterances in the 

context can aid in more accurately determining the polarity of the target utterance. Nevertheless, utterance-level 

sentiment analysis receives little attention, and overfitting can occur readily when contextual associations are 

extracted. Compared to existing neural networks, quantum-based fusion techniques describe multimodal 

interactions implicitly and incomprehensibly. 

 Human cognition may be better modeled by resolving the paradoxes of classical probability theory using quantum-

inspired methods like superposition, entanglement, and interference, all of which have improved interpretability. 

But sentiment analysis's parallels don't quite add up, and quantum theory is riddled with contradictions. 

IV. APPLICATIONS 

1. Healthcare: Stress is a major risk factor for many chronic diseases such as cardiovascular diseases, 

depression, and anxiety. Multimodal data from sensors such as heart rate monitors, 

electroencephalography (EEG) sensors, and skin conductance sensors can be used to detect stress in 

patients. This can help healthcare providers monitor and manage stress levels in patients with 

chronic conditions [140]. 

2. Workplace Safety: Stress can negatively impact employee productivity, safety, and well-being. 

Multimodal data from sensors such as smart watches and activity trackers can be used to monitor 

employees' stress levels in real-time. Employers can use this information to identify high-stress 

situations and implement interventions to reduce stress levels and promote employee well-being. 

3. Education: Stress can affect students' academic performance and mental health. Multimodal data 

from sensors such as EEG sensors and eye-tracking devices can be used to detect stress in students. 

This information can be used to implement interventions such as mindfulness-based stress 

reduction programs to help students manage stress levels. 

4. Automotive Safety: Stress can affect a driver's ability to operate a vehicle safely. Multimodal data 

from sensors such as heart rate monitors and steering wheel sensors can be used to detect stress in 

drivers. This information can be used to alert drivers or trigger safety features such as automatic 

emergency braking systems to prevent accidents. 

5. Sports: Stress can affect athletes' performance and recovery. Multimodal data from sensors such 

as heart rate monitors, GPS trackers, and sweat sensors can be used to monitor athletes' stress levels 

during training and competition. This information can be used to adjust training regimes and 

recovery protocols to optimize performance and prevent injuries. 
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V. MODALITIES 

Multimodal sentiment analysis utilizes various modalities to detect affective states in a conversation. The most 

commonly used modalities include text, audio, and visual cues. Each modality contributes to better sentiment 

prediction, and research suggests that bimodal and tri-modal systems yield better results than unimodal systems. 

The accuracy of the analysis is improved by the significant contributions made by each modality.  

Text is the most prevalent modality used for sentiment analysis, as it enables the identification of underlying 

emotions. Although textual sentiment analysis can yield effective results, it is worth noting that nowadays most 

opinionated data is shared in video format rather than text.  

The use of visual features facilitates a better identification of sentiments or opinions. For instance, if the text reads 

"this is a pretty good mouse," it can be challenging to discern whether it pertains to the animal or computer device. 

In this context, visual cues prove helpful, and a bimodal system combining both text and visuals generates better 

outcomes than unimodal systems.  

Acoustic features in audio modality are utilized to generate textual data from videos, and to identify the tone of the 

speakers. Combining all three modalities creates a more robust analysis model. While visuals may not always detect 

humor, sarcasm, or common sense accurately, the combination of modalities can correctly identify the sentiments. 

Stress detection can be approached through various modalities that can provide different types of information about 

a person's emotional state. Here are some of the modalities commonly used in stress detection: 

Physiological signals: This modality involves measuring biological signals, such as heart rate, skin conductance, 

and muscle tension, to detect stress. These signals can provide insight into a person's autonomic nervous system 

activity, which can be indicative of stress levels. 

Facial expressions: Facial expressions can provide valuable information about a person's emotional state, 

including stress. Facial expression analysis can be performed using computer vision techniques, which involve 

detecting and analyzing changes in facial muscle activity. 

Speech: Changes in speech patterns, such as speaking rate, pitch, and tone, can be indicative of stress. Speech 

analysis can be performed using natural language processing techniques, which involve analyzing the semantic and 

syntactic structure of spoken language. 

Behavior: Changes in behavior, such as fidgeting or avoidance behaviors, can be indicative of stress. Behavioral 

analysis can be performed using motion capture or wearable sensors. 

Eye-tracking: Eye-tracking can provide information about a person's attention and cognitive processing, which can 

be indicative of stress. Eye-tracking analysis can be performed using specialized hardware or software that tracks eye 

movements. 

Brain activity: Brain activity can be measured using techniques such as electroencephalography (EEG) and 

functional magnetic resonance imaging (fMRI). These techniques can provide insight into a person's cognitive 

processing and emotional state. 

In summary, stress detection can be approached through various modalities that can provide different types of 

information about a person's emotional state. These modalities include physiological signals, facial expressions, 

speech, behavior, eye-tracking, and brain activity. 

VI. DATASETS 

Table 3. 

Dataset Age Group / Gender Features Sensors 

WESAD 15 - 9 Males and 6 females 

aged between 19 and 31 

years. 

Electrocardiogram (ECG), 

Electrodermal Activity (EDA), 

Accelerometer, Respiration, 

Temperature, Blood Volume Pulse 

(BVP) 

Empatica E4 wristband, 

Microsoft Band 2, Chest 

strap. 
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Affectiva-

MIT 

Stress[21] 

37 - 19 males and 18 

females, aged between 18 

and 35 years. 

Heart rate, (EDA), Motion Empatica E4 wristband, 

Smartphone (motion) 

DEAP[22] 32 - 16 males and 16 

females, aged between 19 

and 37 years. 

EEG (14 channels), Peripheral 

physiological signals 

Biosemi ActiveTwo 

system (EEG), Empatica 

E3 wristband 

AMIGOS 40 - 20 males and 20 

females) aged between 19 

and 25 years. 

EEG (8 channels), Peripheral 

physiological signals 

Emotiv EPOC+ headset 

(EEG), Empatica E4 

wristband 

DriveDB 

database 

24 male drivers in Boston ECG, EDA, EMG 

(Electromyogram), RESP 

Empatica E4 Wristband 

Multimodal   

Affect  

Recognition  

Challenge 

88 - 58 males and 30 

females) aged between 18 

and 35 years. 

Speech, Facial expressions, Body 

gestures 

Audio and video 

recordings, Microsoft 

Kinect camera 

Multi-modal 

Stress 

Challenge 

21 - 11 males and 10 

females) aged between 22 

and 55 years. 

EEG (4 channels), Peripheral 

physiological signals 

B-Alert X10 EEG 

headset (EEG), 

Empatica E4 wristband 

 

The WESAD (Wearable Stress and Affect Detection) dataset is a publicly available dataset that was created to aid the 

development of algorithms for detecting stress and affect using physiological signals obtained from wearable sensors.  

The dataset was created by collecting physiological data from 15 participants using a variety of sensors, including 

electrocardiogram (ECG), electrodermal activity (EDA), electromyogram (EMG), respiration (RESP), and 

temperature (TEMP) sensors. 

While the WESAD dataset has been widely used and has contributed to advances in the field of affect and stress 

detection, it also has some limitations. These include: 

1. Small sample size: The dataset contains data from only 15 participants, which limits its 

generalizability to larger populations. 

2. Limited demographic diversity: The participants in the dataset are all young, healthy adults, 

which may limit the generalizability of the dataset to other age groups or individuals with health 

conditions. 

3. Limited range of stressors: The dataset was collected in a laboratory setting, which may not 

accurately represent the range of stressors that individuals experience in their daily lives. 

4. Limited sensor modalities: While the dataset includes several sensor modalities, it does not 

include other physiological signals that may be relevant for stress and affect detection, such as EEG 

(electroencephalogram) or eye-tracking data. 

5. Limited annotation: The dataset includes only self-reported stress and affect ratings, which may 

be subject to biases and inaccuracies. 

It is important to keep these limitations in mind when using the WESAD dataset for research or algorithm 

development, and to consider combining it with other datasets or sources of information to improve the 

generalizability and accuracy of stress and affect detection algorithms. 
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