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Conventional network intrusion detection systems have numerous obstacles in handling data. 

These issues may significantly impact its efficacy and efficiency. In real-world scenarios, attacks 

are rare compared to the high volume of normal network activities, creating a significant 

imbalance in the dataset. This imbalance causes the model to concentrate more on normal traffic 

data, thus decreasing its sensitivity in identifying attacks and impacting the overall efficacy of 

the intrusion detection system. Training data plays a critical role when training an intrusion 

detection system. Generating enough training data is a challenging task. One approach to handle 

this challenge is to utilize Generative Adversarial Networks, a machine learning technique that 

generates synthetic data by placing a generator and a discriminator—two neural networks 

contradict each other. The generator creates realistic data examples, while the discriminator 

assesses them, improving the data’s validity through iterative training. This paper suggests 

employing Wasserstein Conditional Generative Adversarial Networks (WCGANs) to tackle the 

imbalanced class issue and improve the effectiveness of intrusion detection systems. Providing 

realistic adversarial examples, the model enhances deep neural network training, hence 

complementing deep learning techniques. This research focuses on handling the difficulty of 

class imbalance in network intrusion detection models using WCGAN. By generating synthetic 

data for both normal and attack categories, the system improves the detection of 

underrepresented labels. WCGAN can also be leveraged to generate realistic network traffic 

samples, thus enhancing the robustness of the classifiers in both binary and multi-class 

scenarios. 
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1. INTRODUCTION 

The information technology community and the underlying digital platform have collaborated in the overwhelming 

majority of business sectors and societal aspects. This digitization has, in parallel, raised significant challenges for 

cybersecurity[1]. The estimation is that threat events are growing at the same pace as developments in connectivity, 

mobility, and diversity. The intrusion incidents are noise within the system information, significantly impacting the 

core of enterprise services and, on a larger scale, nation-state support services [2]. Detecting intrusions and malicious 

activity is a key challenge in cybersecurity. Lately, researchers have concentrated on utilizing artificial intelligence 

techniques for Network Intrusion Detection System (NIDS). The AI-based intrusion detection system has shown 

outstanding performance. Initially, researchers focused on incorporating traditional machine learning approaches like 

SVM and decision trees into the currently available Intrusion Detection System (IDS). This has now widened to 

encompass deep learning methods like CNN, LSTM, and autoencoders. However, these methods have limitations in 

their real-world application [3].  

The trouble with machine learning models is determined as the non-stationary threat datasets with only a few patterns. 

In addition to optimizing models that reduce false alarms, a structured framework must be developed to improve 

intrusion detection systems to handle large and imbalanced datasets effectively [4]. A novel machine learning 

framework was introduced that incorporates Random Oversampling (RO), Stacking Feature Embedding (SFE), and 
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Principal Component Analysis (PCA) to handle the difficulties posed by big and imbalanced data, enhancing detection 

accuracy and robustness [5].  

Class imbalance presents a considerable obstruction in NIDS, as normal traffic data significantly exceeds attack data 

or vice versa, resulting in diminished detection accuracy. To handle this issue, Generative Adversarial Networks 

(GANs) were employed to create artificial data samples, thus balancing the dataset across diverse classes.  

The generated samples are utilized to train machine learning algorithms, enhancing their effectiveness in identifying 

both prevalent and infrequent attack types, which is considered a novel methodology for detecting intrusions via 

Generative Adversarial Networks [6].  

Big Data exploration concepts via data generation using Generative Deep Models are useful in assisting the acquisition 

of a generalizable decision boundary. A model preferably allows the intrusion and benign classes to be easily separated 

and deal with imbalanced classes [7]. SAGANs of Zhang et al. (2022) suggested using a pair of generator and 

discriminator networks encoded by attention mechanisms to encourage predictability, which can generate high-

quality samples and learn meaningful representations on training data and testing data [8].  

GANs have been introduced as powerful gadgets for producing synthetic data in various fields. Conditional GANs 

extend this capability by generating data conditioned on labels, which can be specifically useful for classification tasks 

[9]. The current paper utilizes a hybrid generative model combining Wasserstein GAN and Conditional GAN to 

generate a novel dataset that has similar data patterns and distribution as the original dataset with reasonable 

similarity [10].  

Two Wasserstein Conditional Generative Adversarial Networks (WCGANs) models were utilized to create balanced 

artificial data for binary and multiclass classification. The initial WCGAN model is utilized for binary classification, 

distinguishing network traffic as normal or an assault. The other WCGAN model is used for multiclass classification 

to balance the dataset among various attack categories by generating synthetic samples in underrepresented 

categories. The system is experimented with utilizing the UNSW-NB15 and KDD CUP99 datasets for evaluation. The 

model aims to process the class imbalance challenge often faced in intrusion detection datasets. 

2. BACKGROUND 

2.1 Artificial Neural Network (ANN)  

An artificial neural network (ANN) is a shape of artificial intelligence that aims to emulate the functioning of a human 

being's brain. It is considered effective in predicting events when studying a massive amount of data. Networks are 

implemented based on calculations and parameters essential for predicting the outcome. As shown in Figure 1. [11], it 

comprises processing nodes (units) arranged into input, hidden, and output layers. The units in every layer are 

interconnected with units in the next layers. Every connection possesses a weight value. The inputs are multiplied by 

their corresponding weights and aggregated at every node. The total subsequently undergoes a transformation dictated 

by the activation function, generally a sigmoid function, rectified linear unit (ReLU), or hyperbolic tangent. In 

feedforward networks, information progresses from the input to the output layer, perhaps traversing hidden nodes. 

Backpropagation occurs by comparing the output with the target output and computing the discrepancy known as the 

error function. This error is transmitted backward through each network layer to modify the weights to reduce the 

error. This operation is repeated several times till the network's performance is enhanced [12]. 

 

Fig. 1. Architecture of Artificial Neural Network (ANN) 
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2.2 Generative Adversarial Networks (GANs) 

Generative Adversarial Networks (GANs) were first introduced by Goodfellow et al. (2014) and consist of two distinct 

models: Generator and Discriminator. GANs attempt to simulate the distribution of real data by adversarially training 

a generative network, which infers a probabilistic mapping from the real data space to the input space, and a 

discriminative network, which predicts the probability that a given data example originated from the generative 

network rather than the real data. The generative model, trained to optimize the likelihood of error in the 

discriminative model, attempts to create data identical to the original data. The discriminative model, trained to 

minimize the likelihood of attributing significant importance to anything other than examples coming from the real 

data, attempts to distinguish between fake data generated using the generative model as a training signal and real data 

[13].  

The generator uses a random noise vector as input. The discriminator receives data input from authentic or generated 

data samples using binary cross-entropy loss to determine if the input data is fake or real. As shown in Figure 2 [14], 

the activation function [15] is given by:  

    𝐺𝑚𝑖𝑛𝐷𝑚𝑎𝑥𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧)))]       (1)  

where x: is real data, z: is a latent space vector, G(z): is produced data, whereas D(x): represents the assessment of 

authentic data by the discriminator, and D(G(z)): represents the assessment of generated data by the discriminator.  

 

Fig. 2. Architecture of Generative Adversarial Networks (GANs) 

2.3 Conditional (cGANs) Overview 

It is another kind of GANs where the generation operation is conditioned on further information, such as attributes, 

class labels, or other contextual data. This conditioning permits cGANs to produce samples that meet specific 

characteristics, making them effective in generating realistic samples for targeted scenarios [16].  

However, adversarial training of CGANs can be challenging. Due to the nature of the min-max enhancement, 

solutions may exhibit oscillations, and instabilities, or fail to converge. This sensitivity is highly affected by the 

structure of the models and the chosen hyperparameters. Additionally, traditional evaluation metrics like maximum 

likelihood estimates are less meaningful in assessing CGAN performance due to independence assumptions, which 

can result in underestimating the data probability.  

Therefore, alternative evaluation approaches are often required to accurately assess the quality and stability of CGAN 

outputs [17]. As shown in Figure 3 [18]. The activation function [19] is given by: 

    𝐺𝑚𝑖𝑛  𝐷𝑚𝑎𝑥  𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [𝑙𝑜𝑔𝐷(𝑥|𝑦)] + 𝐸𝑧~𝑝𝑧(𝑧)  [𝑙𝑜 𝑔 (1 − 𝐷(𝐺(𝑧|𝑦)))]        (2) 

where y: represents the class label, D(x|y): the probability estimate generated via the discriminator that x is a real 

example, contingent upon the given label y, G(z|y): is the generator's output, conditioned on y, which tries to create 

examples resembling x based on the label y, D(G(z|y)): depict how the discriminator assess data created by the 

generator conditioned on label y. 
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Fig. 3. Architecture of Conditional Generative Adversarial Networks (cGAN) 

2.4 WASSERSTEIN GANs OVERVIEW 

It is presented by Arjovsky et al. (2017), improved upon standard GANs by utilizing the wasserstein distance as a loss 

function, facilitating improved convergence properties [20]. It is a variant of GANs that utilizes the Wasserstein 

distance to enhance training stability and performance. It also involves measuring the distance among probability 

distributions of the real data and the generated data, providing a more significant gradient for the generator and 

discriminator training. This technique enhances the model's capability to generate realistic samples [21]. WGAN 

enables a robust discriminator that provides valuable gradients to the generator even in cases when the quality of the 

reproduced instances is still limited, hence enhancing the stability of training [22]. 

3. RELATED WORK 

Authors in [23] proposed a distributed-based GAN network to generate 10,000 synthetic data for each class label 

(normal and attacks) equally distributed and use a boxplot to investigate the quality of the artificial data, guaranteeing 

a more precise depiction of real-world data distribution. The reproduced data is utilized to train machine learning 

techniques although the results are competitive with those obtained from real datasets. There is a possibility that 

networks trained exclusively on artificial data may not generalize well to all real-world scenarios. This may result in 

performance discrepancies when deployed in live environments. 

    The study in [24] created and implemented a cGANs model to balance and amplify input for both normal and 

malignant labels. Application of the ocGAN model in frameworks for anomaly identification in imbalanced datasets 

and data balancing. Frameworks for anomaly detection and data augmentation utilizing the Bayesian Convolutional 

Neural Network (bcGAN) paradigm. This paper employed a multiclass classification system for data augmentation 

and identification of anomalies, utilizing the bcGAN model. The study suggested a deep learning method for the 

detection of anomalies in IoT ecosystems utilizing synthetic data produced by cGANs. The enhancement of 

performance in the detection of anomalies throughout diverse IoT networks. However, an inherent constraint of 

ocGAN and bcGAN models is their tendency to achieve inferior detection rates when the size of the training data 

sample is below 1000. Higher detection rates were seen when the sample size of the training data exceeded 1000. 

In [25] the work suggested two different types of generative models, Bidirectional Generative Adversarial Networks 

(BiGAN) and Adversarial Autoencoders (AAE), to produce artificial data for training the IDS. The effectiveness of the 

models was assessed using a method called stratified 10-fold cross-validation. The generative models, particularly the 

BiGAN and AAE, performed significantly better than traditional machine learning approaches, such as Random 

Forests in identifying cyberattacks. These models achieved high F1-scores (up to 0.99) when classifying various types 

of attacks, indicating their potential to optimize the accuracy and robustness of IDS in IoT environments. However, 

their performance on datasets other than IoT-23 or in real-world situations has not been tested. Generative models 

are intricate and may be susceptible to overfitting if they are not appropriately regulated or if they are trained using 

limited or unrepresentative data. The effectiveness of models depends significantly on the quality and diversity of 

training data. Biases in the dataset can lead to poor adaptation to real-world conditions.  
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In [26] the research employed a Conditional Tabular Generative Adversarial Network (CTGAN) within an Intrusion 

Detection System (IDS) to enhance the detection of DoS and DDoS attacks. This method involves the generation of 

emulated traffic that closely resembles normal traffic patterns, aiding in the differentiation between legitimate and 

malicious activities. Research findings indicated that the CTGAN-based IDS can effectively identify DDoS and DoS 

attacks within IoT networks. Additionally, the synthetic data produced by CTGAN contributes to the improved training 

of machine learning models, bolstering their capacity to detect attacks. However, it is significant to note that the 

suggested IDS may encounter challenges in identifying new or modified attack vectors as malicious actors constantly 

adapt their tactics, posing difficulty in maintaining efficacy. Furthermore, the results of this paper may not be 

universally applicable to other network types or diverse IoT environments. 

 In [27] the work proposed (CWVAEGAN-1DNN). This model consists of an encoder, decoder, and discriminator, 

all enhanced with one-dimensional convolutional layers. This architecture improves the model's capability to obtain 

complex patterns in the data. The model is trained to produce new instances of minority class data, which helps to 

rebalance the dataset. The 1D-CNN is utilized to categorize the data into normal and attack labels, leveraging the 

enhanced representation of the minority classes. However, its performance on the UNSW-NB15 dataset was slightly 

inferior compared to some advanced methods. This indicates that the model may not generalize as effectively across 

all datasets, suggesting a need for further optimization. 

   The study in [28] is experimented with Generative Adversarial Networks (BEGAN), to produce synthetic data for 

training the NIDS, build Autoencoders (AE) capable of offering dimensionality reduction, feature extraction, and 

detection models (DNN, CNN, and LSTM). The proposed system achieved 87% and 93% accuracy on UNSW-NB15 

and NSL-KDD, respectively. Although the proposed framework has demonstrated enhancements in classification 

performance, it still showed rather poor detection rates for specific classes of threats. Table I shows the summary of 

related work. 

Table I. SUMMARY OF RELATED WORK 

Study Author and Year Method Key Findings limitation 

[21] 

S. Rahman, S. Pal, S. 

Mittal, T. Chawla, and C. 

Karmakar, 2024 

Distributed GAN 

Network 

Generates 10,000 

synthetic samples per 

class (normal and 

attack), achieving 

competitive results in 

training ML models. 

Synthetic data quality 

was evaluated via 

boxplots to resemble 

real-world distributions. 

Possible performance 

discrepancies in real-

world applications due 

to exclusive training on 

synthetic data. 

[22] 
I. Ullah and Q. H. 

Mahmoud, 2021 
cGAN, ocGAN, bcGAN 

Balances and augments 

data for anomaly 

detection in IoT 

networks; bcGAN shows 

promising results for 

multiclass classification 

and improved anomaly 

detection. 

Lower detection rates for 

sample sizes under 

1000; improvements are 

needed for smaller 

datasets. 

[23] 

N. Abdalgawad, A. 

Sajun, Y. Kaddoura, I. A. 

Zualkernan, and F. 

Aloul, 2022 

BiGAN, AAE 

Produces synthetic data 

for IDS, achieving high 

F1-scores (up to 0.99) on 

IoT-23, outperforming 

traditional ML methods 

in cyberattack detection. 

Lack of validation on 

non-IoT datasets; 

potential overfitting if 

dataset quality or 

diversity is low. 

[24] 
B. A. Alabsi, M. Anbar, 

and S. D. A. Rihan, 2023 
CTGAN 

Effectively generates 

synthetic data for IDS in 

IoT, improving detection 

of DoS and DDoS attacks 

and enhancing ML 

model training accuracy. 

Difficulty adapting to 

novel attack types; 

limited applicability to 

diverse network 

environments. 
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[25] 

J. He, X. Wang, Y. Song, 

Q. Xiang, and C. Chen, 

2023 

CWVAEGAN-1DNN 

Uses encoder-decoder-

discriminator 

architecture with 1D 

CNN layers to rebalance 

data by generating 

minority class samples, 

enhancing pattern 

recognition. 

Slightly inferior 

performance on UNSW-

NB15 dataset, indicating 

potential generalization 

issues. 

[26] 

C. Park, J. Lee, Y. Kim, J. 

G. Park, H. Kim, and D. 

Hong, 2023 

BEGAN, AE with DNN, 

CNN, LSTM 

Generates synthetic data 

and applies 

dimensionality 

reduction, achieving 

87% accuracy on UNSW-

NB15 and 93% on NSL-

KDD, with improved 

classification 

performance. 

Lower detection rates for 

specific threat 

categories; limited 

efficacy for certain types 

of threats 

 

4. METHODOLOGY 

Intrusion detection systems are crucial for observing network activities and detecting malicious behaviors. To 

handle the challenge of imbalanced datasets in IDS, [29] GANs were introduced as influential gadgets for producing 

synthetic data in various fields. CGANs extend this capability by generating data conditioned on labels, which can be 

specifically useful for classification tasks. [30] The principal difficulty addressed in this paper is the imbalance in 

network traffic datasets. The objective is to generate synthetic normal and attack data to balance the dataset and 

enhance the training of NIDS models. This paper leverages a Wasserstein GAN (WGAN) framework with conditional 

inputs (CGAN) to create artificial tabular data for binary and multi-labeled datasets.   

Real data derived from network traffic was employed to generate artificial data instances, using comprehensive 

benchmark datasets for IDS, namely UNSW-NB15 and KDD CUP99. [31]  These instances serve to optimize the 

accuracy of the intrusion detection model by ensuring an even distribution of the data. Utilizing Wasserstein 

Conditional Generative Adversarial Networks (WCGANs) facilitates the creation of a dataset that exhibits a balanced 

representation of all classes, necessitating the development of synthetic data for categories labeled as attacks in 

conjunction with those labeled as normal. 

4.1 Dataset Preprocessing 

Preprocessing the dataset by identifying features for the WCGAN models. Several subprocesses include handling 

missing values, outlier detection and removal, feature selection and filtering. Extreme outliers were identified and 

removed to improve the dataset's quality. This is done using the Interquartile Range (IQR) method, which detects 

points far outside the normal range of the data. Specifically, calculate the 10th (Q1) and 90th (Q3) percentiles of the 

numerical columns and remove records that were beyond three times the IQR: 

𝐼𝑄𝑅 = 𝑄1 − 𝑄3          (3) 

using this, establishing a lower bound at:  

𝑄1 − 3 × 𝐼𝑄𝑅            (4)  

and an upper bound at:  

𝑄3 + 3 × 𝐼𝑄𝑅             (5) 

 which are designed to capture extreme outliers. Data points falling below or above these thresholds were 

considered outliers. This step reduced the UNSW-NB15 dataset from 257,673 records to 176,606 and the KDD CUP99 

dataset from 148,517 to 103,613 rows, making the data more robust and less prone to overfitting when training neural 

network models. 

The unique values and frequencies of the key categorical columns were calculated. Important categorical categories 

were filtered, and only the most relevant categories were kept. Less frequent categories were filtered out to focus on 
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the most impactful traffic types, like protocol, service and state in UNSW-N15 dataset and protocol, services and flags 

in KDD CUP99 dataset. 

 Random Forest is an ensemble learning approach that integrates numerous decision trees to attain enhanced 

accuracy and stability in predictions [32]. A Random Forest Classifier is employed to select a feature by figuring out 

each feature's significance in predicting the target label. 

Training the model and extracting feature significance scores identify the characteristics that are most influential 

in distinguishing classes within the dataset. Recognizing these critical features to concentrate on the most pertinent 

variables improves the model's learning efficiency and diminishes the input space's dimensionality.  

After performing outlier removal and feature selection, the subprocess is checked for missing values in the 

implemented datasets. Fortunately, the dataset did not contain any missing values, so no imputation or further data 

cleaning is required in this step. Categorical variables are also encoded utilizing one-hot encoding. This process 

converts each category into binary columns (0 or 1). The numerical features were standardized utilizing the 

StandardScaler: 

𝑥 =
𝑥 − 𝜇

𝜎
             (6)      

This step ensures that all numerical attributes have a standard deviation (𝛼)of one and a mean (𝜇) of zero, 

prohibiting attributes with larger domains from dominating the model training process. [33] 

Certain features in the dataset are binary, such  these binary columns are identified and ensure that their synthetic 

versions remain binary. Some columns have only one unique value across the dataset. These columns are treated as 

constants, ensuring their values remain fixed when generating synthetic data. The final preprocessed UNSW-NB15 

dataset contained 53 features and 157,035 records, and the KDD CUP99 dataset contained 78,543 rows and 35 

features. The datasets were saved in CSV format separately for future use in training deep learning models for NIDS. 

Fig. 4. Distribution of Binary Labels in UNSW-NB15 dataset    Fig. 5. Distribution of attack labels in UNSW-NB15 dataset
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Fig.6. Distribution of Binary Labels in KDD CUP99 dataset             Fig.7. Distribution of attack labels in KDD CUP99 dataset 

 

4.2 WCGAN Implementation 

The WCGAN design consists of two primary components: a Generator and a Discriminator. The generator creates 

artificial data examples from random noise, while the discriminator differentiates between synthetic and real data. 

Both networks are trained in an adversarial process where the generator attempts to deceive the discriminator into 

classifying artificial samples as real. During generator training, the discriminator's weights are frozen [34]. For each 

batch of real data, a corresponding batch of synthetic data is produced by the generator. The discriminator is then 

trained to distinguish between synthetic and real data [35].  

Two WCGAN models were implemented to address the unique requirements of binary and multi-class 

classification. The binary classification model generates synthetic data conditioned on binary labels (normal vs. 

attack). The multi-class model addresses the challenge of capturing the nuances of multiple attack categories within a 

single model. 

The generator network employs fully connected dense layers with the LeakyReLU activations function. It takes as 

input a random noise vector and the corresponding class label vector, which guides the generator in the generation 

process. In the binary classification model, the output layer utilizes a sigmoid activation function  [36] to produce 

synthetic data in the range [0, 1]. The discriminator network takes as input both real and synthetic data instances, 

along with their corresponding labels, and processes them through fully connected dense layers with the LeakyReLU 

activation function. Binary cross-entropy loss is employed for the binary classification model.  

In the multiclass classification model, the generator employs an embedded layer to map categorical label input to 

a dense vector of size (latent_dim). The flattened layer converts the embedded label into a 1D vector. The concatenation 

step merges this label vector with noise as input. The discriminator also embeds and flattens the input to differentiate 

between real and fake data conditioned with specific labels. WCGAN framework utilizes the Wasserstein loss to 

stabilize training and mitigate mode collapse. MSE loss was utilized to measure the difference between the 

discriminator’s prediction and the target value  

To address class imbalance, the number of synthetic instances generated for each label is adjusted based on the 

distribution of the real dataset. This aims to balance the dataset, although the actual balance achieved may depend on 

the generator's ability to generate samples accurately for each class. Once trained, the generator produces synthetic 

data by feeding noise and labels as input. Post-processing steps are applied to ensure the validity of binary and single-

value features in the synthetic data. 

4.3    Synthetic Data Generation 

The WCGAN was trained for 1000 epochs, after training, the generator produced 100,000 synthetic samples, which 

were then merged with the original dataset for further analysis. The synthetic data combined with the real data, created 

a more balanced dataset. The combined synthetic and real dataset is evaluated to ensure the label distribution and 

features are balanced. The distribution in the real, synthetic, and combined datasets was compared using various 
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methods. Finally, the data was shuffled and stored as a CSV file to utilize in training intrusion detection systems. Figure 

6 illustrates the proposed WCGAN model. 

 

Fig. 8. The proposed WCGAN model 

5. EXPERIMENTAL  

The experiment was implemented by Python 3.12 using the 11th  Gen, Intel(R) Core(TM)  i5-1135G7 

processor, which runs at 2.40GHz, and 8.00 GB of installed RAM.   

4.4 UNSW-NB15 Dataset Description 

The UNSW-NB15 is a frequently utilized dataset for evaluating IDS. It contains various attributes that are 

crucial for training AI-based models to identify network intrusions. UNSW-NB15 is developed by 

configuring the artificial environment at the UNSW cybersecurity laboratory. The IXIA technology 

employed has enabled the generation of a contemporary representation of both typical real-world network 

traffic and synthetic anomalous network traffic within a simulated ecosystem. UNSW-NB15 encompasses 9 

principal categories of assaults through the utilization of the IXIA PerfectStorm technology. 49 attributes 

have been constructed utilizing Argus, Bro-IDS tools, and 12 algorithms that encompass the attributes of 

network packets. The UNSW-NB15 dataset distribution is shown in Table II.  

Table II. THE DISTRIBUTION OF UNSW-NB15 DATESET 

Classes Training dataset Testing dataset 

Normal 56,000 37,000 

Fuzzer 18,184 6,062 

Generic 40,000 18,871 

DoS 12,264 4,089 

Backdoor 1,746 583 

Exploit 33,393 11,132 
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The UNSW-NB15 dataset comprises two subsets: UNSW-NB15 training set with 175,341 records and 

UNSW-NB15 testing set with 82,332 records. Every row comprises 43 features that denote network flow 

characteristics and two category features.  One class feature signifies whether the record represents regular 

traffic (binary-valued attribute), While the other denotes the type of attack in cases of anomalous records.  

Nine separate attack profiles are categorized as Analysis, Fuzzers, Backdoors, Generic, DoS, 

Reconnaissance, Exploits, Shellcode, and Worms. Attack types in UNSW-NB15 dataset are shown in Table 

III [37].  

Table III. ATTACK KINDS IN UNSW-NB15 DATASET 

 

 KDD CUP99 Dataset Description 

In the year 1999, the Massachusetts Institute of Technology created an intrusion detection dataset known 

as KDD CUP99. This dataset was generated by processing data from the Defense Advanced Research 

Projects Agency (DARPA) through several preprocessing stages, resulting in a comprehensive collection of 

records. KDD CUP99 comprises 41 distinct features, which are categorized into four groups: Host-based 

traffic features, Basic features, Content features, and Time-based traffic features. 

The category identified as normal comprises 972,781 samples, while the category labeled as an attack 

includes 3,925,650 samples. The attacks are classified into four distinct categories, as detailed in Table IV. 

[38] 

 

 

 

Analysis 2,000 677 

Shellcode 1,133 378 

Reconnaissance 10,491 3,496 

Worm 130 44 

Type of 

Attack 

Definition 

Fuzzer 
The goal of this type of assault is to cause a system, application, or network to fail by flooding 

it with substantial quantities of arbitrary data. 

Analysis Intruders use ports to access web applications through web scripts and emails. 

Backdoor 
It is a method for discovering plaintext input while executing actions like circumventing 

secret authentication, gaining illegal access remotely to a device, and remaining undetected. 

DoS 
It is an assault that compromises computer memory resources, resulting in an enormous 

workload that obstructs approved requests from reaching the device.  

Exploit 
A series of commands that take benefit of a flaw, error, or weakness to induce unintended 

activity on a network or host. 

Generic It is an approach designed to induce a collision in any block cipher, irrespective of its setup. 

Reconnaissance It collects data on a device network to circumvent security measures. 

Shellcode 
A virus that injects into a small segment of code, commencing from a shell, to manipulate 

the hacked device. 

Worm 

An assault wherein the perpetrator duplicates and disseminates to further devices, 

frequently utilizing the device network for propagation, contingent upon the network traffic 

of the targeted computer employed for access. 
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Table IV. ATTACK CLASSES OF KDD CUP99 DATASET 

Attack Type Description 

User to Root Attack 

(U2R) 

A perpetrator obtains root access to a system by taking advantage of a 

vulnerability present in a standard user account. 

Remote to Local 

Attack (R2L) 

The actor is capable of transmitting packets to a device; however, due to the 

absence of an account on that device, they exploit a weakness to gain local 

access as an authorized user of the device. 

Danial of Service 

Attack (DoS) 

An assault transpires when an individual excessively utilizes a device's 

memory in response to valid requests or obstructs access to the device for 

authorized users. 

Probing Attack The aim is to gather information regarding a network of devices with the 

intention of possibly circumventing its security measures. 

 

4.5 Training Process of WCGAN for Binary Classification 

Model training initiates with the generator producing synthetic data based on random noise and conditioned on 

the class label, with the aim of closely mimicking the real dataset. In binary classification, the labels take values of 

either 0 or 1.  

The authenticity of the generated outputs against original samples is evaluated by the discriminator which is 

trained utilizing Adam optimizer and binary cross-entropy loss with a learning rate (α) of 0.00005. This adversarial 

process relies heavily on gradient descent optimization, which updates both networks iteratively to improve 

performance. The training is reiterated for 1000 epochs, and with a batch size of 64. 

The discriminator is trained on real data along with their actual label, the target output for these samples is 

established at 1, representing real data. This phase adjusts the discriminator's weights to enhance its classification 

precision on authentic samples. The discriminator is subsequently trained using the synthetic data produced by the 

generator, together with the corresponding class labels. The target output for these samples is established at 0, 

signifying fake data. This phase promotes the enhancement of the discriminator in differentiating between produced 

samples and authentic samples. 

 To balance binary labels, the WCGAN model for binary classification is used to produce synthetic data. Specifically, 

the number of samples distributed to ensure equality in both labels. So, 79,637 new samples were created for the 

normal label (0), 20,363 new samples for the attack label (1) in the UNSW-NB15 dataset, as well as 36,409 new 

samples, were created for the normal label (0), and 63,591 new samples for attack label (1) in the KDD CUP99 dataset. 

 

4.6  Training Process of WCGAN for Multi-class 

WCGAN for multi-classification, built a generator and discriminator, embedding multiclass labels into the model. 

The training process encompasses interchanging among updating the discriminator and generator models to achieve 

a balanced game. The generator creates data correlated with the class label, and the discriminator is properly updated 

to classify the original and synthetic samples based on the class label.  

The generator is instructed to create synthetic data that can mislead the discriminator. The RMSprop optimizer is 

utilized for training, which is standard for Wasserstein (GAN) training to maintain stable gradients, with a learning 

rate (α) of 0.00005 and iterating the training procedure for 1000 epochs, and a batch size of 64. In the multi-label 

classification task, the original dataset had (10) labels in UNSW-NB15, and (11) labels in KDD CUP99 datasets, each 

depicting different categories of network traffic (normal and various types of attacks). The distribution of these labels 

was highly imbalanced, which could lead to biased learning and poor model performance in distinguishing between 

attack categories. The artificial data generated by the WCGAN was merged with the original dataset to address class 

imbalances. The efficacy of this approach is evaluated by comparing the class distributions before and after the 

augmentation. The original dataset severely underrepresented certain attack categories in each dataset.  
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6. RESULT AND DISCUSSION 

The preprocessing phase of the methodology involved identifying and removing outliers, encoding categorical features, 

addressing missing values, and scaling numerical data. After conducting these preprocessing steps, Random Forest 

was utilized to evaluate whether these modifications led to an effective feature representation for the classification 

task. Upon training the Random Forest Classifier, it assesses feature significance. The most significant aspects are 

emphasized, which can aid in model interpretation and feature selection. 

The robustness of Random Forests makes them a suitable candidate for this purpose, as they can accommodate various 

data types and do not require significant feature scaling or normalization, offering valuable insights into the utility of 

the preprocessing steps. 

 

Fig. 9. Feature importance in UNSW-NB15 dataset 

After merging the original data with the created synthetic data, the UNSW-NB15 dataset became perfectly balanced 

with 128,517 samples for the normal label (0), and 128,517 samples for the attack label (1), whereas the KDD CUP99 

dataset balanced with 89,271 samples for the normal label (0), and 89,271samples for attack label (1). This balanced 

distribution allows the binary classification model to learn equally from both classes, reducing bias towards any 

particular label. 
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Fig. 10. Binary label distribution in UNSW-NB15 dataset 

 

Fig. 11. Binary Distribution in KDD CUP99 Dataset 

The goal was to increase the number of samples for underrepresented labels, creating a more balanced dataset for the 

multi-class classification mission. The WCGAN was specifically designed to generate samples for each label and 

maintain the relationships between the attack categories. After combining the original data with the synthetic data, 

the dataset became fully balanced, with each label having approximately 55,774 samples in the UNSW-NB15 dataset, 

whereas in the KDD CUP99 dataset, each label has approximately 52,862 samples. Performance metrics, such as 

discriminator accuracy, generator loss, and discriminator loss, are tracked over several epochs. 
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Fig. 12. Multi-Label distribution in UNSW-NB15 Dataset 

 

Fig. 13. Multi-Label Distribution in KDD CUP99 Dataset 
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Fig. 14. WCGAN model training 

The results demonstrate that the WCGAN effectively generates high-quality synthetic data, which helps balance the 

dataset. Generator Loss decreased steadily over training, indicating that the generator improved its capability to make 

realistic data. The discriminator's accuracy fluctuated during training but then stabilized, indicating that the 

discriminator learned to distinguish between real and synthetic data effectively.  

Compared with distribution-based GAN, the WCGAN methodology uses a Wasserstein loss to evaluate how well 

artificial data aligns with the real data distribution by mathematically measuring the distance between the real data 

and the generated data. Although boxplots are a valuable supplementary visual tool for examining data distribution, 

they do not possess the quantitative rigor and feedback functionalities inherent in Wasserstein loss.  

In CTGAN, The condition addresses the issue of imbalanced tabular data, thereby ensuring that the generator 

acquires the capability to learn and produce realistic samples across all feature combinations. CTGAN is specifically 

developed for the generation of tabular data, emphasizing the precise representation of both categorical and 

continuous variables within the generated datasets. In contrast, WCGAN focuses on generating samples for specific 

labels or categories; the condition helps balance datasets, such as normal traffic or particular types of attacks in an 

intrusion detection system. The produced data is specifically designed by the designated class labels, thereby ensuring 

that the distribution of the artificial data accurately corresponds to the distribution of actual data associated with those 

labels. 

The proposed WCGAN-based method successfully cures the class imbalance trouble in NIDS datasets. By 

generating realistic attack data, the model allows for better training of deep learning-based IDS models, improving 

their ability to detect rare network attacks. This approach provides solutions to other binary and multiclass 

classification problems where data imbalance hinders the model's effectiveness. 

Current supervised learning classifiers rely on the training set for their learning process, causing a significant drop in 

performance when facing new data types. Revealing these inherent data characteristics could result in a more reliable 

system that reduces the occurrence of false positives and negatives. As a result, GANs have been utilized to understand 

and depict the internal data distribution, using a training set that contains the network information of the data for 

classification purposes. This approach can be extended to other binary and multiclass classification problems where 

data imbalance is an issue. 

7. CONCLUSION 

This paper presents an approach utilizing WCGAN to produce synthetic data for network traffic dataset balance. The 

methodology improves the performance of NIDS models by enhancing their ability to detect rare attack traffic. One of 

the primary findings indicates that incorporating Wasserstein loss significantly enhances the stability of training 

compared to traditional GAN architectures, thereby mitigating common issues such as mode collapse. The generator 

benefits from Wasserstein loss by being able to learn from the distribution of the original dataset, and thus diversifying 

the random inputs, allowing the generator to produce varied samples. The WCGAN-based framework addresses class 

imbalance in intrusion detection datasets, improving system performance. It also generates synthetic data samples for 
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binary and multiclass scenarios, enabling more efficient training and improved accuracy in deep learning models. 

Future research could explore optimizing their architectural parameters and adapting the model to other domains, 

including video generation and reinforcement learning, to fully realize their potential. Additionally, understanding the 

interplay between conditioning information and generator performance could further refine WCGAN methodologies, 

fostering the development of even more robust generative models. 
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